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Objective: The goal of this studywas to develop amodel that integrates imaging and clinical information observed
at lesion incidence for predicting the recovery of white matter lesions in multiple sclerosis (MS) patients.
Methods: Demographic, clinical, and magnetic resonance imaging (MRI) data were obtained from 60 subjects
with MS as part of a natural history study at the National Institute of Neurological Disorders and Stroke. A total
of 401 lesions met the inclusion criteria and were used in the study. Imaging features were extracted from the
intensity-normalized T1-weighted (T1w) and T2-weighted sequences as well as magnetization transfer ratio
(MTR) sequence acquired at lesion incidence. T1w andMTR signatures were also extracted from images acquired
one-year post-incidence. Imaging featureswere integratedwith clinical anddemographic data observed at lesion
incidence to create statistical prediction models for long-term damage within the lesion.
Validation: The performance of the T1w and MTR predictions was assessed in two ways: first, the predictive ac-
curacy was measured quantitatively using leave-one-lesion-out cross-validated (CV) mean-squared predictive
error. Then, to assess the prediction performance from the perspective of expert clinicians, three board-certified
MS clinicians were asked to individually score how similar the CV model-predicted one-year appearance was to
the true one-year appearance for a random sample of 100 lesions.
Results: The cross-validated root-mean-square predictive error was 0.95 for normalized T1w and 0.064 for MTR,
compared to the estimated measurement errors of 0.48 and 0.078 respectively. The three expert raters agreed
that T1w and MTR predictions closely resembled the true one-year follow-up appearance of the lesions in both
degree and pattern of recovery within lesions.
Conclusion: This study demonstrates that by using only information from a single visit at incidence, we can pre-
dict how a new lesion will recover using relatively simple statistical techniques. The potential to visualize the
likely course of recovery has implications for clinical decision-making, as well as trial enrichment.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Multiple sclerosis (MS) is an inflammatory disease of the central
nervous system, which is typically characterized by demyelinating le-
sions that occur in the brain and spinal cord. These lesions evolve dy-
namically from actively inflamed tissue over a period of months to
more stable demyelinated regions of acute long-term axonal injury
(Lassmann, 2013; Lassmann et al., 2007). A competing process of
remyelination is also known to occur to varying degrees in patients,
and has been documented in both relapsing-remitting and progressive
cases (Patrikios et al., 2006; Bramow et al., 2010). Both the destructive
rkin).

. This is an open access article under
and remyelinating processes are known to progress through the disease
course (Frischer et al., 2015), and are associated with disability and
morbidity. As therapeutics designed to promote tissue repair and
remyelination are being developed, sensitivemarkers for in vivo assess-
ment of these processes are increasingly important for studying thera-
peutic efficacy and patient management.

Magnetic resonance imaging (MRI) is a commonly used technique
for identifying lesions, particularly in the white matter of the brain
(Radü & Sahraian, 2008). The presence of new and active lesions is a
key factor in the diagnosis and monitoring of MS, and several MRI se-
quences have been demonstrated to be effective in measuring the se-
verity of these lesions (Polman et al., 2011; Sweeney et al., 2016;
Sweeney et al., 2013; Pike et al., 2000). In recent years, successful at-
tempts have been made to utilize quantitative methods in concert
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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with MRI for the study of tissue damage in lesions. These techniques
have included the use of advanced quantitative MRI sequences includ-
ing T1 mapping (Larsson et al., 1989; Vrenken et al., 2006), magnetiza-
tion transfer imaging (van Waesberghe et al., 1998; van Waesberghe
et al., 1999), and diffusion tensor imaging (Narayanan et al., 1997;
Werring et al., 1999; Filippi et al., 2001), as well as statistical techniques
for modeling tissue damage using conventional MRI (Shinohara et al.,
2011; Mejia et al., 2015; Reich et al., 2015) and the development of
time-series models to examine lesion activity (Sweeney et al., 2016;
Meier et al., 2007; Meier & Guttmann, 2003; Meier & Guttmann, 2006).

Specifically, much research has engaged with the apparent paradox
related to the lack of coherence between the presence of lesions and clin-
ical disease measures (Barkhof, 2002). One recent study retrospectively
related the longitudinal behavior of lesions, as opposed to simply their
presence, to clinical covariates and treatment status (Sweeney et al.,
2016). Significant relationships between treatment and longitudinal be-
havior indicated that receiving disease-modifying therapy or steroids
was associated with a better healing trajectory within lesion tissue.
These findings signify the presence of potentially important relationships
between the repair processes in the brain, therapeutics, and disability.

