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Abstract

Generally, in real decision-making, all the pieces of information are used to find the optimal

alternatives. However, in many cases, the decision-makers (DMs) only want “how good/bad

a thing can become.” One possibility is to classify the alternatives based on minimum (tail)

information instead of using all the data to select the optimal options. By considering the

opportunity, we first introduce the value at risk (VaR), which is used in the financial field, and

the probabilistic interval-valued hesitant fuzzy set (PIVHFS), which is the generalization of

the probabilistic hesitant fuzzy set (PHFS). Second, deemed value at risk (DVaR) and reck-

oned value at risk (RVaR) are proposed to measure the tail information under the probabilis-

tic interval-valued hesitant fuzzy (PIVHF) environment. We proved that RVaR is more

suitable than DVaR to differentiate the PIVHFEs with example. After that, a novel complete

group decision-making model with PIVHFS is put forward. This study aims to determine the

most appropriate alternative using only tail information under the PIVHF environment.

Finally, the proposed methods’ practicality and effectiveness are tested using a stock selec-

tion example by selecting the ideal stock for four recently enrolled stocks in China. By using

the novel group decision-making model under the environment of PIVHFS, we see that the

best stock is E4 when the distributors focus on the criteria against 10% certainty degree and

E1 is the best against the degree of 20%, 30%, 40% and 50% using the DVaR method. On

the other hand when RVaR method is used then the best alternative is E4 and the worst is

E2 against the different certainty degrees. Furthermore, a comparative analysis with the

existing process is presented under the PHF environment to illustrate the effectiveness of

the presented approaches.

1 Introduction

Every day, everybody makes decisions, and most of them are with some hesitation. For exam-

ple, what to eat in breakfast, lunch, dinner, time to wake up, choice of clothing to wear, vehicle

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0252115 May 27, 2021 1 / 24

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Noor Q, Rashid T, Husnine SM (2021) An

extended TDM method under probabilistic interval-

valued hesitant fuzzy environment for stock

selection. PLoS ONE 16(5): e0252115. https://doi.

org/10.1371/journal.pone.0252115

Editor: Dragan Pamucar, University of Defence in

Belgrade, SERBIA

Received: March 15, 2021

Accepted: May 10, 2021

Published: May 27, 2021

Copyright: © 2021 Noor et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper.

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0001-8196-1695
https://orcid.org/0000-0002-8691-1088
https://doi.org/10.1371/journal.pone.0252115
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0252115&domain=pdf&date_stamp=2021-05-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0252115&domain=pdf&date_stamp=2021-05-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0252115&domain=pdf&date_stamp=2021-05-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0252115&domain=pdf&date_stamp=2021-05-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0252115&domain=pdf&date_stamp=2021-05-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0252115&domain=pdf&date_stamp=2021-05-27
https://doi.org/10.1371/journal.pone.0252115
https://doi.org/10.1371/journal.pone.0252115
http://creativecommons.org/licenses/by/4.0/


choice to travel, choice of food type, etc. and most of the decisions do not have a significant

impact on life. However, this is not a matter for any firm. Therefore, decision science emerged

as a discipline of great interest in both the field of education and the industry. The multi-crite-

ria decision-making (MCDM) helps decide on critical situations. Owing to the complexity and

extreme vagueness of practical matters, it is difficult to obtain sufficient and accurate informa-

tion for real decision-making. Therefore, fuzzy set theory is proposed to present the above

noted uncertain information. Numerous decision-making techniques have been emerging

nowadays to address real decision-making problems under different fuzzy environments on

the basis of different fuzzy sets and then linked to many disciplines [1–3]. Wang et al. [4] inves-

tigated the trends and opportunities of the fuzzy set techniques in big data processing and deci-

sion making which are two frontier issues in the field. We may find that the general process in

these decision-making techniques is the collection of all the fuzzy information used to classify

and obtain the best alternative. However, in many decision-making processes, DMs may use

limited/partial fuzzy information as a priority, although all data is required. For instance, if

DMs want to make a decision based on information about the big gains or huge losses pre-

sented by the qualitative fuzzy numbers, they should focus on the tail fuzzy information and

collect them to make decisions. The most suitable statement according to the above-cited situ-

ation is that DM is trying to know “How worst/better can a thing become”. In the article, we

discussed this issue under a fuzzy environment by introducing the VaR and developing the

fuzzy VaRs. Moreover, a new tail group decision-making model with PIVHFS is put forward

to find the optimal alternative for extreme loss/gain. Hence, the above questions can be

answered in this fuzzy decision-making process.

2 Literature review

Since Zadeh [5] introduced fuzzy sets in 1965, many extended forms of fuzzy sets have been

proposed to provide the DMs with more flexible techniques for getting more rational deci-

sion-making results. Torra [6] introduced a fuzzy set by the name of hesitant fuzzy set (HFS),

which allowed DMs to insert multiple options on a particular occasion. This theory offers elas-

ticity to DMs, generalizing to the classical fuzzy set concept. Following this, many researchers

presented fascinating research interconnected to HFS [7–11]. Numerous scholars have also

made new additions to the HFS, which have helped DMs to understand and better model

ambiguity and uncertainty. Some of the trendy extensions are triangular HFS [12], generalized

HFS [13], interval-valued HFS [14], dual HFS [15], intuitionistic HFS [16], Pythagorean HFS

[17], wiggly HFS [18], etc. Inspired by the power of HFS, many operational rules [19] and

aggregation operators are also introduced [20–23]. Although HFS is useful and handles vague-

ness to some extent, the possibility of each element in HFS is the same, which is impossible in

real life and creates irrational decision-making results. So HFS cannot handle the situation in

which elements have different possibility degrees. To better understand, we take the following

examples: Assume that a DM uses HFE, {0.3, 0.5, 0.6}, to identify a risk factor for the invest-

ment. The DM can ensure that the risk factor associated with the value of 0.5 is minimal while

the risk factor associated with the value of 0.3 is greater than the value of 0.6. Thus, the HFE

{0.3, 0.5, 0.6} cannot be used to describe the scene fully. Now consider one more example,

assume that the first DM assigns the membership value 0.1 and 0.2 and the second DM assign

0.2 and 0.3 for any event. In such a situation, the HFE {0.1, 0.2, 0.3} is not suitable due to the

potential loss of information. Therefore, hesitant fuzzy element (HFE) primarily consists of

several membership degrees, but the importance of these membership values is lacking. So

HFS cannot handle the situation in which elements have different possibility degrees.
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To meliorate the issue, Xu and Zhou [24] comes with a new concept called PHFS, which

can handle the set having element containing different possibilities degrees. Encouraged by the

influence of PHFS to manage uncertainty and assign a probability value to each HFE, Li and

Wang [25] introduced new methods for MCDM, operational laws, and aggregation operators

for the PHFS. Hao et al. [26] presented probabilistic dual HFS, which is the modified form of

PHFS and used for risk analysis. Gao et al. [27] established a structure by extending a dynamic

reference point under the PHFS situation for emergency decision-making. The studies show

that PHFS is a powerful extension of HFS and attracted many researchers. However, due to

the increasing complexity and uncertainty of the perception in decision-making, in most

cases, there were many difficulties for DMs to assess their preferences through crisp values

accurately. To get the better of Song et al. [28] proposed a concept of interval-valued PHFS

(IVPHFS). The inspiring feature of the IVPHFS is that it could depict two different attributes

of a target in a single framework: possible HFS and its corresponding probability interval. Wu

et al. [29] defined a PIVHFS as an extended mathematical expression of fuzzy sets and pre-

sented the new measure models deduced by the axiomatic concepts of PIVHFSs. Zhai et al.

