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Background and Objective: Despite striking advances in multimodality management,
gastric cancer (GC) remains the third cause of cancer mortality globally and identifying
novel diagnostic and prognostic biomarkers is urgently demanded. The study aimed to
identify potential key genes associated with the pathogenesis and prognosis of GC.

Methods: Differentially expressed genes between GC and normal gastric tissue
samples were screened by an integrated analysis of multiple gene expression profile
datasets. Key genes related to the pathogenesis and prognosis of GC were identified
by employing protein–protein interaction network and Cox proportional hazards model
analyses.

Results: We identified nine hub genes (TOP2A, COL1A1, COL1A2, NDC80,
COL3A1, CDKN3, CEP55, TPX2, and TIMP1) which might be tightly correlated
with the pathogenesis of GC. A prognostic gene signature consisted of CST2,
AADAC, SERPINE1, COL8A1, SMPD3, ASPN, ITGBL1, MAP7D2, and PLEKHS1 was
constructed with a good performance in predicting overall survivals.

Conclusion: The findings of this study would provide some directive significance for
further investigating the diagnostic and prognostic biomarkers to facilitate the molecular
targeting therapy of GC.

Keywords: gastric cancer, bioinformatics, differentially expressed genes, survival, biomarker, GEO, TCGA

INTRODUCTION

Although North America and most western European countries have seen a sharp decline in
incidence and mortality over the past decades, gastric cancer (GC) remains the fifth most common
malignancy worldwide and represents a serious medical burden especially in Eastern Asia (Ferro
et al., 2014; Torre et al., 2015). In China, GC is the second most frequent cancer among males
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and the third among females, and is the second leading cause
of cancer-related lethality in both males and females, which
leads to an estimated 498,000 cancer deaths with about 679,000
newly diagnosed cancer cases in 2015 (Chen et al., 2016).
Poor 5-year survival in GC is mainly attributed to the fact
that most patients are diagnosed at an advanced stage and
even with metastatic diseases and thus lose the opportunity for
a curative resection (Cutsem et al., 2016; Zong et al., 2016;
Li R. et al., 2017). Despite major advances in understanding
the epidemiology, pathology, and molecular mechanisms of
GC and in implementing emerging therapeutic options such
as targeted and immune-based therapies, not all patients
respond to existing molecularly targeted agents developed for
certain acknowledged biomarkers (Ciliberto et al., 2015; Cutsem
et al., 2016; Chau, 2017). Therefore, although biomarkers and
therapeutic targets recently found in GC have made a great
contribution to improving the diagnosis and treatment of
GC, identifying novel diagnostic and prognostic biomarkers
remains urgently necessary in terms of the biological complexity,
poor prognosis and high reoccurrence of GC (Wadhwa et al.,
2013; Cutsem et al., 2016; Wang et al., 2017; Kang et al.,
2018).

In recent years, the advancement of microarray and high
throughput sequencing technologies has provided an efficient
tool to decipher critical genetic or epigenetic alternations
in carcinogenesis and to discover promising biomarkers for
cancer diagnosis, treatment and prognosis (Kulasingam and
Diamandis, 2008; Cancer Genome Atlas Research Network,
2014). Meanwhile, in order to overcome the limited or
inconsistent results due to the application of either different
technological platforms or a small sample size, integrated
bioinformatics methods have been adopted in cancer research
and a vast range of valuable biological information has been
uncovered (Yang et al., 2014; Song et al., 2017; Sun C. et al., 2017;
Sun M. et al., 2017; Wang et al., 2017).

In the present study, we firstly performed an integrated
analysis and identified differentially expressed genes (DEGs) by
using microarray and RNA sequencing data in human GC and
normal gastric tissue samples. Secondly, functional enrichment
analysis was further conducted to analyze the main biological
functions modulated by the DEGs. Finally, key genes affecting
the pathogenesis and prognosis of GC patients were identified by
utilizing protein–protein interaction (PPI) network and survival
analyses.

MATERIALS AND METHODS

Gene Expression Profile Data
Microarray data on gene expression (GSE19826, GSE27342,
GSE29272, GSE33335, GSE54129, GSE56807, GSE63089,
GSE65801, and GSE79973) were downloaded from Gene
Expression Omnibus (GEO)1. All included datasets met the
following criteria: (1) they employed human stomach tissue
samples. (2) They contained case-control groups. (3) They

1http://www.ncbi.nlm.nih.gov/geo/

contained at least ten samples. A large sample size may
reliably reveal the DEGs or non-coding RNAs. The small
sample size is reported to be one of the major challenges
in microarray analysis, and recent integrated bioinformatics
studies tend to use datasets with a relatively large sample
size (Sun M. et al., 2017; Moradifard et al., 2018). Therefore,
the GEO datasets which contained at least ten samples
were chosen for further study. Raw RNA sequencing data
containing 375 GC samples and 32 matched non-cancerous
samples were obtained from The Cancer Genome Atlas
(TCGA)2.

