
Identifying Membrane Protein Types
Based on Lifelong Learning With
Dynamically Scalable Networks
Weizhong Lu1,2,3, Jiawei Shen1, Yu Zhang4, Hongjie Wu1,2*, Yuqing Qian1, Xiaoyi Chen1 and
Qiming Fu1

1School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China, 2Suzhou Key
Laboratory of Virtual Reality Intelligent Interaction and Application Technology, Suzhou University of Science and Technology,
Suzhou, China, 3Provincial Key Laboratory for Computer Information Processing Technology, Soochow University, Suzhou,
China, 4Suzhou Industrial Park Institute of Services Outsourcing, Suzhou, China

Membrane proteins are an essential part of the body’s ability to maintain normal life
activities. Further research into membrane proteins, which are present in all aspects of life
science research, will help to advance the development of cells and drugs. The current
methods for predicting proteins are usually based on machine learning, but further
improvements in prediction effectiveness and accuracy are needed. In this paper, we
propose a dynamic deep network architecture based on lifelong learning in order to use
computers to classify membrane proteins more effectively. The model extends the
application area of lifelong learning and provides new ideas for multiple classification
problems in bioinformatics. To demonstrate the performance of our model, we conducted
experiments on top of two datasets and compared themwith other classificationmethods.
The results show that our model achieves high accuracy (95.3 and 93.5%) on benchmark
datasets and is more effective compared to other methods.

Keywords: lifelong learning, membrane proteins, dynamically scalable networks, position specific scoring matrix,
evolutionary features

1 INTRODUCTION

The biological cell’s daily activities are associated with membranes, without which it would not be
possible to form a living structure. The essential proteins that make up membranes are the lipids and
proteins that are the main components of membranes. In the present biological research, there are
eight types of membrane proteins: 1) single-span 1; 2) single-span 2; 3) single-span 3; 4) single-span
4; 5) multi-span; 6) lipid-anchor; 7) GPI-anchor and (8) peripheral (Cedano et al., 1997).

Bioinformatics is present in all aspects of the biological sciences, and how to use computers to
classify proteins efficiently and accurately has been a hot research problem in the direction of
bioinformatics and computer science. Although traditional physicochemical as well as biological
experiments are desirable in terms of predictive accuracy, these methods are too cumbersome and
require a great deal of human and material resources. To save time and financial costs, and to better
understand the structure and function of membrane proteins, a number of calculations have been
developed to efficiently discriminate between protein types (Feng and Zhang, 2000; Cai et al., 2004;
Zou et al., 2013; Wei et al., 2017; Zhou et al., 2021; Zou et al., 2020; Qian et al., 2021; Ding et al., 2021;
Ding et al., 2021; Zou et al., 2021). The extant methods are in large part improvements on Chou’s
algorithm (Chou and Elrod, 1999). Song et al. (Lu et al., 2020) used Chou’s 5-step method to extract
evolutionary information to input to a support vector machine for protein prediction. Cao and Lu
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(Lu et al., 2021) avoided loss of information due to truncation by
introducing a fag vector and used a variable length dynamic two-
way gated cyclic unit model to predict protein. Yang (Wu et al.,
2019) designed a reward function to model the protein input
under full-state reinforcement learning. Wu and Huang (Wu
et al., 2019) et al. used random forests to build their own model
and used binary reordering to make their predictions more
efficient. To avoid the limitations of overfitting, Lu and Tang
(Lu et al., 2019) et al. used an energy filter to make the sequence
length follow the model adaptively.