[30] defined a probabilistic interval-valued intuitionistic HFS, which is the generalization of

PHFS. As the generalization for the sets interval-valued fuzzy sets and interval-valued HFS

(IVHFS), set-valued fuzzy sets and many more were seen in the literature [31, 32].

Many fuzzy decision-making techniques based on different fuzzy sets like ELECTRE [33],

TOPSIS [34], WASPAS [1] and VIKOR [35] etc. have been introduced to address real decision

making under different fuzzy environments. Generally, all the techniques worked somehow

on the same pattern and can be seen in Fig 1, representing the fuzzy multi-criteria decision

making (FMCDM) process. Zhou and Xu [36] explored the technique called tail decision mak-

ing (TDM) under PHF environment. There are many factors involved in the decision-making

process. However, some of the elements are given in Fig 1 to quickly understand the difference

between the traditional methods (TOPSIS, VIKOR, etc.) used in decision-making and TDM.

In the process of all fuzzy decision-making techniques, DMs aggregated all the pieces of

information and obtained the best alternatives. However, in many real-world problems, while

fuzzy decision-making processes, to make a decision, DMs only use partial or primary infor-

mation as a priority. For example, if DM wanted to decide the extreme gain/loss using qualita-

tive (fuzzy elements) information, the DM’s main focus is on the tail information. Using the

tail information, DM has to decide and wish to know the formal statement as “how worst a

thing can be or how worthy a thing can be?”. The term VaR was used in the literature to

describe this type of situation. Fuzzy data is used to introduce fuzzy VaRs and as a basic tool to

construct TDM under a PIVHF environment. VaR is a risk analysis measurement tool used in

the financial field to measure the risk of loss for investments. It estimated the set of invest-

ments that might result in loss with a given probability p, under normal market conditions.

Moreover, for a given collection and the probability p, VaR is a threshold value showing that

the collection’s loss did not exceed the value [37]. Using the definition of VaR, different VaRs

can be seen in the literature [38–42]. All the VaR discussed in the literature used the quantita-

tive data in such a way that VaR is not suitable under a general fuzzy environment. Zhou and

Xu [36] introduced fuzzy VaR, which could handle the qualitative information under the envi-

ronment of PHFS.

The literature revealed that whenever a new set or new technique is introduced, the general

rule is presented to handle the problem in a certain and accurate way. However, there is no

research on the TDM under the PIVHF environment at present. So, taking inspiration from

Zhou and Xu [36] work using hesitant value at risk (HVaR) and expected hesitant VaR

(EVaR) under probabilistic hesitant fuzzy environment techniques, this novel presented the

generalization of the idea named as, deemed VaR (DVaR) and Reckoned VaR (RVaR) under
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Fig 1. Comparison of TDM and MCDM.

https://doi.org/10.1371/journal.pone.0252115.g001
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PIVHF environment. The extension provided more authentic and certain decisions as com-

pared to the results obtained from HVaR and EVaR.

The rest of the paper is organized as follows: Section 3 provides the fundamental concepts

used in TDM. Section 4 presents an extended form of VaR measurement under the PIVHF

environment; namely, the DVaR is proposed and deduces its comparison rule. Furthermore,

another improved measurement tool RVaR is developed to handle every type of information

in TDM under the PIVHF environment. TDM process is discussed in Section 5 under the

PIVHF environment. Section 6 employs an example of selecting the ideal stock, keeping in

view the extreme risk/loss. Section 7 concludes the study and elaborates on future studies.

3 Preliminaries

In the current section, the PIVHFS and the PIVHFE are introduced. Then, their operational

rules and laws are provided, which are used to calculate the TDM under the PIVHF

environment.

Definition 3.0.1. [6] Let X be any universe of discourse. The hesitant fuzzy set(HFS) H on X
is a function hH (x): X! [0, 1] when applied to X returns a finite subset of [0, 1].

Mathematically, Xia and Xu [43] defined it as:

H ¼ fhx; hHðxÞ : x 2 Xig;

where hH (x) is the discrete set of values from [0, 1] also called hesitant fuzzy element.

Practically, many decision-making problems are challenging to be represented by accurate

values. Thus, interval-valued data will be preferred. To illustrate the uncertainty in the decision

process more efficiently, IVHFS was defined by Chen [31] as:

Definition 3.0.2. Let X be any given set, and C [0, 1] be the set of all closed sub-interval of
[0, 1]. IVHFS on X is defined as

~H ¼ fhxi;
~h ~H ðxiÞi : xi 2 Xg;

where ~h ~H ðxiÞ : X ! C½0; 1� denotes all possible interval-valued membership degree of the ele-

ment xi 2 X. For convenience, we call

~h ~H ðxiÞ ¼ fg : g 2 ~h ~H ðxiÞg

interval-valued hesitant fuzzy element. Here γ = [γ−, γ+] is an interval number, γ− and γ+ repre-

sent the lower and upper limits of γ.

It is noted that the preferences usually based on HFS, or IVHFS are not homogeneous

according to many DMs, which led to a problem for preferences [36, 44, 45]. Therefore, to

enhance the preferences in decision-making problems, Zhu and Xu [46] extended the HFS to

PHFS, defined as:

Definition 3.0.3. Let X be any universe of discourse having n elements, PHFS can be
expressed by an expression

Hp ¼ fhx; hHp
ðxÞ : x 2 Xig;

where hHp
ðxÞ 2 ½0; 1�; represent the membership degree of the element x 2 X. For the simplic-

ity, we call

hHp
ðxÞ ¼ hðpÞ ¼ fgiðpiÞji ¼ 1; 2; 3; . . . ; jhðpÞjg;

PLOS ONE TDM method for stock selection

PLOS ONE | https://doi.org/10.1371/journal.pone.0252115 May 27, 2021 5 / 24

https://doi.org/10.1371/journal.pone.0252115


where pi is the probability of the belonging degree γi of PHFE, |h(p)| is the number of all

belonging degrees and
XjhðpÞj

i¼1

pi ¼ 1.