Integrated Analysis of Microarray
Datasets
Limma package (Ritchie et al., 2015) in R software was applied
to perform the normalization and base-2 logarithm conversion
for the matrix data of each GEO dataset, and the DEGs between
tumor and normal tissues were also screened by the limma
package. Gene integration for the DEGs identified from the nine
datasets was conducted by an R package “RobustRankAggreg”
(Kolde et al., 2012) based on a robust rank aggregation (RRA)
method. This RRA method screens genes ranked consistently
better than expected based on null hypothesis of uncorrelated
inputs (Kolde et al., 2012). Thus, we did not integrate the gene
expression values of samples from different datasets. And like
many published papers based on the RobustRankAggreg package
(Yang et al., 2014; Shi et al., 2015), we also did not perform
batch effect correction. |log2FC| ≥ 1, P-value < 0.05 and adjust
P-value < 0.05 were considered statistically significant for the
DEGs.

DEGs Validation by TCGA
The results of integrated analysis of GEO datasets were
validated using the RNA sequencing data in the TCGA GC
dataset. The data were normalized and analyzed by the edgeR
package (Robinson et al., 2010). Genes with |log2FC| ≥ 1,
P-value < 0.05 and adjust P-value < 0.05 were considered
to be significantly differentially expressed. Overlapping DEGs
between the integrated microarray and RNA sequencing
data analyses were retained for further study. In addition,
the normalized gene expression level of the TCGA GC
dataset was transformed on the base-2 logarithm for further
analysis.

Functional Enrichment Analysis of DEGs
To elucidate potential biological processes, molecular functions
and cellular components associated with the overlapping DEGs,
we performed GO enrichment analysis utilizing the Database
for Annotation, Visualization and Integrated Discovery (DAVID,
version 6.8)3 (Huang da et al., 2009). And Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway enrichment analysis
was carried out by clusterProfiler (Yu et al., 2012) to expound
promising signaling pathways correlated with the overlapping

2https://cancergenome.nih.gov/
3https://david.ncifcrf.gov/
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DEGs. P-value < 0.05 and adjust P-value < 0.05 were defined
as the cut-off criteria.

PPI Network and Module Analysis
The STRING (Szklarczyk et al., 2017) database was applied
to identify potential interactions among the overlapping
DEGs. PPIs with a confidence score ≥ 0.4 were reserved
and further imported to Cytoscape (Shannon et al., 2003)
for constructing the PPI network of overlapping DEGs.
Moreover, to detect hub clustering modules in the PPI
network, we performed module analysis utilizing Molecular
Complex Detection (MCODE) (Bader and Hogue, 2003)
app with default parameters in Cytoscape. GO and KEGG
pathway enrichment analyses for significant modules were also
made.

Survival Analysis
The clinical information of patients with GC was also
downloaded from TCGA. After removing patients without
overall survival (OS) data and gene expression profiles of
the overlapping DEGs, 368 patients with GC were used for
survival analysis. Univariate Cox proportional hazards regression
analysis was employed to identify candidate genes that were
strongly correlated with survival. Then the candidate genes
with P-value < 0.05 were further applied in multivariate Cox
proportional hazards regression analysis to identify prognostic
gene markers. Subsequently, these prognostic gene markers were
fitted in a multivariate Cox proportional hazards regression
model with OS as a dependent variable to estimate their
relative contributions to survival prediction. We constructed a
prognostic gene signature according to a linear combination
of gene expression values multiplied by a regression coefficient
(β) accessed from the multivariate Cox proportional hazards
regression model of each gene. The formula is as follows:
risk score = expression of gene1 × β1gene1 + expression
of gene2 × β2gene2 + . . . expression of genen × βngenen
(Zhou et al., 2015; Xin et al., 2016; Huang et al., 2017).
These GC patients were classified into either low- or high-
risk groups based on the median prognostic risk score.
Furthermore, we performed time-dependent receiver operating
characteristic (ROC) curve analysis by employing an R package
“survivalROC” to assess the predictive accuracy of the prognostic

signature for time-dependent cancer death (Heagerty and Zheng,
2005). The area under the curve (AUC) was calculated to
measure the predictive ability of the gene signature for clinical
outcomes.

Statistical Analysis
The univariate and multivariate Cox proportional hazards
regression analyses were conducted utilizing an R package
“survival”. Hazard ratio (HR) and 95% confidence interval (CI)
were calculated to identify protective (HR < 1) or risky genes
(HR > 1). A survival curve made by Kaplan–Meier method was
implemented to estimate the differences in survival time between
the high- and low-risk patients. All the statistical analyses were
conducted with R (version 3.4.3)4.