In most methods of machine learning, predictions are made
using fixed models for different kinds of proteins, which generally
suffer from two problems. Firstly, they do not allow for incremental
learning, and secondly, they do not consider task-to-task
connections at the task level. Lifelong learning approaches aim
to bridge these two issues. Lifelongmachine learningmethods were
first proposed by Thrun and Mitchell (Thrun and Mitchell, 1995),
who viewed each task as a binary problem to classify all tasks. A
number of memory-based and neural network-based approaches
to lifelong learning were then proposed and refined by Silver
(Silver, 1996; Silver and Mercer, 2002; Silver et al., 2015) et al.
Ruvolo and Eaton (Ruvolo and Eaton, 2013) proposed the Efficient
Lifelong Learning Algorithm (ELLA), which greatly enhanced the
algorithm proposed by Kumar (Kumar and Daume, 2012) et al. for
multi-task learning (MTL). Ruvolo and Eaton (Ruvolo and Eaton,
2013) viewed lifelong learning as a real-time task selection process,
Chen (Chen et al., 2015) proposed a lifelong learning algorithm
based on plain Bayesian classification, and Shu (Shu et al., 2017)
et al. investigated the direction of lifelong learning by improving
the conditional random field model. Mazumder (Chen and Liu,
2014) investigated human-machine conversational machines and
enabled chatbots to learn new knowledge in the process of chatting
with humans. Chen, Liu andWang (Wang et al., 2016) proposed a
number of lifelong topic modeling methods to mine topics from
historical tasks and apply them to new topic discovery. Shu et al.
proposed a relaxed labeling approach to solve lifelong unsupervised
learning tasks. Chen and Liu (Chen and Liu, 2019) provide more
detailed information on the direction of lifelong machine learning
in this book.

After a lot of research and careful selection, we ended up using a
DSN model based on sequence information and lifetime learning of
membrane proteins themselves. First, we processed the membrane
protein sequence dataset based on BLAST (Altschul et al., 1997) to
obtain the scoring matrix (PSSM) (Dehzangi et al., 2017; Sharma
et al., 2018; Yosvany et al., 2018; Chandra et al., 2019). Then, we
extracted valid features from the PSSM by the averaging block
method (Avblock) (Shen et al., 2019), the discrete wavelet
transforms method (DWT) (Shen et al., 2017; Wang et al., 2017),
the discrete cosine transforms method (DCT) (Ahmed et al., 1974),
the histogram of oriented gradients method (HOG) (Qian et al.,
2021)and the Pse-PSSMmethod. The features extracted by these five
methods are then stitched end-to-end and fed into our model for
prediction. Finally, the performance is evaluated by random
validation tests and independent tests. Through the results we
can see that our model achieves good prediction results in the
case of predicting membrane protein types. Figure 1 shows a sketch
of the main research in this paper.

2 MATERIALS AND METHODS

In this experiment, the sequence of discriminating membrane
protein types can be broadly divided into three steps: creating the
required model, performing training and testing of the model,
and making predictions and conducting analysis of the results.
Firstly, the features are extracted from the processed dataset.
Next, the features are integrated into a lifelong learning model for
prediction. Finally, the sequence information of the membrane
proteins is transformed into algorithmic information, which is
then analyzed and predicted using the model. Figure 2 shows the
research infrastructure for this approach.

2.1 Analysis of Data Sets
In order to test the performance of our lifelong learning model,
we experimentally selected two membrane protein datasets for
testing, Data 1 and Data 2. The specifics of the two datasets are
shown in Table 1. Data 1 and Data 2 include eight membrane
protein types. Data 1 is from the work of Chou (Chou and Shen,
2007) et al. The training and test sets were randomly obtained
from Swiss-Prot (Boeckmann et al., 2003) by percentage
assignment, which ensured that the quantities of these two
sequences are consistent. Data 2 is from the work of Chen
(Chen and Li, 2013) et al. where they used the CD-hit (Li and
Godzik, 2006) method to remove redundant sequences from
dataset 1 so that no two-by-two sequences would have less
than 40% identity.

2.2 Extracting the Message of Evolutionary
Conservatism
The PSSM used in this experiment is the “Position-Specific
Scoring Matrix.” This scoring matrix stores the sequence
information of membrane proteins. We use the PSSM matrix
(Shen et al., 2017; Ding et al., 2017; Shen et al., 2019) for
membrane protein prediction because it reflects the
evolutionary information of membrane proteins very well. For
any membrane protein sequence, such as Q, the PSSM can be
derived by PSI-BLAST (Altschul et al., 1997), after several
iterations. First it forms the PSSM based on the first search

FIGURE 1 | The summary of the main research.
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result, then it performs the next step which is the second search
based on the first search result, then it continues with the second
search result for another time and repeats this process until the
target is searched for the best result. As the performance of the
experimental results is best after three iterations, we generally
adopt three iterations as the setting. The value of its E is 0.001.
Assume that the sequence Q � q1q2q3... . qL, whose length is L.
This is followed by storing the PSSM containing the membrane
protein evolution information inside a matrix with a size-area of
L × 20. The matrix is represented as follows:

PSSMoriginal �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1,1 p1,2

p2,1 p2,2

..