Unfortunately, today there is still relatively little that can be deter-
mined in advance about the way specific lesions will recover, or the de-
gree to which they may be responsive to treatment. The ability to
visually examine the likely course of recovery for a given incident lesion
would have the potential to be useful in several settings. Specifically,
such visualizations could be a beneficial tool for physicians, providing
them important supplemental informationwhenmaking treatment de-
cisions. Additionally, knowledge of how patients' brains are likely to re-
cover from lesion damage could be beneficial in clinical trials, for which
advanced knowledge of lesion characteristics could inform recruitment
enrichment and trial design.

To build on the previous work, and to address the needs outlined
above, the current study attempted to develop a statistical model that
would be capable of prospectively predicting how lesions would heal
over the course of a year. In this paper, we discuss the development of
such prediction models for two outcome MRI modalities, we present
statistical and clinical measures of validity and prediction accuracy,
and we discuss the implications and potential next steps of this line of
research.

2. Methods

2.1. Image acquisition and preprocessing

Details of the image acquisition and preprocessing have been previ-
ously published (Sweeney et al., 2016) and are summarized in this sec-
tion. Whole-brain two-dimensional T2-weighted FLAIR, PD, T2, and
three-dimensional T1-weighted volumes were acquired in a 1.5 tesla
(T) MRI scanner (Signa Excite HDxt; GE Healthcare, Milwaukee, Wis-
consin) using the body coil for transmission. The 2D FLAIR, PD, and T2
volumes were acquired using fast-spin-echo sequences, and the 3D T1
volume was acquired using a gradient-echo sequence. All scanning pa-
rameters were clinically optimized for each acquired image.

For image preprocessing, we used Medical Image Processing Analy-
sis and Visualization (http://mipav.cit.nih.gov) and the Java Image Sci-
ence Toolkit (http://www.nitrc.org/projects/jist) (Lucas et al., 2010).
All images for each subject at each visit were interpolated to a voxel
size of 1 mm3 and rigidly co-registered longitudinally and across se-
quences to a template space (Fonov et al., 2011). To coregister the T1 im-
ages across study visits, a two-step procedure was applied: first,
subject-specific templates were generated by averaging after rigid
alignment of the T1 images to the MNI template. Second, all T1 images
were then realigned to the subject-specific templates. Finally, the addi-
tional MRI sequences were aligned to the T1 images within each study
visit and this transformation was composedwith the T1-based transfor-
mation to the subject-specific template.
Extracerebral voxels were removed using a skull-stripping proce-
dure (Carass et al., 2007) and the brain was automatically segmented
using the T1 and FLAIR images (Shiee et al., 2010) to produce a mask
of normal-appearingwhitematter (NAWM), or whitematter excluding
lesions. Intensity normalization was then conducted using z-scoring
based on the mean and variance of the variability in the NAWM
(Shinohara et al., 2011; Shinohara et al., 2014). After preprocessing,
studies were manually quality controlled by a researcher with over
five years' experience with structural MRI (EMS) and studies with mo-
tion or other artifacts were removed.
2.2. Patient demographics

For this study, 60 subjects diagnosed with MS were scanned be-
tween 2000 and 2008 on a monthly basis over a period of up to
5.5 years (mean = 2.2 years, sd = 1.2) as part of a natural history
study at the National Institute of Neurological Disorders and Stroke in
Bethesda, Maryland. To be included in the analysis, subjects were re-
quired to meet certain pre-specified inclusion criteria. Specifically,
only subjects with at least one new lesion during the observation period
were included, and these subjects were required to have been
rescanned at least twice 360 days after lesion incidence. 32 subjects
met these criteria and were included in the analyses. The 32 subjects
ranged from 18 to 60 years of age, with a mean age of 37 years (sd =
9). Of the 32 subjects, 11 were male and 21 were female. The majority
of the subjects (n = 27) were diagnosed with relapsing-remitting MS,
and the remaining five were characterized as secondary-progressive.
Subjectswere either untreated or treatedwith a variety of disease-mod-
ifying therapies during the observation period, including both FDA-ap-
proved therapies (Avonex, Betaseron, Daclizumab, and Rebif) and
experimental therapies.
2.3. Prediction model

