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Abstract: Background: Burn scar pain is considered as neuropathic pain. The anti-inflammation
and anti-neuroinflammation effects of adipose-derived stem cells (ASCs) were observed in several
studies. We designed a study using a murine model involving the transplantation of autologous
ASCs in rats subjected to burn injuries. The aim was to detect the anti-neuroinflammation effect of
ASC transplantation and clarify the relationships between ASCs, scar pain, apoptosis and autophagy.
Methods: We randomized 24 rats into 4 groups as followings: Group A and B, received saline
injections and autologous transplantation of ASCs 4 weeks after sham burn, respectively; Group C and
D, received saline injections and autologous transplantation 4 weeks after burn injuries. A designed
behavior test was applied for pain evaluation. Skin tissues and dorsal horn of lumbar spinal cords
were removed for biochemical analysis. Results: ASC transplantation significantly restored the
mechanical threshold reduced by burn injury. It also attenuated local inflammation and central
neuroinflammation and ameliorated apoptosis and autophagy in the spinal cord after the burn injury.
Conclusion: In a rat model, autologous ASC subcutaneous transplantation in post-burn scars elicited
anti-neuroinflammation effects locally and in the spinal cord that might be related to the relief of
post-burn neuropathic pain and attenuated cell apoptosis. Thus, ASC transplantation post-burn scars
shows the potential promising clinical benefits.

Keywords: adipose-derived stem cells; stem cell; burn scar; scar pain; neuropathic pain;
anti-neuroinflammation; autophagy

1. Introduction

Burn scar pain can be considered neuropathic as it can result in concurrent neuroinflammation
and subsequent central sensitization [1]. The pain can be intractable; as yet, there is no definitive
treatment [2].

Autologous fat grafting can improve the size and texture of burn scars, enhance angiogenesis,
reduce inflammation and alleviate associated pain [3]. Notably, pain alleviation has been demonstrated
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in both murine and human studies [4,5]. Burn scar pain is experienced after 30–68% of burn injuries
and can have a significant negative effect on the quality of life [1,6]. Autologous fat grafting has
therefore garnered interest. In addition, clinical reports have described its ability to relieve some types
of neuropathic pain [7,8].

In a previous study of fat grafting in rats, we demonstrated its simultaneous anti-inflammatory
and pain relief effects on full-thickness thermal burn scars [9]. However, the mechanisms of these
effects remain to be clarified. Several studies have observed anti-inflammation effects after the
transplantation of adipose-derived stem cells (ASCs) in vitro and in vivo, with increased interleukin
(IL)-10 and suppression of the NFκB signaling pathway [10–15]. Two of these studies also demonstrated
anti-neuroinflammation effects [13,14]. However, no study has investigated ASC transplantation for
post-burn neuropathic pain.

We previously observed the alleviation by fat grafting of spinal neuronal apoptosis in
full-thickness thermal burn scars [9]. Autophagy has also gained much attention recently. By recycling
intracellular debris, it can generate metabolic precursors that can promote survival in mammalian
cells subjected to adverse conditions, for example through pathways promoted by Beclin 1 and
microtubule-associated protein-1 light chain-3B (LC3B) [16,17]. However, it remains to be clarified how
ASCs interrelate with apoptosis and autophagy. Based on our previous murine model [9,18], therefore,
we designed a study involving the transplantation of autologous ASCs and the biochemical analysis of
inflammation, apoptosis and autophagy in the skin and spinal cords of rats subjected to burn injuries.
The aim was to detect the anti-neuroinflammation effect of ASC transplantation in post-burn scars,
clarifying the relationships between ASCs, apoptosis and autophagy.