RESULTS

Identification of DEGs
The detailed information for the samples in the included
datasets was shown in Supplementary Table 1. The information
for the nine GEO datasets included in the current study
was displayed in Table 1. A total of 411 DEGs comprising
234 down-regulated and 177 up-regulated genes were
obtained after the integrated analysis of nine GEO datasets
(Supplementary Table 2). Figure 1A showed top 20 down-
and up-regulated genes in the integrated microarray analysis.
The DEGs acquired from the TCGA GC dataset consisted
of 2219 down-regulated and 2404 up-regulated genes
(Supplementary Table 3). We further identified 268 overlapping
DEGs (149 down-regulated and 119 up-regulated genes) by
intersecting the results of integrated microarray and RNA
sequencing data analyses (Figures 1B,C and Supplementary
Table 4).

Functional Enrichment Analysis of DEGs
We conducted GO and KEGG pathway enrichment analyses
to expound the potential biological functions of 268 DEGs. In
terms of the 149 down-regulated genes, they were significantly
enriched in multiple biological processes related to metabolism

4https://www.r-project.org/

TABLE 1 | Information for the nine GEO datasets included in the current study.

Dataset Reference Platform Number of samples
(Tumor/Control)

GSE19826 Wang et al., 2012 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array 27 (12/15)

GSE27342 Cui et al., 2011a,b [HuEx-1_0-st] Affymetrix Human Exon 1.0 ST Array [transcript (gene) version] 160 (80/80)

GSE29272 Wang et al., 2013; Li et al., 2014 [HG-U133A] Affymetrix Human Genome U133A Array 268 (134/134)

GSE33335 Cheng et al., 2012a,b, 2013 [HuEx-1_0-st] Affymetrix Human Exon 1.0 ST Array [transcript (gene) version] 50 (25/25)

GSE54129 Sun C. et al., 2017 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array 132 (111/21)

GSE56807 Wang et al., 2014 [HuEx-1_0-st] Affymetrix Human Exon 1.0 ST Array [transcript (gene) version] 10 (5/5)

GSE63089 Zhang et al., 2015 [HuEx-1_0-st] Affymetrix Human Exon 1.0 ST Array [transcript (gene) version] 90 (45/45)

GSE65801 Li H. et al., 2015 Agilent-028004 SurePrint G3 Human GE 8x60K Microarray (Probe Name Version) 64 (32/32)

GSE79973 He et al., 2016 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array 20 (10/10)
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FIGURE 1 | Identification of DEGs. (A) The heat map of top 20 down- and up-regulated DEGs in the integrated microarray analysis. Each column represents one
dataset and each row represents one gene. The number in each rectangle represents the value of log2FC. The gradual color ranging from blue to red represents the
changing process from down- to up-regulation. (B) Venn diagrams of the DEGs between the integrated nine GEO datasets and the TCGA GC dataset. (C) The heat
map of 268 overlapping DEGs in GC and normal gastric tissues (TCGA dataset). Each column represents one sample and each row represents one gene. The
gradual color ranging from blue to red represents the changing process from down- to up-regulation.
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FIGURE 2 | Functional enrichment analysis of the overlapping DEGs. (A) GO enrichment analysis of the overlapping DEGs. The y-axis shows significantly enriched
GO terms, and the x-axis shows different gene categories. Rich factor refers to the ratio of the number of DEGs enriched in a GO term to the number of all the
annotated genes enriched in the GO term. (B) KEGG pathway enrichment analysis of the overlapping DEGs. The y-axis shows significantly enriched KEGG
pathways, and the x-axis shows different gene categories. Rich factor refers to the ratio of the number of DEGs enriched in a KEGG pathway to the number of all the
annotated genes enriched in the KEGG pathway.

(Figure 2A and Supplementary Table 5). As for the 119
up-regulated genes, they showed a close correlation with
extracellular matrix, such as extracellular matrix organization,
extracellular matrix disassembly, extracellular matrix structural
constituent and so on. (Figure 2A and Supplementary
Table 5).

According to KEGG pathway enrichment analysis, the
down-regulated genes mainly participated in diverse metabolism-
associated signaling pathways, like drug metabolism –
cytochrome P450, metabolism of xenobiotics by cytochrome
P450, retinol metabolism, tyrosine metabolism and so on
(Figure 2B and Supplementary Table 6). As for the up-
regulated genes, they mainly regulated pathways correlated
with environmental information processing and tumor
progression, such as cytokine-cytokine receptor interaction,
ECM-receptor interaction, focal adhesion and so on (Figure 2B
and Supplementary Table 6).