2.3.1. Outcomes
The outcomes of interest in this study were 1) normalized T1-

weighted voxel intensity (nT1w) (Shinohara et al., 2014) and 2) MTR
voxel intensity approximately one-year post-incidence, and is denoted
by Ypost,i (v) for subject i in voxel v. Due to the noise inherent in both se-
quences, outcome variables were created by averaging the intensity of
each voxel at the visit immediately following the 360-day cutoff (re-
ferred to as the one-year visit), the visit prior to the one-year visit
(mean = 10.6 months from incidence, sd = 1.3 months), and the visit
following the one-year visit. Because no change is expected in the lesion
after that length of time, this average only reduced variability due to
measurement error (Meier et al., 2007). Thus, the average score repre-
sents a more precise estimate of true voxel intensity than the one-
year visit intensity alone.
2.3.2. Predictors
A dataset made up of scan data and relevant demographic variables

was created to predict the one-year post-incidence voxel intensities. For
each voxel, this included the MTR as well as the nFLAIR, nPD, nT2w, and
pre- and post-contrast nT1w intensities at incidence, denoted by
Yinc,i (v). After applying a 3D Gaussian smoother with variance param-
eter 3 mm and width 5 mm, each voxel's blurred intensities on the five
scanmodalities,GYinc;i ðvÞ, were also included, aswell as the distance, in
number of voxels, from the voxel to the nearest boundary of the lesion,
di(v), and the size, in number of voxels, of the lesion, si(v). Additional
predictors Xi included were the patient's age, sex, disease subtype, ex-
panded disability status score (EDSS; (Kurtzke, 1983)), disease-modify-
ing treatment status (treated versus untreated, with use of one or more
therapies counting as treated), and steroid status (receiving steroids
versus not on steroids) at the time of lesion incidence.

http://mipav.cit.nih.gov
http://www.nitrc.org/projects/jist
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2.3.3. Model creation and validation
All statistical modeling was conducted in the R statistical environ-

ment (R: a Language and Environment for Statistical Computing,
2015). Separate linear regression models for nT1w intensity one-year
post-incidence and MTR intensity one-year post-incidence were creat-
ed using all of the variables in the dataset, as well as the interaction be-
tween voxel distance to lesion boundary and lesion size:

Ypost;i vð Þ ¼ α þ X 0
i βþ Yinc;i vð Þ0γ þ GYinc;i vð Þ0γ þ di vð Þδ

þ di vð Þsi vð Þδint þ ϵi vð Þ

Predictions were obtained using leave-one-lesion-out cross-valida-
tion. In this cross-validation technique, the prediction for each voxel in
a given lesion is made using a model trained on all of the data except
those from that lesion. As a result, 397models were developed, each ex-
cluding one of the 397 lesions in the dataset. This method ensures that
the prediction for each voxel is not influenced by the true outcome of
that voxel. Secondary cross-validation was also performed using a
leave-one-subject-out technique, but due to the small sample size and
large number of variables in the model, performance was assessed on
the predictions obtained by the leave-one-lesion-out procedure.

2.4. Performance assessment

The performance of the model was assessed in two ways. First, pre-
diction accuracy was measured quantitatively by calculating the root
Fig. 1. Representative predictions for the nT1wmodel. Images are axial slices of lesions, with row
intensities, red areas represent hyperintensity and blue areas represent hypointensity, with 0 (w
the references to color in this figure legend, the reader is referred to the web version of this ar
mean square error (RMSE) of both the nT1w and MTR predicted inten-
sities for estimating the average one-year intensity outcomes. Thismea-
sure gives an estimate of the average difference between the predicted
intensity and observed intensity of the voxels in the dataset. Because the
RMSE is dependent on the scale of the outcome, themeasurement error
of voxel intensity was estimated for comparison. The measurement er-
rors for T1w and MTR were estimated by calculating the RMSE of the
voxel intensities at the pre-one-year visit for estimating the average
one-year intensity outcomes. This directly compares the accuracy of
the model's prediction using information at incidence to the accuracy
of a scan taken at approximately 11 months (mean = 10.6, sd =
1.3 months), for predicting the average intensity of a voxel at one year.

The second method for assessing accuracy was a rater study. Three
board certified MS clinicians (two neurologists and one neuroradiolo-
gist) with between 5 and 12 years of research experience in MS partic-
ipated in this validation. To assess the prediction performance visually,
the raters were asked to individually score how similar the model-pre-
dicted one-year appearance was to the observed one-year appearance
for a random sample of 100 lesions. Raters viewed images of the lesion
voxels' intensities at incidence, their predicted intensities one-year
post-incidence, and their observed intensities one-year post-incidence.