As mentioned above that in many decision-making problems, data is not accurate. Thus,

intervals instead of a single hesitant value will be preferred. Similarly to the case with PHFSs,

to overcome the situation, Wu et al. [29] defined the PIVHFS as below:

Definition 3.0.4. Let X be a universal set, and C [0, 1] be the set of all closed sub-intervals of
[0, 1]. A PIVHFS on X is

~H ¼ fhxi;
~h ~H ðxiÞijxi 2 X; i ¼ 1; 2; 3; . . . ; ng;

where

~h ~H ðxiÞ ¼

�

ð½g�k ; g
þ
k �; pgk

Þj½g�k ; g
þ
k � 2

~h ~H ðxiÞ; pgk
2 ½0; 1�;

Xl~h

k¼1

pgk
¼ 1

�

denotes all possible interval-valued membership degree of the element xi 2 X. For simplicity, a
PIVHFE, will be denoted by ~h ~H ðxiÞ ¼

~h
The basic operational laws of PIVHFEs and the assessment rules are defined as follows:

Definition 3.0.5. [29] The score function of the PIVHFE can be calculated by the expression

sð~hÞ ¼
1

l~h

Xl~h

k¼1

g�k þ g
þ

k

� �
pgk
; ð1Þ

where l~h is the number of intervals in ~h; and the value of sð~hÞ is belong to [0, 1]. The deviation

function of the PIVHFE is defined as:

dð~hÞ ¼
Xl~h

k¼1

½0:5ðg�k þ g
þ

k Þ � sð~hÞ�2:pgk
ð2Þ

The comparison rules of two PIVHFEs ~h1 and ~h2 can be stated as follows:

1. If sð~h1Þ > sð~h2Þ; then ~h1 �
~h2, which means that ~h1 is preferable to ~h2:

2. If sð~h1Þ ¼ sð~h2Þ, then

(a). If dð~h1Þ > dð~h2Þ, then ~h1 �
~h2, which means that ~h2 is preferable to ~h1:

(b). If dð~h1Þ < dð~h2Þ, then ~h1 �
~h2, which means that ~h1 is preferable to ~h2:

(c). If dð~h1Þ ¼ dð~h2Þ, then ~h1 �
~h2, which means that ~h1 and ~h2 has the same preference.

The symbols “>” and “<” are different from “�” and “�” The symbols “�” and “�” are

employed to relate the two PIVHFE. While the symbols “>” and “<” gives us the comparison

of two real numbers.

Definition 3.0.6. [29] Let ~h ¼ [
g2~h
fð½g� ; gþ�; pÞg; ~h1 ¼ [

g12
~h
fð½g�

1
; gþ

1
�; p1Þg and ~h2 ¼

[
g
2
2~h
fð½g�

2
; gþ

2
�; p2Þg be the three PIVHFEs, then the basic algebra on PIVHFE are defined as:

1. ð~hÞc ¼ [
g2~h
fð½1 � gþ; 1 � g� �; pÞg

2. ~h1 �
~h2 ¼ [

g12
~h1 ;g22

~h2

fð½g�
1
þ g�

2
� g�

1
:g�

2
; gþ

1
þ gþ

2
� gþ

1
:gþ

2
�; p1p2Þg
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3. ~h1 �
~h2 ¼ [

g12
~h1 ;g22

~h2

fð½g�
1
:g�

2
; gþ

1
:gþ

2
�; p1p2Þg

4. lð~hÞ ¼ [
g2~h
fð½1 � ð1 � g� Þ

l
; 1 � ð1 � gþÞ

l
�; pÞg, where λ> 0

5. ð~hÞl ¼ [
g2~h
fð½ðg� Þ

l
; ðgþÞ

l
�; pÞg, where λ> 0

To facilitate to compare the magnitude of PIVHFEs, we give the properties of probabilistic

interval numbers.

Definition 3.0.7. Let A = ([a1, a2], p1) and B = ([b1, b2], p2) be two probabilistic interval
number, and λ� 0, then

1. A< B if
a1þa2

2
<

b1þb2

2

2. A< B if
a1þa2

2
¼

b1þb2

2
and p1 < p2

3. A = B if
a1þa2

2
¼

b1þb2

2
and p1 = p2

Inspired by the concept of Zhou et al. [36] HVaR and EVaR for TDM under PHF environ-

ment, the extension under PIVHF environment is presented in the next section.

4 Two VaR measurements of the PIVHFE

In many group decision-making problems, data is sometimes not presented by accurate values;

thus, data is preferred in intervals. Because, of the increasing complexity and uncertainty of

the perception in decision-making, in most cases, there were many difficulties for DMs to

accurately assess their preferences through crisp values specified but can be expressed with an

interval value. Zhou and Xu [36] gave two concepts, HVaR and EVaR for calculating VaR

under PHF environment. However, due to uncertainty, suppose DMs face difficulties to accu-

rately provide the membership values in crisp values, so they have the option to provide values

in the form of intervals. Therefore, alternatives may not be certain. Instead of using a single

hesitant value, interval hesitant values are used and proposed two ideas DVaR and RVaR,

which provided the more certain and accurate alternatives.

The score values of any fuzzy numbers are actually the weighted average value of the whole

data and used to make decisions for the different fuzzy numbers. A bigger score value means

the better would be the result. Practically, it looks like a reasonable method. Let us consider a

situation that, a corporation/company having n number of stockholders/distributors wants to

purchase a newly established bank (A, B, C, D). After the market survey, stockholders observe

that the banks are currently on a loss but have a strong probability that they will soon become

on the profitable stage. The company has to buy one bank, and he has to make such a choice

where chances of loss are minimized. This seems that the company will take a risk and focus

on the question “how much the worst stock can be.” or simply what is the maximum loss he

has to bear if the company buys any one of the banks. In this situation, we do not need the

weighted value of the whole data but focuses on the result that what is the maximum gain/loss.

As banks are newly established, so more chances are lacking quantitative data, then the TDM

approach with the PIVHF information should be introduced.

A review of the literature reveals that interval-valued data gives one possibility to get certain

and authentic alternatives compared to insufficiency in available information; it may be diffi-

cult for DMs to quantify their opinions with a crisp number. Therefore, data can be repre-

sented by an interval number within [0, 1]. But the main problem in interval-valued data is the

ordering. Since the number of interval values for different PIVHFEs could be different, and
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the interval values are usually out of order and are hard to deal with intervals instead of single

values because in numbers ordering are much easy, we can easily compare that which values

are less and which one is greater. Several orders have been studied and defined in the literature

between interval-valued fuzzy sets [47].

4.1 Deemed VaR of the PIVHFE

Basically, the tail decision’s information is of two types; namely, the left tail (loss tail) and right

tail (profit tail) can be seen in Figs 2 and 3, respectively. The conclusions based on the two tails

are of a different type; the left tail gives us the loss information (how bad a thing can be), and

the right tail gives us the profit information (how good a thing can be). The process to find the

best/worst alternatives for profit/loss values is the same. In the paper, we proposed the VaR

under the PIVHF environment based on the left tail. On the other hand, VaR for the right tail

can be calculated in the same manner.