. ..
.

. . . p1,20

. . . p2,20

1 ..
.

pi,1 pi,2

..

. ..
.

pL,1 pL,2

. . . pi,20

1 ..
.

. . . pL,20

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
L×20

(1)

In addition, the expression below shows the representation
of PSSMoriginal(i, j):
PSSMoriginal(i, j) � ∑20

k�1 ω(i, k)×D(k, j), i � 1, . . . , L. j � 1, . . . , 20

(2)

where ω(i, k) is the frequencies of the k-th type of amino acid at
the i-th position and D(k, j) is the mutation percentage of the
substitution matrix from the k-th molecular substances into the

sequence of the protein. The larger the value, the more conserved
the position is. If this is not present, the contrary will be achieved.

2.2.1 Pse-Pssm
Pse-PSSM (pseudo-PSSM) is a feature extraction method often
used in membrane protein prediction (Chou and Shen, 2007).
PSSM matrices are often used in the characterization of
membrane proteins. This feature extraction method, which
aims to preserve PSSM biological information through pseudo
amino acids, is expressed as follows:

fi,j � pi,j− 1
20∑20

k�1pi,k�������������������
1
20∑20

l�1(pi,l− 1
20∑20

k�1pi,k)2√ , i � 1, . . . , L; j � 1, . . . , 20 (3)

The Pnormalized is as follows:

Pnormalized �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
f1,1 . . . f1,20

..

.

fi,1

..

.

1
. . .
1

..

.

fi,20

..

.

fL,1 . . . fL,20

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
L×20

(4)

where fi,j is the normalised PSSM score with a mean of 0 for the 20
amino acids. And the pi,j is the raw score. While a positive score
refers to the occurrence of the corresponding homozygousmutation,
which is more frequent in multiple reciprocals, over and above
chance mutations, a negative score is the opposite of a positive score.

2.2.2 Average Blocks
The ABmethod was first proposed by Huang et al. Its full name is
the averaging block methodology (AvBlock) (Jong Cheol Jeong
et al., 2011). When feature extraction is performed for PSSM, the
extracted feature values are diverse because the size of individual
features is different and the abundance of amino acids also varies
in the individual membrane proteins. To solve this type of
problem, we can average the features for the local features of
the PSSMs. Inside each module after averaging, 5% of the
membrane protein sequences are covered, and this method is
the AB feature extraction method. When performing the AB
method feature extraction on the PSSM, it is not necessary to
consider the sequence length of the membrane proteins. When

FIGURE 2 | The research infrastructure for this approach.

TABLE 1 | The sample sizes for the two different data sets used in this experiment.

The specific type
of classification

Dataset 1 Dataset 2

Train Test Train Test

Single-span type 1 610 444 388 223
Single-span type 2 312 78 218 39
Single-span type 3 24 6 19 6
Single-span type 4 44 12 35 10
Multi-span type 5 1,316 3,265 936 1,673
Lipid-anchor type 6 151 38 98 26
GPI-anchor type 7 182 46 122 24
Peripheral type 8 610 444 472 305
Totality 3,249 4,333 2,288 2,306
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we split the PSSM matrix by rows, it becomes a block of size L/20
each, with 20 blocks. After this operation, every 20 features form a
block. the AB formulation is as follows:

AB(k) � 20
N

∑N
20

p�1 Mt(p + (i − 1) × 20
N

, j),
i � 1, . . . , 20; j � 1 . . . , 20; j� 1, . . . , 20; k � j + 20 × (i − 1)

(5)

Where N/20 is the size of j blocks andMt(p + (i − 1) × 20
N, j) is a

vector of size 1 × 20 from position ith of the jth block that is taken
in the pssms.

2.2.3 Discrete Wavelet Transform
We refer to a discrete wavelet transform feature extraction
method as DWT, which uses the concepts of frequency and
position (Nanni et al., 2012). It is because we can consider the
membrane protein sequence as a picture, then matrix the
sequence and extract the coefficient information from the
matrix by DWT. This method was first suggested by Nanni et al.