2. Results

2.1. Increased Mechanical Threshold after ASC Transplantation in Post-Burn Scar

The burn groups, C (Burn + Saline) and D (Burn + ASCs), initially exhibited similar marked
post-burn decreases in mechanical thresholds relative to the sham burn groups (A and B). However,
3 weeks after ASC transplantation, Group D exhibited a significant increase in the mechanical threshold
relative to Group C (p < 0.05) that was also sustained at week 8 (p < 0.01) (Figure 1). This indicated
that ASC transplantation significantly restored the mechanical threshold reduced by burn injury.
There were no significant differences between the groups in thermal thresholds during the 8-week
evaluation period.
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Figure 1. Increased mechanical threshold after ASC transplantations. Markedly decreased mechanical 
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Figure 1. Increased mechanical threshold after ASC transplantations. Markedly decreased mechanical
thresholds were observed after the burn injury at (i.e., in Groups C and D). The mechanical threshold
had significantly improved in Group D at 3 weeks after ASC transplantation (4 weeks post-burn
injury). The thermal thresholds of the four groups did not differ significantly within the 8-week study
period. Each group contained six animals. Data are plotted as means ± standard errors of the means.
(** p < 0.01 and * p < 0.05).
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Attenuated local inflammation and central neuroinflammation after ASC transplantation in
post-burn scar.

Four weeks after transplantation (week 8), fluorescent microscopic analysis of the double staining
of CM-Dil/DAPI and CD90/DAPI in the same field showed ASC engraftment to the dermal layer of
the burned hind-paw in Group D (Figure 2d,e).
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These absent systemic inflammatory effects might be related the small area of burn. In this study, we 
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Figure 2. Engraftment of cultured ASCs into the post-burn dermis. (a). CellTracker CM-Dil-labeled
cells (red spots) were detected among the cultured rat ASCs in culture medium at passage 4 before
harvesting for treatment; (b,c) no double staining of CM-Dil/DAPI (blue) and CD90/DAPI detected
in the same field within dermis 4 weeks after subcutaneous saline injection in Group C; (d,e) double
staining of CM-Dil (red)/DAPI (blue) and CD90 (green)/DAPI in the same field (arrowheads) indicate
the viable ASCs within the dermis 4 weeks after cultured ASC transplantation in Group D (fluorescence
microscopic images; magnification, ×200).

In one of our previous studies using the same model, there was no significant change in serum
TNF-α and INF-γ levels (inflammatory markers) at day 1 and 4 and week 8 after burn injury [19].
These absent systemic inflammatory effects might be related the small area of burn. In this study,
we also found insignificant difference of TNF-α and IL-10 levels (inflammatory markers) at week 8 in
serum among four groups (Figure 3).
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At this time, immunohistochemical staining and western blot analyses of hind-paw skin samples
demonstrated significantly higher levels of inflammatory proteins (COX-2, iNOS and nNOS) in
Group C (Burn + Saline) compared to the other groups (p < 0.05) (Figure 4). Western blot analyses of
dorsal horn specimens also indicated significantly increased levels of these inflammatory proteins in
Group C (p < 0.05) (Figure 5). These findings suggest that the burn injury induced local inflammation
and spinal cord neuroinflammation, which were attenuated by subcutaneous ASC transplantation.
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Figure 4. Attenuated local inflammation in post-burn hind paw skin after ASC transplantations.
Four weeks after subcutaneous ASC transplantation or saline injection into the post-burn hind paw skin,
immunohistochemical staining and western blotting of skin samples revealed significantly increased
levels of inflammatory proteins (COX-2, iNOS and nNOS) in Group C, compared with Groups A and D.
This indicated that a burn injury could induce local inflammation, which could be attenuated by ASCs.
Upper four rows: Representative western blot images. Middle: Representative immunohistochemical
staining images. Bottom: Quantitative analyses of the western blotting data. The sample size was n > 3
per test and β-actin was used as the internal protein control. (** p < 0.01, * p < 0.05).
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Figure 5. Attenuated central neuroinflammation in spinal cord dorsal horn after ASC transplantations.
Four weeks after subcutaneous ASC transplantation or saline injection into burn-injured skin, western
blot analyses of dorsal horn specimens showed significantly increased levels of inflammatory proteins
(COX-2, iNOS and nNOS) in Group C, compared to Groups A and D, suggesting that a skin burn
induces concurrent spinal cord neuroinflammation that is attenuated by ASCs. Upper four rows:
Representative western blot images. Lower panel: Quantitative analyses. Sample sizes were >3 per
test. β-actin was used as an internal protein control. (** p < 0.01, * p < 0.05).