VaR of the PIVHFE, which is going to be used to find the optimal alternative for tail infor-

mation under PIVHF information, is defined as:

Definition 4.1.1 Let ~h ¼ fð½g�
1
; gþ

1
�; pg1Þ; ð½g

�
2
; gþ

2
�; pg2Þ; . . . ð½g�n ; g

þ
n �; pgnÞg be a PIVHFE,

where gþi ; g
�
i ; pgi

2 ½0; 1�, (i = 1, 2, 3, . . ., n),
Xn

i¼1

pgi
¼ 1 and p0 = 0 is a known parameter. If we

Fig 2. TDM based on the loss tail under PIVHF environment.

https://doi.org/10.1371/journal.pone.0252115.g002

Fig 3. TDM based on the gain tail under PIVHF environment.

https://doi.org/10.1371/journal.pone.0252115.g003
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are X percent sure that the element ½g�i ; g
þ
i �jpgi

;, (i = 1, 2, . . ., n) is not less than D, then D is called

DVaR of the PIVHFE ~h, with the degree of certainty X. Mathematically it can be represented as:

DVaRð~hÞ ¼ D ¼ g � 1

�

pgi
j
Xm� 1

i¼0

pgi
< X �

Xm

i¼0

pgi
; ði ¼ 1; 2; . . . ; nÞ; ð1 � m � nÞ and X > 0

�

; ð3Þ

where gðpgi
Þ ¼ ð0:5½g�i þ g

þ
i �Þ is the density function of ~h.

The above expression calculation process is simple and answers to DMs of the question that

“how bad/worst can a thing become.” It is the question that DMs want in this type of decision-

making.

From the Eq 3, we observe that DVaR can directly be calculated based on the cumulative

distribution of the PIVHFE. The calculation rules are defined as:

1. If
Xm� 1

i¼0

pgi
< �X �

Xm

i¼0

pgi
, then �D ¼ ð0:5½g�m þ g

þ
m�Þ, where (i = 1, 2, . . ., n), (1�m� n) and

�X > 0

2. If
Xm� 1

i¼0

pgi
¼ �X , then �D ¼ ð0:5½g�m� 1

þ gþm� 1
�Þ, where (i = 1, 2, . . ., n), (1�m� n) and �X > 0

For any two PIVHFEs ~h1 and ~h2, if DVaRð~h1Þ ¼ D1 and DVaRð~h2Þ ¼ D2, then we have

1. If D1 > D2, then DVaRð~h1Þ � DVaRð~h2Þ.

2. If D1 < D2, then DVaRð~h1Þ � DVaRð~h2Þ.

3. If D1 = D2, then DVaRð~h1Þ � DVaRð~h2Þ.

In the subsection, DVaR of the PIVHFE, its computation method and comparison rules are

provided.

4.2 Reckoned VaR of the PIVHFE

In the previous subsection, DVaR under the PIVHF environment is proposed, which can easily

be applied to PIVHFE. A problem occurs in the process of DVaR when PIVHFEs share the

same interval or midpoint of the interval concerning same occurrence probabilities, as shown

in the example:

Example 1. Consider the two PIVHFEs

~h1 ¼ fð½g
�
1
; gþ

1
�; pg1Þ; ð½g

�
2
; gþ

2
�; pg2Þ; . . . ; l~h1

g

~h2 ¼ fð½g
�
2
; gþ

2
�; pg1 þ pg2Þ; ð½g�3 ; g

þ
3
�; pg3Þ; . . . ; l~h2

g

and take X ¼ pg1 þ pg2, then by Eq 3 we see that

DVaRð~h1Þ ¼ DVaRð~h2Þ ¼ ð0:5½g
�
2
þ gþ

2
�Þ

Obviously, the above result will give us the wrong information because ~h1 has lesser value than

~h2 with certainty degree pg1 þ pg2 : It is observed that the tail information of ~h1 is ð½g�
1
; gþ

1
�; pg1Þ

and ð½g�
2
; gþ

2
�; pg2Þ with degree of certainty pg1 þ pg2 and tail information of ~h2 is ð½g�

2
; gþ

2
�; pg2Þ

with degree of certainty pg1 þ pg2 : Thus, the result should be of the kind ~h1 �
~h2: Therefore,

DVaR may produce the wrong results.
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To deal with such a problem, we propose RVaR, which can measure the better alternative

even if two intervals share the same midpoint for TDM under the PIVHF environment.

Definition 4.2.1. Let ~h ¼ fð½g�
1
; gþ

1
�; pg1Þ; ð½g

�
2
; gþ

2
�; pg2Þ; . . . ð½g�n ; g

þ
n �; pgnÞg be a PIVHFE,

where g�i ; g
þ
i 2 ½0; 1�, pgi

2 ½0; 1�
Xn

i¼1

pgi
¼ 1 and p0 = 0 is a known parameter. If we are X per-

cent sure that the element ½g�i ; g
þ
i �; pgi (i = 1, 2, . . ., n) is not less than R, then R is called RVaR of

the PIVHFE ~h, with the degree of certainty X.

Mathematically can be represented as:

RVaRð~hÞ ¼ R ¼
Xm� 1

i¼0

f ðgiÞ þ gmX � gm

Xm� 1

i¼0

p
gi
; ð4Þ

where
Xm� 1

i¼0

pgi
< X �

Xm

i¼0

pgi
; ði ¼ 1; 2; . . . ; nÞ; ð1 � m � nÞ, X> 0 and f ðgiÞ ¼ ðg

�
i þ g

þ
i Þ:pgi

is

the density function of ~h. For simplicity we take the parameters p0 = 0 and ½g�
0
; gþ

0
� ¼ 0

To facilitate to compare the magnitude of different PIVHFEs, we give the properties. For

two PIVHFEs ~h1 and ~h2, if RVaRð~h1Þ ¼ R1 and RVaRð~h2Þ ¼ R2, then

1. If R1 > R2, then ~h1 �
~h2.

2. If R1 < R2, then ~h2 �
~h1.

3. If R1 = R2, then ~h1 �
~h2.

Furthermore, to easily understand the final results of the above-proposed methods DVaR

and RVaR, a simple example is given below:

Example 2. A company wants to purchase a newly established bank (A, B). By survey the
report, the company provides the evaluation information for the two banks using the PIVHFEs
as:

~hA ¼ fð½0:1; 0:2�; 0:2Þ; ð½0:3; 0:4�; 0:5Þ; ð½0:35; 0:45�; 0:15Þ; ð½0:45; 0:55�; 0:15Þg

~hB ¼ fðð½0:05; 0:15�; 0:05Þ; ½0:1; 0:2�; 0:15Þ; ð½0:25; 0:35�; 0:4Þ; ð½0:4; 0:5�; 0:2Þ; ð½0:5; 0:6�; 0:2Þg

What is the optimal alternative?

1. If the company wants a decision using the overall value, then DMs uses the score value of

PIVHFE, then

sð~hAÞ ¼ 0:17 and sð~hBÞ ¼ 0:139

2. If the company emphasizes on the question that “how worst can be the the bank under cer-

tainty degree of 20%”, Then by using Eq 3 and the Eq 4, we get the following values:

DVaRð~hAÞ ¼ 0:15 and DVaRð~hBÞ ¼ 0:15

and

RVaRð~hAÞ ¼ 0:06 and RVaRð~hBÞ ¼ 0:055

It can be seen that when DVaR method is applied, we get the same values so, ~hA �
~hB. But
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on the other hand, it is observed, ~hA �
~hB when RVaR is applied. It clearly shows that

RVaR is more suitable than DVaR to differentiate the PIVHFEs. Hence bank A is the best

alternative if the company focus on how worst can be the selection among two banks.