For each lesion in the sample, raters were asked to determine “over-
all how well the prediction reflects the appearance of the lesion after
one year,” “how well the degree of recovery in the prediction reflects
the degree of recovery after one year,” and “howwell the pattern of re-
covery in the prediction reflects the pattern of recovery after one year.”
s representing three example lesions with varying levels of predictive accuracy. For nT1w
hite) representing the intensity of normal-appearing white matter. (For interpretation of

ticle.)
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Each question was asked for both the nT1w and MTR predictions,
resulting in six ratings per lesion. Ratings were given on a 1-to-4 scale,
with labels of “1 - Failed miserably,” “2 - Some redeeming features,” “3
- Passed with minor errors,” and “4 - Passed.” Raters were broadly
instructed that “Failedmiserably” indicated no correspondencewhatso-
ever between prediction and observed images, “Some redeeming fea-
tures” indicated some correspondence, “Passed with minor errors”
indicated correspondence, and “Passed” indicated excellent correspon-
dence. Imageswere observed privately and ratingswere given indepen-
dently, with no discussion by raters occurring during the rating process.

3. Results

3.1. RMSE

Using this measure, both cross-validated models performed well.
The overall RMSE of the T1w prediction was 0.95 (mean of lesion
RMSEs = 0.89, sd = 0.35), as compared to a measurement error in
T1w scans of 0.48. This indicates that the correspondence between the
predicted intensity and the observed intensity of each voxel was only
slightly (approximately one-half standard deviation unit) lower than
the correspondence between the voxel intensity of a scan taken at ap-
proximately 11-months and the true 12-month observed intensity.
The RMSE of the MTR prediction was 0.064 (mean of lesion RMSEs =
0.057, sd = 0.023), as compared to a measurement error in MTR scans
of 0.078, where the average MTR outcome value was.36. This demon-
strates that the correspondence between themodel-predicted intensity
Fig. 2. Representative predictions for the MTRmodel. Images are axial slices of lesions, with row
intensities range from 0 to 1, with a mean of approximately 0.5 for normal-appearing white m
and the observed intensity of each voxel was better than the correspon-
dence between the voxel intensities approximately one month apart.
This is consistent with the literature, as MTR has been demonstrated
to be more noisy than T1w (Reich et al., 2015). Prediction images dem-
onstrating above-average, average, and below-average performance
based on the RMSE measure are presented in Figs. 1 and 2.

3.2. Rater study

3.2.1. Consistency between raters
Of the 100 lesions included in the rater study, 4 were excluded for

segmentation errors. Six ratingswere obtained for each image, resulting
in 576 distinct scores for each rater. In 17% (n = 98) of these cases, all
three raters assigned the same score. In another 54% (n = 309), two
raters assigned the same score and the third gave a score either one
unit above or one unit below the score given by the other two. Thus,
in 71% of the ratings, the raters all assigned scores within one unit of
each other.

3.2.2. Ratings
Scores were averaged across the three raters to obtain mean ratings

for each image. Using these mean ratings, both the nT1w and MTR pre-
diction models performed well. For both models, the median score for
the overall similarity between the predicted image and the true lesion
image was 3.0, corresponding to a rating of “Passed with minor errors.”
For the specific rating of similarity of degree of recovery between the
predicted and observed images, the median for both nT1w and MTR
s representing three example lesions with varying levels of predictive accuracy. For MTR,
atter.
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was 2.6. This score was partway between the rating “Some redeeming
features” and the rating “Passed with minor errors.” For the similarity
of “pattern of recovery” between the predicted and observed images,
the median for both nT1w and MTR was 3.00 (Fig. 3). Overall ratings
of accuracy were significantly (p b 0.001) negatively associated with a
lesion's RMSE (rT1=−0.60, rMTR=−0.56). Additionally, ratings of de-
gree were more associated with RMSE (rT1 = −0.71, rMTR = −0.68)
than ratings of pattern (rT1=−0.52, rMTR=−0.53), but all associations
were statistically significant (p b 0.001).