2.2. Ameliorated Inflammation and Apoptosis in the Spinal Cord after ASC Transplantation in Post-Burn Scar

Four weeks after the ASC or saline injection, dorsal horn cells were subjected to double
immunofluorescent staining and quantitative analysis to evaluate levels of NeuN (a neuron marker),
GFAP (an astrocyte marker—astrocytes are crucial for promoting and maintaining chronic neuropathic
pain) [9], p-NFκB (a nuclear transcription factor that regulates inflammation and apoptosis), p-IκB
(an inhibitor of NFκB activation), p-JNK (an inflammatory marker) and TUNEL (an apoptosis
marker). Notably, the dorsal horn cells from Group C exhibited significantly fewer NeuN/p-IκB
double-positive cells (p < 0.05), significantly higher TUNEL (p < 0.01) and significantly more p-NFκB-
and p-JNK-expressing astrocytes (p < 0.05) compared with cells from the other groups (Figure 6).
These findings indicate that the burn injury to the skin induced inflammation and apoptosis in spinal
dorsal horn cells, which was ameliorated by subcutaneous ASC transplantation.

The dorsal horn cells from Group C also showed significantly elevated p-Akt/Akt and Bax/Bcl-2
ratios compared with those from the other groups in western blot analysis (p < 0.05) (Figure 7). Because
Akt inhibitors protect neurons from necrosis and apoptosis can be detected as an increased Bax/Bcl-2
ratio [20–22], this finding suggests that the burn injury to the skin induced apoptosis in the spinal cell
population, which was attenuated by the autologous ASC transplantation.
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into burn-injured skin, western blot analyses of dorsal horn specimens revealed significantly increased ratios of p-Akt/Akt and Bax/Bcl-2 and levels of LC3B-II
and Beclin 1 in Group C compared to Groups A, B and D. This suggests that the apoptosis and autophagy promoted in the spinal cord were attenuated after ASC
transplantation. Data are presented as means ± standard errors of the means. (** p < 0.01, * p < 0.05).
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2.3. Decreased Autophagy in the Spinal Cord after ASC Transplantation in Post-Burn Scar

LC3B-II and Beclin 1 levels, which are both related to autophagy [16,17], were significantly
elevated in the dorsal horn cells from Group C compared to those from Groups D in western blot
analysis (p < 0.05), suggesting that the burn injury promoted autophagy in this spinal cell population.
Surprisingly, these levels had decreased four weeks after ASC transplantation (Figure 7).

3. Discussion

Using a similar model to our previous study with subcutaneous ASC transplantation in post-burn
scars, we demonstrated anti-neuroinflammation effects both locally and in the spinal cord that led to
the relief of post-burn neuropathic pain and attenuated cell apoptosis.

The differentiation of ASCs and their paracrine effect both contribute to their therapeutic efficacy,
which can also be affected by the route and the cell amount administered. Compared to systemic
injection and its direct homing effect, local injection results in lower survival of engrafted ASCs,
especially in damaged sites [23,24]. Therefore, the paracrine effect is considered to play a major role in
treatment by local injection [24].

The exact cell amount that should be administered locally for sufficient engraftment of the ASCs
and their subsequent therapeutic effect remains to be clarified. Our previous study found the muscular
atrophy attenuation and motor neuron protection results using the same rat model and methods [25].
Therefore, we adopted the same dose in this study—1 × 106 cells.

In other studies, intra-lesion injections of 5 × 105 human ASCs and 1 × 106 autologous ASCs via
epineural and intracerebral routes in rats demonstrated the differentiation of ASCs and promotion of
neurogenesis at 4 weeks and 14 days after the injections, respectively [26,27]. The local engraftment
of autologous ASCs was also found 3 and 8 weeks after intra-lesion injections to tendons and joints
of 1 × 107 and 2 × 106 cells in horses and rabbits, respectively [28,29]. The present study used
subcutaneous injections of a similar number (1 × 106) of autologous ASCs into the burn scar area,
showing engraftment to the dermal layer 4 weeks later.