From the example, we can see that DVaR is much simple and straightforward than the

RVaR. Thus, DVaR is used in TDM with some extreme values or the complicated TDM. In the

paper, RVaR is employed for the TGDM using the PIVHF environment. The TDM and

TGDM steps are proposed based on RVaR. It was further deduced that both DVaR and RVaR

are applied to show the efficiency and modifications in Section 6.

4.3 TDM using RVaR

RVaR focuses on the statement that “we are X per cent certain that the reckoned value of the

result is not less than R.” Therefore, RVaR can be used to decide by the DMs who focus on

extreme gain/loss. The calculation steps for RVaR can be defined as follows:

1. For TDM under PIVHF environment, there are n alternatives, namely Ei(i = 1, 2, 3, . . ., n)

and the information vectors as PIVHFEs

~hi ¼ fð½g
�
i1; g

þ
i1�; pgi1

Þ; ð½g�i2; g
þ
i2�; pgi2

Þ; . . . ; l~hig

2. Define the certainty degree X according to the need of the DMs or appetite of risk taken by

DMs.

3. When certainty degree decided, then according to certainty degree obtain the tail informa-

tion of the PIVHFEs after cumulative the overall PIVHFEs ~hiði ¼ 1; 2; 3; . . . ; nÞ with

respect to the probabilities.

4. Now calculate the RVaR, Ri for the PIVHFEs ~hiði ¼ 1; 2; 3; . . . ; nÞ using Eq 4.

(a). If the criterion index under consideration is a benefit, the bigger Ri the best alternative

be.

(b). If the criterion index under consideration is cost, the smaller Ri the best alternative be.

5 Group decision making using RVaR

In Section 4, the two decision-making approaches, DVaR and RVaR, are presented under the

PIVHF environment. The decision-making process can be carried out by PIVHFE informa-

tion for one DM. Further, if different DMs provide PIVHFEs, then the idea can also be

extended to TGDM.

Step 1. Collect k PIVHFE information matrices

For the TGDM problem under PIVHF environment, let us consider E = {E1, E2, . . ., En} be

n alternatives and D = {d1, d2, . . ., dk} be k DMs. The DM dj provides the information and the

probabilities of the alternative Ei under some criteria (benefit) represented by PIVHFE

~hij ¼ fð½g
�
ij1; g

þ
ij1�; pgij1

Þ; ð½g�ij2; g
þ
ij2�; pgij2

Þ; . . . ; l~hijg

Then we obtain k PIVHFE vectors ~Hj ¼ ð
~hijÞn�1

ði ¼ 1; 2; . . . n; j ¼ 1; 2; . . . ; kÞ.
Step 2. Calculating the weights of the DMs
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As more DMs are involved so the information provided is different. Further authentic

information providers have more weight than DM without authentic information. Higher

weights will be assigned to those DMs who will provide accurate information, or in other

words, greater weights will be assigned to those who have a smaller deviation degree. In the

paper, the deviation degree of PIVHFE represents the accuracy degree. Weights of the DMs

can be calculated using the dynamic model defined by Zhou and Xu [36] as follows:

min P ¼
Xk� 1

f¼1

Xk

t¼2

ðtþft þ t�ft Þ

s.t

wif :

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X#
~hig

t¼1

½ðgif � sð~hif ÞÞ
2p

gif
�

v
u
u
t

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X#
~hig

t¼1

½ðgit � sð~hitÞÞ
2p

git
�

v
u
u
t

� tþft þ t�ft ¼ 0

sð~hijÞ ¼
X#

~hif

t¼1

gijpgij

Xk

j¼1

wij ¼ 1; wij � 0

tþft ; t
�
ft > 0

f < t; f ; t 2 f1; 2; . . . ; kg

i ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ; k

9
>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>;

ð5Þ

where t�ft is the negative deviation and tþft is the positive deviation.

By using the Eq 5 we obtain the n weight vectors Wi = (wi1, wi2, . . ., wik), i = 1, 2, . . ., n. Put

the vectors in matrix to form a weight matrix W = (wij)n×k, where i = 1, 2, . . ., n and j = 1, 2,

. . ., k.

Step 3. Aggregate the PIVHFE information vectors

From the information vectors obtained in step 1 ~Hj ¼ ð
~hijÞn�1

, we obtain n PIVHFE vectors

Ĥ i ¼ ð
~hi1;

~hi2; . . . ; ~hikÞ; i ¼ 1; 2; . . . ; n. Now by using the weighted operation Wi � ðĤ iÞ
T
,

aggregate n PIVHFE information vectors and obtain the vectors ~Hi ¼ ð
~hiÞn�1

, where ~hi ¼

Wi � ðĤ iÞ
T

and i = 1, 2, . . ., n. Use definition 3.0.7 arrange the elements of ~hiði ¼
1; 2; 3; . . . ; nÞ in ascending order so that tail information can be obtained according to the risk

appetite of the DMs.

Step 4. Set the certainty degree of the PIVHFE

After cumulative distribution collect the tail information of the PIVHFEs, set the basic

parameters (certainty degree) by keeping in view the affordability of risk taken by DMs.

Step 5. Conclusion by using the RVaR

By using the Eq 4 calculate the Ri of the PIVHFEs ~hiði ¼ 1; 2; . . . ; nÞ according to the

defined parameters. Final conclusion can be drawn based on the criteria index as follows:

1. If the criteria is benefit, then the bigger Ri the superior alternative be.

2. If the criteria is cost, then the smaller Ri the superior alternative be.
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For the better understanding, complete map of the above proposed model is shown in the

Fig 4.

In the next section, we give an example to show the effectiveness of our proposed result

TDM under PIVHF environment.

6 An illustrative example

Every day, people/companies seek financial opportunities by trading the markets/stock

market all over the world. Fund-raising is tough for early-stage companies. An example

regarding the stock schemes selection problem from [36] is used to exhibit the execution pro-

cess of our suggested model:

The three stockholders of a private company want to invest the fund in an international

enterprise market (IEM). From the survey of the IEM, stockholders observe that the market

experiencing a downward trend, which has begun in July 2019. Therefore, investment in IEM

means losing the fund. However, the stockholders observe that the four newly established syn-

dicates listed in 2017, E1, E2, E3 and E4 are hopeful that the shares will be upswing over a some

period of time. So they decided to hold the fund on one of the four stocks and tolerate the loss

for some period. For the declined period and suffer a minimum loss, they decide one of the

more suitable syndicate to get minimum loss. For the suitable selection, all agree to the follow-

ing conditions.