In addition to this, we refer to the projection of the signal f(t)
onto the wavelet function as the wavelet transform (WT). This is
shown below:

T(a, b) � 1��
a

√ ∫t
0

f(t)ψ(t − b
a

)dt (6)

where in the above equation, the scale variable is denoted by a, the
translational variable by b, and ψ(t−ba ) refers to the wavelet parsing
and analysis function. T (a, b) refers to the transform coefficients
used in conjunction with a particular location when performing a
specific wavelet period signal transform. Further, an efficient
DWT algorithm was submitted by Nanni et al.; they denote
the discrete signal f(t) by x [n] and perform a DWT on it. It is
expressed in terms of the coefficients as follows:

yj,low[n] � ∑N

k�1x[k]g[2n − k] (7)

yj,high[n] � ∑N

k�1x[k]h[2n − k] (8)

where N is the length of the discrete signal and the low-pass and
high-pass filters are g and h, respectively. yj,low[n] is the
approximate coefficient when the signal is in the low-frequency

part, while yj,high[n] is the detailed coefficient when the signal is in
the high-frequency band. In our study, their mean, standard
deviation, maximum and minimum values are computed through
theDWTquadruple layer. In addition, the PSSMdiscrete signal after
transforming four times, consists of 20 discrete signals. The 4-stage
DWT structure can be seen in Figure 3.

2.2.4 Discrete Cosine Transform
The DCT (Ahmed et al., 1974), known as the Discrete Cosine
Transform, converts a signal to its fundamental frequency by means
of a linearly separable transform. This method has been widely used
in the field of image compression. In this experiment, we compressed
the PSSMmatrix of membrane proteins using a 2-dimensional DCT
(2D-DCT). 2D-DCT is defined as follows:

FPSSM−DCT � αiαj ∑M−1
m�0

× ∑N−1
n�0 PSSM(m, n)cos π(2m + 1)i

2M
cos

π(2n + 1)j
2N

(9)

αi

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
��
1
M

√
, i � 0��

2
M

√
, 1≤ i≤M − 1

αj

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
��
1
N

√
, j � 0��

2
N

√
, 1≤ j≤N − 1

(10)

The mission of the DCT is to convert a uniformly
distributed information density into an uneven distribution.
Once its length and signal have been converted, the most
important part of the information is collected in the low
frequency section of the PSSM, that is in the middle and
top-left corner.

2.2.5 Histogram of Oriented Gradient
Histogram of Oriented Gradients (HOG), which is a method for
describing features, is mainly used in computer vision. In this
experiment, to handle a PSSM matrix using the HOG method, it
is first necessary to look at it as a particular image matrix. In the
first step, the horizontal gradient values and vertical gradient
values of the PSSM are used to derive the direction and size of the
gradient matrix. In the second step, the gradient matrix is divided
into 25 sub-matrices by direction and size. In the third step,
conversion of the results generated in the second step is carried
out according to the requirement to generate 10 histogram
channels per sub-matrix.

FIGURE 3 | The 4-stage DWT structure.
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2.3 Lifelong Learning
Lifelong learning (Thrun and Mitchell, 1995), like machine
learning, can be divided into the directions of lifelong
supervised learning, lifelong unsupervised learning and
lifelong reinforcement learning. The lifelong machine
learning part of the study focuses on whether the model
can be extended when new categories of categories are added
to the model. When the current model has been classified into
n categories, if a new class of data is added, the model can
somehow be adaptively expanded to classify n + 1 category.
Multi-task learningmodels and lifelongmachine learning are easily
translatable to each other if we have all the original data.Whenever
a new category is added to the original category and needs to be
classified, only one new category needs to be added and then all the
training data can be trained again to expand the new category. One
obvious disadvantage of this strategy is that it wastes a lot of
computational time to compute each new class, and if too many
new classes are added, it may lead to changes in the model
architecture for multi-task learning. This model therefore uses a
dynamically scalable network to better perform incremental
learning of the added tasks. Assume that the current model has
successfully classified Class 1, Class 2, ... , Class n. When the new
data class Class-new is added, the model does not need to train all
the data from scratch, but only needs to expand the overall model
by adding n new binary classification models. The simple flow of
the lifelong learning model is shown in Figure 4.