PPI Network and Module Analysis
The PPI network of overlapping DEGs consisted of 173 nodes
and 711 interactions (Figure 3A and Supplementary Table 7).
Two topological features, degree (Williams and Del Genio, 2014)
and betweenness (Newman, 2005) were calculated to identify
candidate hub nodes. The higher the two quantitative values
of a gene, the more important it is in this network. As a
result, 10 candidate hub nodes, the degree and betweenness
of which were all more than four-fold of the corresponding
median values, were identified, namely, DNA topoisomerase
II alpha (TOP2A), collagen type I alpha 1 chain (COL1A1),
collagen type I alpha 2 chain (COL1A2), C-X-C motif chemokine
ligand 8 (CXCL8), NDC80 kinetochore complex component
(NDC80), collagen type III alpha 1 chain (COL3A1), cyclin
dependent kinase inhibitor 3 (CDKN3), centrosomal protein
55 (CEP55), TPX2 microtubule nucleation factor (TPX2), and
TIMP metallopeptidase inhibitor 1 (TIMP1) (Supplementary
Table 8). Additionally, in order to detect significant clustering

modules in this PPI network we performed module analysis and
obtained top three modules with high scores (Figures 3B–D).
The nine candidate hub nodes except CXCL8 were contained
in the three modules, which implied that the three modules
might remarkably represent the key biological characteristics
of this PPI network, and thereby the nine nodes were defined
as major hub nodes in the PPI network (Figure 4). At
the aspect of GO enrichment analysis, module 1 was closely
correlated with mitotic nuclear division, cell division, mitotic
cytokinesis, midbody, centrosome, and nucleus; module 2
was highly connected to collagen catabolic process, collagen
fibril organization, extracellular matrix structural constituent,
platelet-derived growth factor binding, endoplasmic reticulum
lumen, and collagen trimer; module 3 was intimately associated
with extracellular matrix disassembly, extracellular region, and
extracellular space (Figure 5A and Supplementary Table 9).
With respect to KEGG pathway enrichment analysis, the
genes in module 1 were mainly enriched in p53 signaling
pathway, cell cycle, and FoxO signaling pathway; the genes
in module 2 mainly participated in ECM-receptor interaction,
focal adhesion, and PI3K-Akt signaling pathway; the genes in
module 3 were mainly implicated in Toll-like receptor signaling
pathway and TNF signaling pathway (Figure 5B, Supplementary
Table 10). Our data presented that once some DEGs were
overexpressed the signaling pathways that they involved in may
be dysregulated. For instance, highly up-regulated COL1A2,
COL1A1, and COL4A1 in GC tissues might be responsible for
the dysfunction of ECM-receptor interaction, focal adhesion,
and PI3K-Akt signaling pathway; SPP1, CXCL10, and CXCL9
in Toll-like receptor signaling pathway were overexpressed
as well. Since the three down-regulated genes (SSTR1, SST,
and GPER1) in module 3 cannot be significantly enriched
in any KEGG pathways identified in module analysis, all
these KEGG pathways were enriched by the up-regulated
genes in the three modules. And of the three down-regulated
genes, only SSTR1 was significantly enriched in GO terms

Frontiers in Genetics | www.frontiersin.org 5 July 2018 | Volume 9 | Article 265

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00265 July 15, 2018 Time: 16:2 # 6

Liu et al. Potential Biomarkers for Gastric Cancer

FIGURE 3 | Protein–protein interaction (PPI) network and hub clustering modules. (A) The PPI network of overlapping DEGs. (B) Module 1 (MCODE
score = 22.818). (C) Module 2 (MCODE score = 10.8). (D) Module 3 (MCODE score = 7.467). Blue circles represent down-regulated genes and red circles represent
up-regulated genes. Node color deepens as the value of |log2FC| increases.

(extracellular region and extracellular space) identified in module
analysis.

Survival Analysis
A total of 44 genes significantly correlated with survival
time (P < 0.05) were identified by the univariate Cox
proportional hazards regression model (Supplementary
Table 11). A prognostic gene signature composed of nine genes
was developed after using the multivariate Cox proportional
hazards regression model, including cystatin SA (CST2),
arylacetamide deacetylase (AADAC), serpin family E member 1
(SERPINE1), collagen type VIII alpha 1 chain (COL8A1),

sphingomyelin phosphodiesterase 3 (SMPD3), asporin (ASPN),
integrin subunit beta like 1 (ITGBL1), microtubule-associated
protein 7 domain containing 2 (MAP7D2), and pleckstrin
homology domain containing S1 (PLEKHS1) (Table 2). Among
these nine genes, COL8A1, SMPD3, and PLEKHS1 with HR < 1
were identified as protective prognostic genes, whereas CST2,
AADAC, SERPINE1, ASPN, ITGBL1, and MAP7D2 with HR > 1
were identified as risky prognostic genes. A total of 184 patients
with the risk scores larger than the median risk score (1.060) were
divided into the high-risk group, whereas the other 184 patients
were divided into the low-risk group. The risk score result of
the TCGA GC dataset was presented in Figure 6A. As shown
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FIGURE 4 | Expression of the nine hub DEGs in GC and normal gastric tissues (TCGA dataset). Expression values of genes are log2-transformed.