Chang et al. also found similar thermal thresholds before and after burn injury in their rat model.
They thought that was related to the different nociceptors responding to different types of pain—Aβ

fibers for light touch and Aδ and C fibers for thermal hyperalgesia [30]. In our previous studies using
the same model, we also found the similar results [9,18].

Cyclooxygenase-2 (COX-2) is induced by inflammation and could lead to central sensitization,
accompanying chronic pain. NOS synthesizes NO, which is involved in the regeneration of
neuropathic pain. Diminished upregulation of nNOS (neuronal NOS) and iNOS (inducible NOS)
in the spinal cord and skin were noticed after inhibition of NOS, which resulted in relief of
inflammation and neuropathic pain [9]. In this study, increased levels of inflammatory proteins
(COX-2, iNOS and nNOS) were found not only in post-burn skin but also in the spinal cord; this was
consistent with a previous study that observed concurrent neuroinflammation and subsequent central
sensitization [1]. After injecting ASCs into the injury area, we observed significantly decreased
post-burn mechanical thresholds and inflammatory proteins in both post-burn skin and dorsal horn
cells. This indicated that ASCs injected subcutaneously can ameliorate post-burn pain and central
sensitization through anti-neuroinflammation.

Liang et al. showed in macrophages that IL-10 inhibited the production of IL-33 by regulating
phosphorylation of the downstream molecule STAT3 and restricting inflammatory responses mediated
by IL-33 and the IL-33 receptor ST2 by suppressing the activation of NFκB (a nuclear transcription
factor with roles in inflammation and apoptosis [31]) in vitro and in vivo [10]. Activation of the
NFκB signaling pathway requires the phosphorylation and degradation of IκB proteins [32]. Notably,
the increase we observed in p-IκB expression and the decrease in p-NFκB expression in the dorsal
horns in Group D could explain the anti-neuroinflammatory effects of autologous ASCs.

Apoptosis occurs in response to stress or cytotoxicity and can be detected as an increased
Bax/Bcl-2 ratio [20,22]; conversely, decreased Bax expression and increased Bcl-2 expression inhibit
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apoptosis [33]. Furthermore, phosphatidylinositol 3 kinase/Akt activation correlates with cytotoxic
cell death and Akt inhibitors have been shown to protect cultured neurons against photodynamically
induced necrosis [21]. The decreased p-Akt/Akt and Bax/Bcl-2 ratios in spinal cords in our study may
therefore represent the effect of attenuation of apoptosis by autologous ASCs. However, Bax is also a
pro-inflammatory cytokine and may be reduced by anti-neuroinflammation processes in rats [34,35].
Thus, the attenuated apoptosis may also be related to the anti-neuroinflammation effect of ASCs.

Several interactions between inflammatory cytokines and autophagy have been identified [36,37],
suggesting that the activation of autophagy may be related to the inflammatory responses after the burn
injury. The Bcl-2-interacting protein Beclin 1 has been shown to promote autophagy and deficiencies
or dysregulation of this protein can lead to neurodegenerative disorders [17,38]. Overexpression of
Beclin 1 has been observed after brain injury [39]; this suggests increased autophagy plays a crucial
role, exerting neuroprotective effects by removing injured cells and components. LC3B is thought to
protect against cell death by promoting autophagy and is considered a marker of autophagy activation
when converted from its cleaved form (LC3B-I) to its lipidated form (LC3B-II) because the latter plays
a crucial role in the induction of the autophagosome [16].

In this study, we observed promoted autophagy through increased levels of Beclin 1 and LC3B-II
in the spinal cord cells after the burn injury. A significant decrease in levels of both markers indicated
that the subcutaneous transplantation of ASCs might ameliorate autophagy in the spinal cord.

As we know, our study is the first study adopting ASCs in post-burn pain with an
anti-neuroinflammation effect. Besides, we also found the expected neuroprotective aspects of ASCs
by showing the attenuations of both apoptosis and autophagy in spinal cord. Since the ASCs were
not administered in a systemic way (intravenous or intra-arterial route), the effects registered at sites
distant from dermal burns must be due to ASC paracrine effects.