1. The main criterion index C of the selection is a benefit i.e. anti-risk.

2. The decision focus on the question “how much the worst stock can be.” Thus, our proposed

principle is much suitable for selecting the best alternative.

Fig 4. Proposed decision making framework under PIVHF environment.

https://doi.org/10.1371/journal.pone.0252115.g004
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3. As the four companies are newly established, so quantitative information is limited. There-

fore, qualitative information is used for selecting the stock provided by the three stockhold-

ers and expresses as PIVHFEs.

4. As the three stockholders are equal, but the reliability degrees of the provided PIVHFE

information are different. Therefore, the weights can be calculated based on the deviation

degree of the three stockholders.

We can see that the TDM approach under PIVHF environment can solve the investment

problem. The comprehensive calculation procedure is given below:

Step 1. Collection of PIVHFE information matrices

For the stocks E = {E1, E2, E3, E4} the three stockholders i(i = 1, 2, 3) provide the PIVHFE

according to the C (benefit index). The three PIVHFE vectors ~Hj ¼ ð
~hijÞ (j = 1, 2, 3, 4 and

i = 1, 2, 3) are obtained. The information can be written as PIVHF matrix:

~H 1 ¼

fð½0:1; 0:2�; 0:3Þ; ð½0:3; 0:4�; 0:5Þ; ð½0:6; 0:7�; 0:2Þg

fð½0:2; 0:3�; 0:4Þ; ð½0:6; 0:7�; 0:6Þg

fð½0:5; 0:6�; 0:3Þ; ð½0:75; 0:85�; 0:7Þg

fð½0:4; 0:5�; 0:5Þ; ð½0:5; 0:6�; 0:5Þg

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

~H2 ¼

fð½0:3; 0:4�; 0:5Þ; ð½0:75; 0:85�; 0:5Þg

fð½0; 0:01�; 0:3Þ; ð½0:3; 0:4�; 0:6Þ; ð½0:7; 0:8�; 0:1Þg

fð½0:1; 0:2�; 0:4Þ; ð½0:3; 0:4�; 0:6Þg

fð½0:2; 0:3�; 0:4Þ; ð½0:65; 0:75�; 0:6Þg

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

~H3 ¼

fð½0:2; 0:3�; 0:35Þ; ð½0:7; 0:8�; 0:65Þg

fð½0:2; 0:3�; 0:3Þ; ð½0:6; 0:7�; 0:5Þ; ð½0:75; 0:85�; 0:2Þg

fð½0:1; 0:2�; 0:4Þ; ð½0:3; 0:4�; 0:6Þg

fð½0:25; 0:35�; 0:55Þ; ð½0:8; 0:9�; 0:45Þg

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

Step 2. Calculating the weights of the DMs

1. Find the Scores of the PIVHFE

By using Eq 1, the score of all the PIVHFEs are as follows:

sð~h11Þ ¼ 0:23333; sð~h21Þ ¼ 0:49; sð~h31Þ ¼ 0:725; sð~h41Þ ¼ 0:5

sð~h12Þ ¼ 0:575; sð~h22Þ ¼ 0:191; sð~h32Þ ¼ 0:27; sð~h42Þ ¼ 0:52

sð~h13Þ ¼ 0:575; sð~h23Þ ¼ 0:37333; sð~h33Þ ¼ 0:31333; sð~h43Þ ¼ 0:5475

2. Deviation degree of all the PIVHFEs

To find the weights of the DMs, deviation degree of all the PIVHFEs is required. Deviations
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degree can be calculated by the Eq 2 as follows:

dð~h11Þ ¼ 0:04361; dð~h21Þ ¼ 0:03840; dð~h31Þ ¼ 0:01313; dð~h41Þ ¼ 0:00250

dð~h12Þ ¼ 0:05063; dð~h22Þ ¼ 0:05680; dð~h32Þ ¼ 0:00960; dð~h42Þ ¼ 0:04860

dð~h13Þ ¼ 0:05688; dð~h23Þ ¼ 0:07924; dð~h33Þ ¼ 0:05814; dð~h43Þ ¼ 0:07487

3. Weights of DMs

Eq 5 is used to calculate the dynamic weights of DMs as follows:

min P1 ¼ ðtþ12
þ t�

12
Þ þ ðtþ

13
þ t�

13
Þ þ ðtþ

23
þ t�

23
Þ

0:04361w11 � 0:05063w12 � tþ
12
þ t�

12
¼ 0

0:04361w11 � 0:05688w13 � tþ
13
þ t�

13
¼ 0

0:05063w12 � 0:05688w13 � tþ
22
þ t�

23
¼ 0

w11 þ w12 þ w13 ¼ 1;w12 ¼ w13

w11;w12;w13 � 0

tþ
12
; t�

12
; tþ

13
; t�

13
; tþ

23
; t�

23
� 0

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

min P2 ¼ ðtþ12
þ t�

12
Þ þ ðtþ

13
þ t�

13
Þ þ ðtþ

23
þ t�

23
Þ

0:03840w21 � 0:05680w22 � tþ
12
þ t�

12
¼ 0

0:03840w21 � 0:07924w23 � tþ
13
þ t�

13
¼ 0

0:05680w22 � 0:07924w23 � tþ
22
þ t�

23
¼ 0

w21 þ w22 þ w23 ¼ 1

w21;w22;w23 � 0

tþ
12
; t�

12
; tþ

13
; t�

13
; tþ

23
; t�

23
� 0

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

min P3 ¼ ðtþ12
þ t�

12
Þ þ ðtþ

13
þ t�

13
Þ þ ðtþ

23
þ t�

23
Þ

0:01313w31� 0:00960w32 � tþ
12
þ t�

12
¼ 0

0:01313w31 � 0:05814w33 � tþ
13
þ t�

13
¼ 0

0:01313w32 � 0:05814w33 � tþ
22
þ t�

23
¼ 0

w31 þ w32 þ w33 ¼ 1

w31;w32;w33 � 0

tþ
12
; t�

12
; tþ

13
; t�

13
; tþ

23
; t�

23
� 0

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:
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min P4 ¼ ðtþ12
þ t�

12
Þ þ ðtþ

13
þ t�

13
Þ þ ðtþ

23
þ t�

23
Þ

0:00250w41 � 0:04860w42 � tþ
12
þ t�

12
¼ 0

0:00250w41 � 0:07487w43 � tþ
13
þ t�

13
¼ 0

0:04860w42 � 0:07487w43 � tþ
22
þ t�

23
¼ 0

w41 þ w42 þ w43 ¼ 1

w41;w42;w43 � 0

tþ
12
; t�

12
; tþ

13
; t�

13
; tþ

23
; t�

23
� 0

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

By solving the above systems of linear equalities, we get the weights

W1 ¼ ð0:3372; 0:3711; 0:3314Þ

W2 ¼ ð0:4628; 0:3129; 0:2243Þ

W3 ¼ ð0:3857; 0:5273; 0:0871Þ

W4 ¼ ð0:9218; 0:0474; 0:0308Þ

weight matrix is W = (wij)4×3

W ¼

0:3372 0:3711 0:3314

0:4628 0:3129 0:2243

0:3857 0:5273 0:0871

0:9218 0:0474 0:0308

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

It is observed that the weights are variable. As weight values are calculated using the deviation

degree of the PIVHFEs provided by the DMs, that is, the bigger weight allotted to that DM

who gave more authentic data.