FIGURE 5 | Functional enrichment analysis of the DEGs in the three modules. (A) GO enrichment analysis of the DEGs in the three modules. The y-axis shows
significantly enriched GO terms, and the x-axis shows different modules. Rich factor refers to the ratio of the number of DEGs enriched in a GO term to the number
of all the annotated genes enriched in the GO term. (B) KEGG pathway enrichment analysis of the DEGs in the three modules. The y-axis shows significantly
enriched KEGG pathways, and the x-axis shows different gene categories. Rich factor refers to the ratio of the number of DEGs enriched in a KEGG pathway to the
number of all the annotated genes enriched in the KEGG pathway.

in Figure 6B, a highly significant difference in OS was detected
between the high- and low-risk groups (P < 0.0001). In details,
the OS rate of patients in the low-risk group was 88.3% (95%
CI = 83.50–93.40%), 65.5% (95% CI = 57.20–75.00%) and 62.5%
(95% CI = 53.10–73.60%) for 1-, 3-, and 5-year, respectively,
compared with 64.70% (95% CI = 57.65–72.60%), 31.25% (95%
CI = 23.37–41.80%), and 9.52% (95% CI = 2.99–30.30%) in the
high-risk group. The prognostic gene signature presented a good
performance in survival prediction, as the AUC was 0.696, 0.741,
and 0.838 for 1-, 3-, and 5-year OSs (Figure 6C), respectively.
The expression level distribution of the nine genes in low- and
high-risk groups was shown in Figure 7.

DISCUSSION

Integrated bioinformatics analysis mainly focusing on
differentially expressed molecule screen, network-based
hub node discovery, and survival analysis has been extensively
applied to identify potential biomarkers associated with the
diagnosis, treatment, and prognosis of GC. For example, Chang
et al identified hub genes related to liver metastasis of GC from
four GEO datasets by developing an integrated method including
DEG screen, pathway analysis, literature-based annotations,
PPI networks, reverse transcription-quantitative polymerase
chain reaction (RT-qPCR), and immunohistochemistry
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TABLE 2 | Prognostic value of the nine genes in the GC patients of the TCGA cohort.

Gene symbol Univariate analysis Multivariate analysis

HR (95% CI) P-value HR (95% CI) P-value Coefficient

CST2 1.113 (1.029–1.204) 0.0075 1.083 (0.975–1.203) 0.1359 0.0797

AADAC 1.074 (1.009–1.143) 0.0244 1.112 (1.042–1.186) 0.0015 0.1058

SERPINE1 1.261 (1.133–1.403) <0.0001 1.358 (1.179–1.564) <0.0001 0.306

COL8A1 1.115 (1.011–1.230) 0.0289 0.612 (0.470–0.797) 0.0003 −0.4913

SMPD3 0.883 (0.803–0.971) 0.0100 0.917 (0.815–1.031) 0.1460 −0.0871

ASPN 1.143 (1.038–1.258) 0.0063 1.296 (1.090–1.542) 0.0034 0.2596

ITGBL1 1.105 (1.025–1.192) 0.0092 1.209 (1.042–1.404) 0.0126 0.1901

MAP7D2 1.068 (1.008–1.132) 0.0268 1.064 (1.000–1.133) 0.0512 0.0624

PLEKHS1 0.912 (0.846–0.982) 0.0148 0.937 (0.859–1.023) 0.1466 −0.0646

(Chang et al., 2009); Sun et al identified key genes in the
occurrence and development of GC from one GEO dataset
using a bioinformatics approach incorporating DEG screen,
functional enrichment analysis, PPI network construction,
and survival analysis (Sun C. et al., 2017); Li X. et al. (2017)
identified candidate biomarkers for GC from six GEO datasets
by performing DEG, gene functional enrichment, and PPI
network analyses, and validated their results with RT-qPCR;
Ren et al. (2017) identified key genes and pathways for GC by a
network-based method that combined data on gene expression,
miRNA expression, DNA methylation, and DNA copy number
in TCGA; Wang et al. (2017) used the gene expression profiles
from one GEO dataset and TCGA, and identified a prognostic
gene signature for predicting the survival of GC patients by a
robust likelihood-based survival model. Compared with previous
works, the current study not only integrated microarray data
with relative large sample size from multiple GEO datasets and
RNA sequencing data from TCGA, but also built gene networks
and a Cox proportional hazards model to identify potential
diagnostic and prognostic biomarkers in GC.