4. Materials and Methods

4.1. Experimental Design

The animal study protocols were approved by the Institutional Animal Care and Use Committee
of Kaohsiung Medical University (IACUC Approval No.: 100048; 3 December 2012). Twenty-four
male Sprague–Dawley rats (body weight, 175–200 g; age 6–7 weeks) were randomly obtained from
BioLASCO Taiwan Co., Ltd. (Taipei, Taiwan) and housed individually in an animal facility with a 12 h
light/dark cycle, a constant temperature of 22 ◦C and relative humidity of 55%. Standard laboratory
rodent chow and sterile tap water were available ad libitum. The rats were randomly divided into four
groups (n = 6 per group), as follows: Group A received subcutaneous injections of 0.9% saline 4 weeks
after sham burns (Control + Saline); Group B underwent subcutaneous transplantations of autologous
ASCs 4 weeks after sham burns (Control + ASCs); Group C received subcutaneous injections of
0.9% saline 4 weeks after burn injuries (Burn + Saline); and Group D underwent subcutaneous
transplantations of autologous ASCs 4 weeks after burn injuries (Burn + ASCs). Figure 8 illustrates the
experimental design.
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autophagy plays a crucial role, exerting neuroprotective effects by removing injured cells and 
components. LC3B is thought to protect against cell death by promoting autophagy and is considered 
a marker of autophagy activation when converted from its cleaved form (LC3B-I) to its lipidated form 
(LC3B-II) because the latter plays a crucial role in the induction of the autophagosome [16]. 

In this study, we observed promoted autophagy through increased levels of Beclin 1 and LC3B-
II in the spinal cord cells after the burn injury. A significant decrease in levels of both markers 
indicated that the subcutaneous transplantation of ASCs might ameliorate autophagy in the spinal 
cord. 

As we know, our study is the first study adopting ASCs in post-burn pain with an anti-
neuroinflammation effect. Besides, we also found the expected neuroprotective aspects of ASCs by 
showing the attenuations of both apoptosis and autophagy in spinal cord. Since the ASCs were not 
administered in a systemic way (intravenous or intra-arterial route), the effects registered at sites 
distant from dermal burns must be due to ASC paracrine effects. 

4. Materials and Methods  

4.1. Experimental Design 

The animal study protocols were approved by the Institutional Animal Care and Use Committee 
of Kaohsiung Medical University (IACUC Approval No.: 100048; 3 December 2012). Twenty-four 
male Sprague–Dawley rats (body weight, 175–200 g; age 6–7 weeks) were randomly obtained from 
BioLASCO Taiwan Co., Ltd. (Taipei, Taiwan) and housed individually in an animal facility with a 12 
h light/dark cycle, a constant temperature of 22 °C and relative humidity of 55%. Standard laboratory 
rodent chow and sterile tap water were available ad libitum. The rats were randomly divided into 
four groups (n = 6 per group), as follows: Group A received subcutaneous injections of 0.9% saline 4 
weeks after sham burns (Control + Saline); Group B underwent subcutaneous transplantations of 
autologous ASCs 4 weeks after sham burns (Control + ASCs); Group C received subcutaneous 
injections of 0.9% saline 4 weeks after burn injuries (Burn + Saline); and Group D underwent 
subcutaneous transplantations of autologous ASCs 4 weeks after burn injuries (Burn + ASCs). Figure 
8 illustrates the experimental design. 

 
Figure 8. Flowchart of the experimental design. (D, day; W, week). 
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4.2. Burn Injury or Sham Intervention, Wound Care and Behavioral Testing

The rats were anesthetized with a subcutaneous injection of Zoletil 50 (50 µg/g; Virbac Laboratory,
Carros, France) prior to creating dermal burn injuries. These were caused by forcing contact (100 g
weight) of the right hind paw with a heated metal block for 10 s. The blocks were heated to 25 ± 0.5 ◦C
for rats in Groups A and B (i.e., sham burn injuries) and to 75 ± 0.5 ◦C for rats in Groups C and
D (i.e., third-degree scald burn injuries, which were treated daily with silver sulfadiazine cream for
approximately 3 weeks until the wounds healed).