Step 3. Aggregate k PIVHFE information vectors
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From ~Hjði ¼ 1; 2; 3Þ, extract ~hijði ¼ 1; 2; 3; 4; j ¼ 1; 2; 3Þ and obtain the four vectors Ĥ i ¼

ð~hi1;
~hi2;

~hi3Þ; ði ¼ 1; 2; 3; 4Þ as follows:

Ĥ 1 ¼

fð½0:1; 0:2�; 0:3Þ; ð½0:3; 0:4�; 0:5Þ; ð½0:6; 0:7�; 0:2Þg;

fð½0:3; 0:4�; 0:5Þ; ð½0:75; 0:85�; 0:5Þg;

fð½0:2; 0:3�; 0:35Þ; ð½0:7; 0:8�; 0:65Þg

0

B
B
B
@

1

C
C
C
A

Ĥ2 ¼

fð½0:2; 0:3�; 0:4Þ; ð½0:6; 0:7�; 0:6Þg;

fð½0; 0:01�; 0:3Þ; ð½0:3; 0:4�; 0:6Þ; ð½0:7; 0:8�; 0:1Þg;

fð½0:2; 0:3�; 0:3Þ; ð½0:6; 0:7�; 0:5Þ; ð½0:75; 0:85�; 0:2Þg

0

B
B
B
@

1

C
C
C
A

Ĥ 3 ¼

fð½0:5; 0:6�; 0:3Þ; ð½0:75; 0:85�; 0:7Þg;

fð½0:1; 0:2�; 0:4Þ; ð½0:3; 0:4�; 0:6Þg;

fð½0:1; 0:2�; 0:2Þ; ð½0:4; 0:5�; 0:4Þ; ð½0:6; 0:7�; 0:4Þg

0

B
B
B
@

1

C
C
C
A

Ĥ 4 ¼

fð½0:4; 0:5�; 0:5Þ; ð½0:5; 0:6�; 0:5Þg;

fð½0:2; 0:3�; 0:4Þ; ð½0:65; 0:75�; 0:6Þg;

fð½0:25; 0:35�; 0:55Þ; ð½0:8; 0:9�; 0:45Þg

0

B
B
B
@

1

C
C
C
A

Now multiply the weight vectors to obtain the overall PIVHFE information vector ~H ¼ ð~hiÞ�
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ði ¼ 1; 2; 3; 4Þ as follows:

~h1 ¼

ð½0:214817741; 0:318196285�; 0:0525Þ; ð½0:432710898; 0:549852116�; 0:0975Þ;

ð½0:464166165; 0:59239932�; 0:0525Þ; ð½0:612863522; 0:730889434�; 0:0975Þ;

ð½0:27861524; 0:381228901�; 0:0875Þ; ð½0:478804178; 0:591468197�; 0:1625Þ;

ð½0:507703648; 0:63008192�; 0:0875Þ; ð½0:644319071; 0:755768651�; 0:1625Þ;

ð½0:402669716; 0:510195572�; 0:035Þ; ð½0:568432735; 0:676615979�; 0:065Þ;

ð½0:592362445; 0:707181681�; 0:035Þ; ð½0:705484504; 0:806672296�; 0:065Þ

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

~h2 ¼

ð½0:142146495; 0:219808677�; 0:036Þ; ð½0:265668595; 0:354845215�; 0:06Þ;

ð½0:339142246; 0:447740882�; 0:024Þ; ð½0:23273691; 0:332962286�; 0:072Þ;

ð½0:34321492; 0:448414048�; 0:12Þ; ð½0:40892966; 0:527836764�; 0:048Þ;

ð½0:411421531; 0:527002169�; 0:012Þ; ð½0:49617079; 0:608869254�; 0:02Þ;

ð½0:546581506; 0:665188067�; 0:008Þ; ð½0:377561499; 0:472889752�; 0:054Þ;

ð½0:467186255; 0:564122685�; 0:09Þ; ð½0:520497023; 0:626884545�; 0:036Þ;

ð½0:443291792; 0:549338214�; 0:108Þ; ð½0:52345206; 0:627339347�; 0:18Þ;

ð½0:571133143; 0:680998656�; 0:072Þ; ð½0:572941187; 0:68043479�; 0:018Þ;

ð½0:634433273; 0:735745556�; 0:03Þ; ð½0:671010113; 0:773795484�; 0:012Þ

8
>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>;

~h3
¼

ð½0:282570338; 0:387687639�; 0:024Þ; ð½0:307464916; 0:412247918�; 0:048Þ;

ð½0:33149566; 0:43782549�; 0:048Þ; ð½0:371612627; 0:473870285�; 0:036Þ;

ð½0:393417466; 0:494973717�; 0:072Þ; ð½0:414465684; 0:516951259�; 0:072Þ;

ð½0:450873934; 0:580553199�; 0:056Þ; ð½0:469928432; 0:597377505�; 0:112Þ;

ð½0:488321744; 0:614898678�; 0:112Þ; ð½0:519027573; 0:639590118�; 0:084Þ;

ð½0:535717161; 0:654046411�; 0:168Þ; ð½0:551827625; 0:669101488�; 0:168Þ

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

~h4
¼

ð½0:387567577; 0:48783968�; 0:11Þ; ð½0:411999072; 0:516531485�; 0:09Þ;

ð½0:411101382; 0:512234996�; 0:165Þ; ð½0:434594053; 0:539560147�; 0:135Þ;

ð½0:482311041; 0:583059312�; 0:11Þ; ð½0:502962977; 0:606416805�; 0:09Þ;

ð½0:502204161; 0:602919109�; 0:165Þ; ð½0:522062509; 0:625164033�; 0:135Þ

8
>>>>>>><

>>>>>>>:

9
>>>>>>>=

>>>>>>>;

Step 4. Set the certainty degree of the PIVHFE

We use five basic parameters (certainty degrees) 10%, 20%, 30%, 40%, and 50% to calculate

the Ri. The values against the five certainty degrees are given in the Tables 1 and 2.

PLOS ONE TDM method for stock selection

PLOS ONE | https://doi.org/10.1371/journal.pone.0252115 May 27, 2021 18 / 24

https://doi.org/10.1371/journal.pone.0252115


Step 5. Conclusion by using the RVaR

By using the Eqs 3 and 4, we obtain the final values against the certainty degrees, as shown

in Tables 1 and 2 and provides the complete information for the alternatives as follows:

1. When the DVaR method is used to find the alternative, then following results are obtained:

(a). If the three distributors focus on the criteria (anti-risk) under 10%, then the best

choice is E4.

(b). If the three distributors focus on the criteria (anti-risk) under 20%, 30%, 40% or 50%,

then the best alternative is E1 and easily see that E4 is now on the second and third

preferences.