2.4 Dynamically Scalable Networks
Dynamically scalable networks are incremental training of deep
neural networks for lifelong learning, for which there will be an
unknown amount and unknown distribution of data to be trained
fed into our model in turn. To expand on this, there are now T a
sequence of task learning models, t � 1, .... , t, .... , T is unbounded
T in which the tasks at time point t carry training data
Dt � {xi, yi}Nt

i�1. It is important to note that each subtask can
be a single or a group of tasks. For simplicity, even though our
approach is general for any kind of task, we only consider the two-

classification problem. That is, input features x ∈ Rd of
y ∈ {0, 1}. One challenge with lifelong learning is that at the
current time t, all previous training datasets are unavailable (if
any, only from previous model parameters). The lifelong learning
agent learns the model parameters Wt by solving the following
problem in a reasonable amount of time t:

minimizeWtL(Wt ;Wt−1, Dt) + λΩ(Wt ), t � 11, . . . (11)

where L is task specific loss function, Wt is the parameter for
task t, and Ω (Wt) is the regularization (e.g. element-wise ℓ2

norm) to enforce our model Wt appropriately. In case of a
neural network which is our primary interest, Wt � {Wl}Ll�1 is
the weight tensor.

To counter these problems that arise in the course of lifelong
learning, we allow the knowledge generated in previous tasks to
be used to the maximum extent possible. At the same time, it is
allowed to dynamically extend its capabilities when mechanically
accumulated knowledge does not explain well for emerging tasks.
Figure 5 and Algorithm 1 illustrate our progressive learning
process.

3 EXPERIMENT RESULTS

In this subsection we will have an analysis of the capabilities of
the respective modelling and methodological approaches.
Furthermore, the modelling we used in that context was
compared with other available methods on separate datasets.

3.1 Assessment Measurements
To evaluate our lifelong learning model better, we chose
several parameters: sample all-prediction accuracy (ACC),
single sample specificity (SP), single sample sensitivity
(SN), and Mathews correlation coefficient. These metrics
are widely used in the analysis of biological sequence
information:

FIGURE 4 | The simple flow of the lifelong learning model.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

SN � TP
TP + FN

SP � TN
TN + FP

ACC � TP + TN
TP + FP + TN + FN

MCC � TP × TN − FP × FN�������������������������������������������(TP + FN) × (TN + FP) × (TP + FP) ×(TN + FN)√
(12)

For the above equation, true trueness (TP) refers to the
number of true samples correctly predicted; false positivity
(FP) refers to the number of true samples incorrectly
predicted; true negativity (TN) refers to the number of

negative samples correctly predicted; and false negativity (FN)
refers to the number of negative samples erroneously predicted
(Chou et al., 2011a; Chou et al., 2011b; Chou, 2013).

3.2 Situational Analysis of Two Data Sets
The lengths of the datasets used in our experiments are shown in
Figure 6. Most of the membrane proteins in dataset 1 and dataset
2 have a similar length distribution because of their specific type.
To better demonstrate the superiority of lifelong learning for
membrane protein classification, we calculated the amino acid
frequencies for all protein types in the experiment, as shown in
Figure 7.

FIGURE 5 | Incremental learning for dynamically scalable networks.

FIGURE 6 | Distribution of the lengths of the training and test sets in the two datasets.
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3.3 The Forecasting Results for Dataset 1
The PSSM sequence matrix contains important genetic
information required for protein prediction. Many elements of
biological evolution, such as the stability of the three-dimensional
structure and the aggregation of proteins, can have an impact on
the storage and alteration of sequences. These elements
demonstrate that PSSM captures important information about
ligand binding. Thus, proving the validity of the PSSM
characterization method.

We will compare the model methods we used in this use with
other existing methods in terms of prediction accuracy on dataset 1.

FIGURE 7 | Component composition of the training and test sets of the two datasets.

TABLE 2 | The performance exhibited by different models on dataset 1.

The specific type
of classification

Ave-WTa (%) Mem Type-2Lb (%) preMPTc (%) Our method

Single-span type 1 93.9 (417/444) 86.9 (386/444) 94.6 (420/444) 94.8 (421/444)
Single-span type 2 87.2 (68/78) 70.5 (55/78) 79.5 (62/78) 88.4 (69/78)
Single-span type 3 0 (0/6) 33.3 (2/6) 33.3 (2/6) 33.3 (2/6)
Single-span type 4 66.7 (8/12) 66.7 (8/12) 41.7 (5/12) 83.3 (10/12)
Multi-span type 5 93.9 (3,065/3,265) 95.0 (3,103/3,265) 94.9 (3,097/3,265) 96.3 (3,147/3,265)
Lipid-anchor type 6 29.0 (11/38) 42.1 (16/38) 65.8 (25/38) 52.6 (20/38)
GPI-anchor type 7 84.8 (39/46) 76.1 (35/46) 93.5 (43/46) 100.0 (46/46)
Peripheral type 8 91.9 (408/444) 82.2 (365/444) 81.1 (360/444) 93.2 (414/444)
Overall 92.7 (4,016/4,333) 91.6 (3,970/4,333) 92.6 (4,014/4,333) 95.3 (4,129/4,333)

aMean-weighted MKSVM, based.
bThe results are taken from (Chou and Shen, 2007).
cThe results are taken from (Chen and Li, 2013).