In the present study, nine microarray datasets were integrated
with RNA sequencing data from TCGA, and 268 DEGs
between GC and normal samples were identified, comprising
149 down-regulated and 119 up-regulated genes. The functional
enrichment analysis showed that the down-regulated genes were
primarily implicated in various metabolic processes, including
metabolism of xenobiotics, cofactors, vitamins, amino acids,
and carbohydrates. For the up-regulated genes, they mainly
played important functions in signal transduction, cell growth
and death, infectious diseases, and immune system. Particularly,
many up-regulated genes were enriched in cancer-related
pathways, such as ECM-receptor interaction, PI3K-Akt signaling
pathway, and Toll-like receptor signaling pathway, which
suggested these genes might be important in carcinogenesis and
metastasis of GC. Our findings in the functional enrichment
analysis agreed with previous works (Li H. et al., 2015; Li X. et al.,
2017; Ren et al., 2017; Sun C. et al., 2017).

We also identified nine major hub genes in the PPI network,
namely, TOP2A, COL1A1, COL1A2, NDC80, COL3A1, CDKN3,
CEP55, TPX2 and TIMP1, and coincidentally all of them were
up-regulated genes in GC. The alteration of TOP2A in gene

copy number and gene expression level is usually found in
cancer cells, and deregulation of TOP2A expression might play
an important role in chromosome instability and tumorigenesis
(Chen et al., 2015). Moreover, highly expressed TOP2A enhances
the risk of hematogenous recurrence in patients with stage II/III
GC (Terashima et al., 2017). COL1A1 and COL1A2 are among
the type I collagen family members which are widely believed
to participate in carcinogenesis (Ramaswamy et al., 2003; Wolf
et al., 2009). Overexpression of COL1A1 and COL1A2 has been
confirmed in GC (Li et al., 2016; Sun, 2016; Zhuo et al., 2016;
Wang and Yu, 2018) and may predict an adverse prognosis in
GC patients (Li et al., 2016). Recent evidence showed that miR-
129-5p could inhibit the proliferation, invasion, and migration
of GC cells by selectively decreasing the expression of COL1A1
(Wang and Yu, 2018). Furthermore, COL1A2 gene silencing was
recently reported to suppress GC cell proliferation, invasion, and
migration while facilitating apoptosis via deactivating PI3k-Akt
signaling pathway (Ao et al., 2018). COL3A1, a member of type
III collagen gene family, was regarded as a potential important
gene in human GC using bioinformatics approaches (Hu and
Chen, 2012; Chen et al., 2017). Nevertheless, investigations
on the regulatory mechanism of COL3A1 in GC have been
rarely reported. The mRNA and protein levels of NDC80 (also
called HEC1), a member of the NDC80 complex, are commonly
overexpressed in several human cancers including GC (Qu et al.,
2014). NDC80 exerts significant functions in maintaining GC
cell growth in vitro and in vivo, and high NDC80 expression
might occur at the early stage of GC (Qu et al., 2014). CDKN3
has been proposed as a potential therapeutic target for GC and
plays pivotal roles in the tumorigenesis of GC (Li Y. et al., 2017).
Specifically, increased CDKN3 expression is frequently observed
in GC tissues and cell lines and has a close correlation with
advanced clinical stage, recurrence, and an adverse prognosis
in GC (Li Y. et al., 2017). Besides, downregulation of CDKN3
could not only inhibit proliferation, invasion, and migration in
GC, but also induce cell cycle arrest and apoptosis (Li Y. et al.,
2017). Strongly elevated expression of CEP55 is detected in GC
tissues and cell lines and shows a high correlation with the
proliferation, colony formation and tumorigenesis of GC cells
(Tao et al., 2014). Additionally, knockdown of CEP55 possibly
suppressed proliferation in GC by inducing cell cycle arrest at
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FIGURE 6 | Prognostic gene signature of the nine genes in the GC patients (TCGA dataset). (A) From top to bottom is the risk score distribution, patients’ survival
status distribution, and the heat map of the nine genes for low- and high-risk groups. In the heat map, each column represents one sample and each row represents
one gene, and the gradual color ranging from blue to red represents the changing process from down- to up-regulation. (B) The Kaplan–Meier curves for low- and
high-risk groups. (C) The ROC curves for predicting OS in GC patients by the risk score.