Mechanical and thermal thresholds were measured with the paw withdrawal threshold and
paw withdrawal latency tests, respectively, as described in our previous reports [9,18]. For the paw
withdrawal threshold test, the hind paw was placed on a metal mesh and a mechanical stimulus
(a 2-mm diameter metal rod) was applied to stimulate the plantar surface with a pressure increasing at
a rate of 2.5 g/s until the rat withdrew the paw; the exact pressure at which this occurred was recorded
(in grams) using a Dynamic Plantar Aesthesiometer (Ugo Basile, Varese, Italy). For the paw withdrawal
latency test, an infrared radiant heat source was positioned beneath the plantar surface of the hind
paw and the time until the rat withdrew the paw was measured (in seconds). Each measurement was
repeated six times at 10-min intervals. All tests were performed 1 day before and 1 week after the burn
injuries and at 1-week intervals thereafter for an additional 8 weeks.

4.3. Isolation, Surface Marker Analysis, Labeling and Transplantation of the ASCs

The isolation, labeling and transplantation procedures for the ASCs were similar to those in
our previous study [25]. Autologous adipose tissues were harvested from the left inguinal areas
of the rats and cut into pieces (approximately 1 × 1 × 2 cm in size) using scissors. These were
washed in phosphate-buffered saline (PBS) and digested with 0.075% collagenase (37.5 mg/mL;
Sigma-Aldrich, St. Louis, MO, USA) in PBS at 37 ◦C with constant agitation for 30 min. The digested
samples were then centrifuged (800× g, 10 min) to separate the supernatant containing the mature
adipocytes from the pellets. The pellets were suspended and filtered through a 40-mm cell strainer
(BD Biosciences, Franklin Lakes, NJ, USA) and then washed and incubated in Dulbecco’s modified
Eagle’s medium (GIBCO/Invitrogen Corporation; Carlsbad, CA, USA) supplemented with 2 mmol/L
N-acetyl-L-cysteine (Sigma-Aldrich) and 0.2 mmol/L L-ascorbic acid 2-phosphate (Sigma-Aldrich) at
37 ◦C. The medium was changed every 3 days.

After 1 week in culture, the cells were trypsinized, washed twice with PBS, blocked for 1 h
at room temperature and incubated overnight at 4 ◦C with a solution of fluorescein isothiocyanate
(FITC)-conjugated or R-phycoerythrin (PE)-conjugated antibodies in PBS. A flow cytometry system
(LSR II, BD Biosciences) was used to examine the expression of surface markers on subcultured
cells collected during the third passage. The following antibodies were used: FITC anti-mouse/rat
CD29 (102206, BioLegend, San Diego, CA, USA), FITC anti-rat antibodies CD90 (206106, BioLegend),
FITC mouse anti-rat CD31 (MCA1334, Serotec, Raleigh, NC, USA) and PE anti-rat CD45 (202207,
BioLegend). The first two of these antibodies were used as positive antigen markers, the second
two as negative antigen markers. FITC rat immunoglobulin (Ig) G2b, k isotype control and PE
rat IgG2a, k isotype control (400508, BioLegend) were used as staining controls and to ensure
accurate measurements. ASCs were defined as cells that were CD29+/CD31−/CD45−/CD90+ on flow
cytometric analyses (Figure 9).
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passage cells were visualized using fluorescence microscopy prior to harvesting for treatment (Figure 
2a). Four weeks after the injury or sham-injury intervention, rats in Groups B and D each received a 
subcutaneous injection of a 0.4 mL aliquot (1 × 106 cells) of ASCs into the scar area of the right hind 
paw, administered using a BD Ultra-fine II 1 mL insulin syringe with a 27-gauge needle. The 
engraftment of cultured ASCs into the post-burn dermis was identified by the co-localization of CM-
Dil (red)/CD90 (green) staining and DAPI (4,6-diamidino-2-phenylindole) nuclear counterstaining 
(blue) via fluorescence microscopy, 4 weeks after the transplantation of cultured ASCs (Figure 2d,e). 