ALGORITHM 1 | Incremental Learning for Dynamically Scalable Networks.
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The methods involved in the comparison are MemType-2L (Chou
and Shen, 2007) and predMPT (Chen and Li, 2013). Details can be
found in Table 2, where it is clear that our model approach has an
overall ACC of 95.3%. 3.7% higher thanMemType-2L’s 91.6%, 2.7%
higher than predMPT’s 92.6%, and 2.4% higher than Average
weights’ 92.7%. In the independent test set, our method was
superior for membrane protein type 2 (88.4%), type 4 (83.3%),
type 5 (96.3%) and type 7 (100%).

3.4 The Forecasting Results for Dataset 2
As a solution to the possible problem of untimely updates in Data
1, Chen and Li (Chen and Li, 2013) used the Swissprot annotation
method to update Data Set 1, resulting in a new dataset of
membrane proteins (Data Set 2). The results of the
comparison using Dataset 2 are presented in Table 3. The
overall average accuracy of our models was 3.2% higher than
the predMPT method (90.3%). Even though they added features
such as 3D structure to the predMPT prediction session, our
model performance was clearly higher than it. We outperformed
it by 2.6% in terms of prediction accuracy for type 1 (94.1 vs.
91.5%). In contrast, analog 5 outperformed it by 1.3% (94.1
vs. 92.8%).

4 CONCLUSION AND DISCUSSION

In previous work, investigators have often used the PseAAC
(Chou, 2001) approach to identify membrane protein types, and
this approach has indeed performed well in the field of protein
classification. Using Chou’s operation (Chou and Shen, 2007)
on feature extraction from PSSM, we were inspired to use the
five methods of Pse-pssm, DCT, AvBlock, HOG and DWT to
extract features. In order to avoid the low accuracy of a single
feature extraction method, we integrated the above five methods
together and fed the integrated features into our DSN model
method.

Our constructed lifelong learning dynamic network
model proved to achieve superior results on different

datasets (95.3 and 93.5%). However, the prediction of
some small sample affiliations by the methodology has not
been as accurate as we had anticipated. In order to improve
the performance of this model, we will consider improving
our own features and combining some other feature
extraction methods, and adjusting the parameters of our
model in our future research.
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TABLE 3 | The performance exhibited by different models on dataset 2.

The specific type
of classification

Ave-WTa (%) Mem Type-2Lb (%) preMPTc (%) Our method

Single-span type 1 89.2 (199/223) 76.7 (171/223) 91.5 (204/223) 94.1 (210/223)
Single-span type 2 79.5 (31/39) 66.7 (26/39) 74.4 (29/39) 87.2 (34/39)
Single-span type 3 33.3 (2/6) 33.3 (2/6) 16.7 (1/6) 50.0 (3/6)
Single-span type 4 90.0 (9/10) 70.0 (7/10) 80.0 (8/10) 90.0 (9/10)
Multi-span type 5 91.1 (1,524/1,673) 91.4 (1,529/1,673) 92.8 (1,552/1,673) 94.1 (1,575/1,673)
Lipid-anchor type 6 30.8 (8/26) 23.1 (6/26) 53.8 (14/26) 57.6 (15/26)
GPI-anchor type 7 91.7 (22/26) 70.8 (17/24) 95.8 (23/24) 100.0 (24/24)
Peripheral type 8 88.9 (271/305) 68.2 (208/305) 82.6 (252/305) 93.7 (286/305)
Overall 89.6 (2066/2,306) 85.3 (1966/2,306) 90.3 (2083/2,306) 93.5 (2,156/2,306)

aMean-weighted MKSVM, based.
bThe results are taken from (Chou and Shen, 2007).
cThe results are taken from (Chen and Li, 2013).
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