G2/M phase (Tao et al., 2014). It has been demonstrated that
TPX2 is overexpressed in multiple malignancies including GC,
and high TPX2 expression is reported to be relevant to GC
progression and might act as a potential indicator for a poor
prognosis in GC patients (Liang et al., 2016; Shao et al., 2016;
Tomii et al., 2017). The prognostic value of TIMP1 as a biomarker
in GC is controversial, and its role in tumor invasion and
metastasis seems fairly complicated although TIMP1 functions
as an inhibitor of matrix metalloproteinases which are highly

expressed in cancer and promote tumor invasion and the
development of metastatic disease (Bao et al., 2010; Grunnet
et al., 2013). A study based on literature search revealed that
increased protein levels of TIMP1 in either tumor tissue extracts
or in plasma from GC patients have a correlation with adverse
outcomes (Grunnet et al., 2013). Moreover, recent findings
showed that tumor-related myofibroblasts are the major source
of elevated TIMP1 expression in GC (Alpizar-Alpizar et al.,
2016).
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FIGURE 7 | Expression of the nine genes in low- and high-risk groups (TCGA dataset). Expression values of genes are log2-transformed.

The current study identified nine pivotal genes associated
with GC prognosis and constructed a prognostic gene signature
comprised of these genes. As for the three protective prognostic
genes (COL8A1, SMPD3, and PLEKHS1), the prognostic value
of COL8A1 in GC has been evaluated before. COL8A1 might
involve in the proliferation, adherence and migration of diverse
cells, and overexpressed COL8A1 is detected in several rapidly
proliferating cells, such as epithelial cells and tumor cells (Paulus
et al., 1991; Bendeck et al., 1996; Xu et al., 2001; Tanaka
and Arii, 2006; Wang et al., 2017). And the association of
COL8A1 with multiple tumors has gained widely attention.
For example, it was reported that down-regulation of COL8A1
could obviously inhibit the proliferation and colony formation
of hepatocarcinoma cells (Zhao et al., 2009). Moreover, a latest
study based on co-expression network analysis observed that
overexpression of COL8A1 is relevant to the adverse prognosis
of human colon adenocarcinoma (Shang et al., 2018). Likewise,
high expression of COL8A1 also indicated poor clinical outcomes
in GC according to the prognostic gene signature model built
by Wang et al. (2017). However, unlike the earlier study, our
prognostic model was based on the genes commonly identified
as DEGs in multiple distinct datasets, which may account for the
different results. Even so, future studies are warranted to validate
our results. The prognostic value of SMPD3 and PLEKHS1 in
GC has not been validated in previous studies. SMPD3 encodes
neutral sphingomyelinase-2 (nSMase2), a sphingomyelinase
that catalyzes the hydrolysis of sphingomyelin in biological
membranes to ceramide and phosphorylcholine (Wang et al.,
2015). SMPD3 as a potential tumor suppressor gene has gained
widely studies, and it is linked to numerous malignancies like
leukemia, breast cancer, and liver cancer (Bhati et al., 2008; Kim
et al., 2008; Singh et al., 2014; Zhong et al., 2018). Also, abnormal

promoter methylation of SMPD3 has been reported in breast
cancer, colorectal cancer, clear cell renal cell carcinoma, and
hepatocellular carcinoma cells (Demircan et al., 2009; Shen et al.,
2012; Revill et al., 2013; Wang et al., 2015). PLEKHS1 remains
a largely uncharacterized gene (Weinhold et al., 2014; Kotoh
et al., 2016). Mutations in non-coding regions of PLEKHS1 were
found in cancer patients according to a genome-wide analysis
(Weinhold et al., 2014). Furthermore, Plekhs1 was identified as a
potential contributor to mild hyperglycemia relevant to obesity in
a rat model (Kotoh et al., 2016). Although the correlation between
these three genes and GC has not been absolutely clarified and
further studies are still demanded to validate our findings, the
importance of these three genes as basic elements in the nine-
gene signature should not be underestimated.