On the other hand, each rat in Group A and C was injected with 0.4 mL 0.9% normal saline 
subcutaneously four weeks after the injury or sham-injury intervention. 

4.4. Immunohistochemical Staining for Cyclooxygenase-2, Inducible Nitric Oxide Synthase and Neuronal 
Nitric Oxide Synthase 

Four weeks after the ASC or saline injection, the rats were sacrificed using an overdose of Zoletil 
50. Skin from the right hind paw was excised, fixed in formalin, embedded in paraffin and 4-μm-
thick specimens were mounted on saline-coated slides, deparaffinized and rehydrated in a series of 
graded alcohol solutions. This was followed by antigen retrieval in citrate buffer (pH 6.0; 0.1 mol/L), 
heating to 121 °C for 10 min and cooling to room temperature. To quench the endogenous peroxidase 
activity, the sections were further incubated for 5 min in 3% H2O2. Non-specific binding was blocked 
by incubation with 5% goat serum in PBS for 30 min. The blocked sections were incubated overnight 
at 4 °C with rabbit polyclonal antibodies against cyclooxygenase (COX)-2 (#12282, 1:200 dilution; Cell 
Signaling, Danvers, MA, USA), iNOS (ab15323, 1:200; Abcam, Cambridge, MA, USA) and nNOS 
(ab76067, 1:200; Abcam), rinsed and incubated with horseradish peroxidase-conjugated secondary 
antibodies for 30 min at room temperature. The slides were exposed to the colorimetric reagent 3,3-

Figure 9. ASC surface marker expression detected by flow cytometric analysis. Surface marker
analysis of cells from cultured rat adipose tissues using flow cytometry. ASCs were defined as
CD29+/CD31−/CD45−/CD90+. The percentages are the mean values from three experiments. The red
line represents positive staining cells and the black line stands for iso-type-matched antibody control.

ASCs were labeled with chloromethylbenzamido (C7000, CellTracker CM-DiI; Invitrogen/Life
Technologies, Carlsbad, CA, USA) according to the manufacturer’s instructions. Labeled fourth-passage
cells were visualized using fluorescence microscopy prior to harvesting for treatment (Figure 2a).
Four weeks after the injury or sham-injury intervention, rats in Groups B and D each received a
subcutaneous injection of a 0.4 mL aliquot (1 × 106 cells) of ASCs into the scar area of the right
hind paw, administered using a BD Ultra-fine II 1 mL insulin syringe with a 27-gauge needle.
The engraftment of cultured ASCs into the post-burn dermis was identified by the co-localization of
CM-Dil (red)/CD90 (green) staining and DAPI (4,6-diamidino-2-phenylindole) nuclear counterstaining
(blue) via fluorescence microscopy, 4 weeks after the transplantation of cultured ASCs (Figure 2d,e).

On the other hand, each rat in Group A and C was injected with 0.4 mL 0.9% normal saline
subcutaneously four weeks after the injury or sham-injury intervention.

4.4. Immunohistochemical Staining for Cyclooxygenase-2, Inducible Nitric Oxide Synthase and Neuronal
Nitric Oxide Synthase

Four weeks after the ASC or saline injection, the rats were sacrificed using an overdose of Zoletil
50. Skin from the right hind paw was excised, fixed in formalin, embedded in paraffin and 4-µm-thick
specimens were mounted on saline-coated slides, deparaffinized and rehydrated in a series of graded
alcohol solutions. This was followed by antigen retrieval in citrate buffer (pH 6.0; 0.1 mol/L), heating
to 121 ◦C for 10 min and cooling to room temperature. To quench the endogenous peroxidase activity,
the sections were further incubated for 5 min in 3% H2O2. Non-specific binding was blocked by
incubation with 5% goat serum in PBS for 30 min. The blocked sections were incubated overnight
at 4 ◦C with rabbit polyclonal antibodies against cyclooxygenase (COX)-2 (#12282, 1:200 dilution;
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Cell Signaling, Danvers, MA, USA), iNOS (ab15323, 1:200; Abcam, Cambridge, MA, USA) and nNOS
(ab76067, 1:200; Abcam), rinsed and incubated with horseradish peroxidase-conjugated secondary
antibodies for 30 min at room temperature. The slides were exposed to the colorimetric reagent
3,3-diaminobenzidine for 5 min, counterstained for 1 min with Mayer’s hematoxylin and mounted
for evaluation.