2. When the RVaR method is used to find the alternative, then following results are obtained:

If the three distributors focuses on the criteria (anti-risk) under 10%, 20%, 30%, 40% or

50% then the best alternative is E4 and worst is E2.

Thus, the three distributors can select the optimal alternative according to the requirement

or certainty degrees under the risk level, which they have to bear. As we see that some differ-

ences arise based on DVaR and RVaR measurements. But it is already mentioned in Section

4.1 and 4.2 that RVaR is more suitable instead of DVaR measurement. The two main reasons

for measuring the DVaR is

1. To show the effectiveness of the DVaR in TDM under the PIVHF environment.

2. Also, to compare the result with RVaR, which shows that RVaR is better than DVaR and

gives us more consistent results for TDM.

7 Comparison analysis

In this section, we compare the proposed methodology with the existing approach EVaR to

exhibit the validity and advantages of the RVaR method. The data used in the above example is

taken by the paper of Zhou and Xu [36] so that we can compare the results. Ranking under

Table 1. DVaR results under PIVHF environment.

Sr. Certainty degree E1 E2 E3 E4 Classification by proposed DVaR

1 10% 0.329922 0.28285 0.384661 0.437704 E4� E3� E1� E2

2 20% 0.491282 0.395814 0.444196 0.461668 E1� E4� E3� E2

3 30% 0.528283 0.395814 0.465708 0.464265 E1� E3� E4� E2

4 40% 0.535136 0.468383 0.533653 0.487077 E1� E3� E4� E2

5 50% 0.568893 0.496315 0.55161 0.487077 E1� E3� E2� E4

https://doi.org/10.1371/journal.pone.0252115.t001

Table 2. RVaR results under PIVHF environment.

Sr. certainty degree E1 E2 E3 E4 Classification by proposed RVaR

1 10% 0.059326 0.049325 0.072173 0.087541 E4� E3� E1� E2

2 20% 0.142234 0.11621 0.157086 0.179395 E4� E3� E1� E2

3 30% 0.242525 0.195373 0.249023 0.271859 E4� E3� E1� E2

4 40% 0.34921 0.282647 0.353745 0.366308 E4� E3� E1� E2

5 50% 0.457081 0.38077 0.461625 0.463724 E4� E3� E1� E2

https://doi.org/10.1371/journal.pone.0252115.t002
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different certainty degrees can be seen in Tables 3 and 4 using HVaR and EVaR calculated by

Zhou and Xu.

The results obtained from the proposed DVaR and the method HVaR defined by Zhou and

Xu [36] can be seen in Tables 1 and 3 respectively. If the distributors focus on the criteria

(anti-risk) under 10%, then by DVaR the best choice is E4 and worst is E2 and the same prefer-

ences can be obtained when the HVaR is used. However, If the distributors focus on the crite-

ria (anti-risk) under 20%, 30%, 40% or 50%, then the best alternative is E1 and we see that E4 is

now on the second and third preferences and the worst is E2. As these results are carried out

through the process of DVaR and we can easily see that these results are not authentic because

for 10% E4 is the best while for the criteria of 20%, 30%, 40% or 50% E1 is the best alternative.

We already mentioned in Section 4 that the results derived from DVaR may be wrong because

it uses less information.

The results obtained from the proposed RVaR and the method EVaR defined by Zhou and

Xu [36] can be seen in Tables 2 and 4 respectively. If the three distributors focuses on the crite-

ria (anti-risk) under 10%, 20%, 30%, 40% or 50% then the best alternative is E4 and worst is E2

using RVaR. However, the results obtained from the EVaR shown in Table 3, under criteria

10%, 20% and 30%, the best alternative is E4 and worst is E2 while for the criteria of 40% and

50% the best is E3 and worst is E2 and E4 respectively. From the processed values of E1, E2, E3,

and E4 we see that there is a proportional increase in values with change in criteria percentage.

This also shows that RVaR produces better results than DVaR. The RVaR results show consis-

tency when compared with EVaR so our proposed method provides authentic and better

results.

8 Conclusions and future prospects

This study develops a new decision framework under the context of the probabilistic interval-

valued hesitant fuzzy environment, based on tail information and the framework has been

applied to the tail group decision making. First, this paper introduced the concepts of the HFS,

the PHFS, the PIVHFS, the PIVHFE, and the VaR as the basis of the proposed method to

achieve the objective. Then, two new VaRs namely the deemed VaR and the reckoned VaR are

introduced along with their operational laws have been explored. The feasibility and

Table 3. HVaR results under PHF environment.

Sr. Certainty degree Ranking

1 10% E4� E3� E1� E2

2 20% E4� E1� E3� E2

3 30% E3� E4� E1� E2

4 40% E3� E4� E1� E2

5 50% E1� E3� E4� E2

https://doi.org/10.1371/journal.pone.0252115.t003

Table 4. EVaR results under PHF environment.

Sr. Certainty degree Ranking

1 10% E4� E3� E1� E2

2 20% E4� E3� E1� E2

3 30% E4� E3� E1� E2

4 40% E3� E4� E1� E2

5 50% E3� E1� E2� E4

https://doi.org/10.1371/journal.pone.0252115.t004
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effectiveness of the DVaR and RVaR are tested through the examples given in Section 4.1 and

4.2 under the environment of PIVHFS. The proposed operators, such as DVaR and RVaR, are

more reliable than HVaR and EVaR operators in diminishing decision information loss. The

framework integrates a novel programming model for the weight calculation of DMs to distin-

guish the PIVHFE information with different accuracy degrees. Furthermore, a new tail group

decision-making model based on RVaR under the PIVHF environment has been provided.

Finally, we gave a case study on the proposed decision-making method in selecting the optimal

stock for four newly listed stocks in the GEM board of the Shenzhen Stock Exchange to vali-

date the efficiency of the proposed methods. The tail information under the PIVHF environ-

ment was mainly presented to decision making. The approach mentioned above handled the

loss of data in TGDM problems appropriately. The reason is that PIVHFEs can efficiently

reduce information loss, thus making the procedure more reliable and consistent. The pro-

posed operators explained the possibility and usefulness using the example of stock selection.

To sum up, the following conclusions can be drawn:

1. The decision is taken purely using tail information; therefore, the proposed method (DVaR

and RVaR) provide a solution to the question, “How bad/good can a thing be” or in a state-

ment” we are X percent certain that the expected value of the aggregated result will not less

than R. It makes the difference from the traditionally used decision making approaches.

2. The optimal alternatives relying on TDM methods vary depending on the degree of cer-

tainty of DVaR or RVaR. But RVaR produces more accurate and specific results, which can

be shown in Tables 2 and 3.

It can be concluded that the proposed technique is more flexible, reliable, and general for

explaining the interrelationship among the multiple input arguments and offered the space for

DMs to display the fuzzy information. We are intended to extend the idea in the future to

multi-criteria decision making in a more generalized way that can handle all types of ambigu-

ous information and compare the TDM with the other well-known methodologies.
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