4. Discussion

In this paper, we developed models to estimate the appearance of
white matter MS lesions one year after their incidence. Both the
model for normalized T1w voxel intensity and the model for MTR
voxel intensity produced accurate, cross-validated predictions of inten-
sity at one-year post-incidence. This accuracy was measured
Fig. 3. Scores for the six rater study questions, averaged across the three raters. The three rows
and accuracy of the pattern of healing, respectively. Plots in the first column are distributions of
ratings of the MTR prediction images.
quantitatively using RMSE for estimating the true one-year intensity
with the statistically predicted one-year intensity. RMSE for the predict-
ed intensity was compared to themeasurement error of voxel intensity,
operationalized as the RMSE for estimating intensity at a one-year post-
incidence visit with the intensity at the visit immediately preceding it.
In the model for nT1w intensity, the prediction accuracy was approxi-
mately one-half standard deviation unit larger than the value of mea-
surement error, indicating that the nT1w model was able to predict
one-year intensities almost as accurately as these can be assessed di-
rectly by re-acquiring the image. For the model of MTR intensity, the
prediction accuracy surpassed that of measurement error. The accuracy
of the model was also confirmed by three board-certified MS clinicians,
who rated the correspondence between images produced by the model
and images of true one-year intensities.

During the development of themodels, flexible splinemodelingwas
explored to account for possible nonlinear relationships. This method
did not improve the predictions, and thus the simpler linear regression
show the distributions of the ratings of overall accuracy, accuracy of the degree of healing,
ratings of the nT1w prediction images, and plots in the second column are distributions of
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approach was used for the final models. It is also worth noting that
voxels containing vasogenic edema, as described previously (Sweeney
et al., 2016), were included in the data for both model development
and accuracy testing. Though edema behaves differently than structur-
ally damaged lesion tissue, and its healing pattern is potentially easier
to predict, it was determined that for the purpose of these predictions
it was appropriate to leave edema voxels in the data. This is largely
due to the fact that in many cases, differentiating between edema and
lesion is difficult without examining how the tissue changes over the
course of several weeks (Sweeney et al., 2016). Since ourmodel was de-
veloped for the purpose of predicting healing using only information
obtained at the time of lesion incidence, using data from later visits to
categorize and remove edema would not accurately represent the way
the model would be used clinically. However, voxels were categorized
as edema or lesion after the models had been developed for perfor-
mance assessment, andwe found that the prediction accuracywas com-
parable between edema voxels and lesion voxels for both nT1w
(RMSEedema = 0.80, RMSElesion = 1.04) and MTR models (RMSEedema =
0.061, RMSElesion = 0.066).

There were some limitations to the predictions developed in this
study. Spatial covariance was not explicitly modeled, though spatial re-
lationshipswere loosely accounted for by including the voxel intensities
of spatially smoothed images. Additionally, the measure of voxel loca-
tion used (distance to the boundary) likely could be improved upon as
well, as it is unable to account for differing lesion shapes. However, in
spite of the relative simplicity of the spatial and locational variables,
the models were still able to achieve good accuracy in these areas.
Both T1w and MTR predictions had a median rating of “Passed with
minor errors” with respect to the pattern of healing.

An additional limitation arises in the interpretation of regression co-
efficients. For both T1w and MTR models, treatment with steroids was
associatedwith lower voxel intensity at the one-year follow-up, indicat-
ing worse healing in patients on steroids. This is most likely an effect of
the observational nature of this study, which suggests that the steroids
variable is capturing an aspect of disease severity or activity that was
not accounted for completely by EDSS. Including other characteristics
in the model could take steps to address this phenomenon, but ideally
future work would test this model in the context of clinical trial data
in order to obtain a clearer sense of how treatment impacts the recovery
of incident lesions.

A strength of the current study is the novel integration of neuroim-
aging with demographic and clinical data to predict how lesion tissue
will heal in MS patients. We believe that accurate predictions of this
sort may have several important applications in MS treatment and re-
search. InMS research, clinical trials may benefit from the ability to pre-
dict which patients are more likely to be responsive to treatment.
Clinically, this tool could enable physicians to view a prediction of the
likely course of healing of patients' incident lesions in order to make
more informed and personalized treatment decisions. As such, future
researchwill focus on the refinement of the treatment and steroid effect
estimation in the model through the use of clinical trial data, with the
goal of facilitating the direct comparison of predicted recovery when
treated with various disease modifying therapies, steroids, or when
left untreated. Thiswould provide clinicians and researcherswith previ-
ously unavailable information about the course a lesion is likely to take,
and would allow for greater personalization of treatment decisions, as
well as better informed and more powerful study designs.
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