With regard to the six risky prognostic genes (CST2, AADAC,
SERPINE1, ASPN, ITGBL1, and MAP7D2), the correlation
of CST2, SERPINE1, ASPN, and ITGBL1 with GC has been
investigated before. CST2 gene encodes Cystatin SA, which
is among cystatin (CST) superfamily members functioning as
cysteine protease inhibitors (Dai et al., 2017). Cystatins are
proven to play a key part in tumor invasion and metastasis
(Hirai et al., 1999; Nishikawa et al., 2004; Saleh et al., 2005;
Dai et al., 2017). Similarly, it is found that high expression of
salivary cystatin CST2 could promote in vivo bone metastasis
(Blanco et al., 2012). In addition, the prognostic gene signature
model made by Wang et al. (2017) also identified elevated CST2
expression as an unfavorable predictor for clinical outcomes
in GC. SERPINE1 encodes plasminogen activator inhibitor 1
(PAI-1), and PAI-1 as a serine protease inhibitor exerts a critical
role in the plasminogen-plasmin system owing to its function of
inhibiting tissue-type and urokinase-type plasminogen activators
(Declerck and Gils, 2013). PAI-1 has been known as a poor
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prognostic factor in several common tumors, and is involved in
the invasion, metastasis, and the apoptosis inhibition of multiple
tumor cells (Schmitt et al., 1997; Kwaan et al., 2000; Rømer
et al., 2005; Fang et al., 2012). It is found that miR-30b might
facilitate apoptosis and inhibit tumor growth by suppressing
PAI-1 expression in GC (Zhu et al., 2014). Furthermore,
an investigation based on DNA microarray indicated that
overexpression of PAI-1 is correlated with aggressive lymph node
metastasis in advanced GC (Suh et al., 2015). ASPN belongs to
a family of small leucine-rich proteoglycans (Nakajima et al.,
2007), and it is known as a major component of tumor stroma
and its aberrant expression has been found in multiple tumors
(Turashvili et al., 2007; Turtoi et al., 2011; Klee et al., 2012; Ansari
et al., 2014). It has been reported that ASPN and other related
matrix proteoglycans are correlated with the tumorigenesis and
development of human GC (Theocharis et al., 2003; Wang
et al., 2011; Hu et al., 2014; Satoyoshi et al., 2015). Additionally,
overexpressed ASPN promotes the progression and metastasis of
GC by regulating the epidermal growth factor receptor (EGFR)
signaling pathway (Ding et al., 2015). ITGBL1 gene encodes a
beta integrin-related extracellular matrix protein called integrin
beta-like protein 1 (Li R. et al., 2017). ITGBL1 contains 10
EGF-like repeats domain and is remarkably similar to integrin
beta subunits (Berg et al., 1999). Existing studies presented
that highly expressed ITGBL1 facilitates breast cancer bone
metastasis and ovarian cancer cell migration and adhesion (Li
X.Q. et al., 2015; Sun et al., 2016), while down-regulated ITGBL1
promotes cell invasion in non-small cell lung cancer (Gan et al.,
2016). Moreover, recent evidence suggested that elevated ITGBL1
predicts adverse clinical outcomes in GC and might implicate
the invasion and metastasis of GC cells by inducing epithelial-
mesenchymal transition (Li R. et al., 2017). To sum up, the
consistency between our findings and the results in previous
studies confirms the reliability of our data analysis approaches.
In terms of AADAC and MAP7D2, little is known about their
prognostic value in GC. AADAC is a major serine esterase that
extensively implicates the hydrolysis of diverse clinical drugs,
and it is highly expressed in human liver and gastrointestinal
tract (Kobayashi et al., 2012; Yoshida et al., 2018). MAP7D2
belongs to the MAP7 family of microtubule-associated proteins
(Koizumi et al., 2017). MAPs play a major role in numerous
critical cellular and intracellular activities, such as cell division,
motility, differentiation and so on (Bhat and Setaluri, 2007). High
expression of MAP7 predicts the tumor recurrence and adverse
outcomes in colon cancer and is related to a poor prognosis
in patients with cytogenetically normal acute myeloid leukemia
(Blum et al., 2008; Fu et al., 2016). Although the status of
AADAC andMAP7D2 and their correlation with prognosis in GC
have seldom been reported in the findings from earlier works,
they could provide helpful evidence for potential prognostic

biomarkers in future studies due to their significance in the
nine-gene signature model.

The limitations of our study were as follows: (1) biological
experiments are urgently demanded to validate our results
because our study was performed based on data analysis; (2)
the data used in this study were accessed from publicly available
databases and we cannot evaluate the quality of these data; (3)
the characteristic details (for example, gender, age, race, tumor
grade and stage, etc.) were not taken into account since our study
merely focused on the genes commonly identified as significantly
altered ones in multiple datasets. Therefore, some biological
information may be overlooked in our study.

CONCLUSION

In conclusion, with the employment of multiple gene expression
profile datasets and integrated bioinformatics analysis, we
identified nine hub genes which might be involved in the
pathogenesis of GC. Besides, a nine-gene signature which
might act as a potential prognostic biomarker in patients with
GC was constructed, and the prognostic model presented a
good performance in predicting 1-, 3-, and 5-year OSs. These
findings would provide some directive significance for the future
prognosis prediction and molecular targeting therapy of GC.
However, further experimental studies are urgently demanded to
validate our results because our study was performed based on
data analysis.
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