4.5. Double Immunofluorescence Labeling and TUNEL Assay

We excised the L3–L5 segments of the lumbar spinal cords of all rats at 4 weeks after cultured
ASC transplantation or subcutaneous saline injection. Dorsal horn tissues were isolated and prepared
as described in a preceding article [9]. Double immunofluorescence detection was performed by
incubating tissues overnight at 4 ◦C with one of the following antibody combinations: polyclonal
phospho-inhibitor of κB (p-IκB; 1:100 dilution; Cell Signaling) and monoclonal NeuN (MAB377,
a neuronal cell marker; 1:1000; Millipore, Temecula, CA, USA); monoclonal glial fibrillary acidic
protein (610565, GFAP, an astrocyte marker; 1:1000; BD Biosciences) and polyclonal phospho-nuclear
factor κB (#3033, p-NFκB; 1:100, Cell Signaling); and monoclonal GFAP and phospho-Jun N-terminal
kinase (#4668, p-JNK; 1:100; Cell Signaling). The tissues were subsequently stained with the secondary
antibodies Cy3-conjugated goat anti-rabbit (AP187C, red; Millipore) and Alexa Fluor 488-conjugated
goat anti-mouse (A11001, green; Invitrogen).

Apoptotic cell death was detected by a TUNEL (terminal deoxynucleotidyl transferase-mediated
dUTP nick end labeling) assay using an ApopTag Fluorescein in Situ Apoptosis Detection Kit S7110
(Millipore), according to the manufacturer’s instructions. The treated sections were incubated with a
NeuN primary antibody (MAB377, 1:1000; Merck Millipore, Bedford, MA, USA) at 4 ◦C and then with
a Cy3-conjugated anti-mouse IgG secondary antibody (Merck Millipore) at room temperature for 1 h,
rinsed three times with PBS for 5 min and mounted with DAPI-containing medium. A fluorescence
microscope (DMI6000; Leica Microsystems, Wetzlar, Germany) was used to obtain images and
quantitative results.

4.6. Western Blot Analyses

Separated skin and L3–L5 dorsal horn specimens from all rats were processed using a western
blotting protocol described previously [9], using antibodies against the following proteins: COX-2
(#12282, 1:1000 dilution; Cell Signaling), iNOS (ab15323, 1:1000; Abcam), nNOS (ab76067, 1:1000;
Abcam), Akt/protein kinase B (#4685, 1:1000; Cell Signaling), p-Akt (#4060, 1:1000; Cell Signaling),
B-cell lymphoma 2 (ab59348, Bcl-2; 1:1000; Abcam), Bcl-2-associated X protein (50599-2-Ig, Bax; 1:1000;
Proteintech Group, Chicago, IL, USA), β-actin (A5441, 1:20000; Sigma-Aldrich), LC3B (1:1000; Cell
Signaling) and Beclin 1 (#2775, 1:1000; Cell Signaling). The membranes were visualized by Bio-Rad
ChemiDoc MP and band intensity was quantitated by Quantity One 1-D Analysis software (Bio-Rad
Laboratories Inc., Hercules, CA, USA).

4.7. Statistical Analysis

SPSS software (version 14.0; SPSS, Inc., Chicago, IL, USA) was used for the statistical analysis.
The mean values and standard deviations of numerical data were calculated as shown in the figures
and figure legends. Western blot measurements were tested using one-way analysis of variance and
Tukey pairwise comparison. A p-value <0.05 was considered statistically significant.

5. Conclusions

In a rat model, autologous ASC subcutaneous transplantation in post-burn scars elicited
anti-neuroinflammation effects locally and in the spinal cord that might be related to the relief of
post-burn neuropathic pain and attenuated cell apoptosis. Autophagy promoted in the spinal cord
after burn injury was also ameliorated. Thus, ASC transplantation for post-burn scars shows the
potential for promising clinical benefits.
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