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The interactions of cancer cells with components of the complement system are highly

complex, leading to an outcome that is either favorable or detrimental to cancer

cells. Currently, we perceive only the “tip of the iceberg” of these interactions. In

this review, we focus on the complement terminal C5b-9 complex, known also as

the complement membrane attack complex (MAC) and discuss the complexity of its

interaction with cancer cells, starting with a discussion of its proposed mode of action

in mediating cell death, and continuing with a portrayal of the strategies of evasion

exhibited by cancer cells, and closing with a proposal of treatment approaches targeted

at evasion strategies. Upon intense complement activation and membrane insertion of

sufficient C5b-9 complexes, the afflicted cells undergo regulated necrotic cell death with

characteristic damage to intracellular organelles, including mitochondria, and perforation

of the plasma membrane. Several pro-lytic factors have been proposed, including

elevated intracellular calcium ion concentrations and activated JNK, Bid, RIPK1, RIPK3,

and MLKL; however, further research is required to fully characterize the effective cell

death signals activated by the C5b-9 complexes. Cancer cells over-express a multitude

of protective measures which either block complement activation, thus reducing the

number of membrane-inserted C5b-9 complexes, or facilitate the elimination of C5b-9

from the cell surface. Concomitantly, cancer cells activate several protective pathways

that counteract the death signals. Blockage of complement activation is mediated by

the complement membrane regulatory proteins CD46, CD55, and CD59 and by soluble

complement regulators, by proteases that cleave complement proteins and by protein

kinases, like CK2, which phosphorylate complement proteins. C5b-9 elimination and

inhibition of cell death signals are mediated by caveolin and dynamin, by Hsp70 and

Hsp90, by the mitochondrial stress protein mortalin, and by the protein kinases PKC

and ERK. It is conceivable that various cancers and cancers at different stages of

development will utilize distinct patterns of these and other MAC resistance strategies.
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In order to enhance the impact of antibody-based therapy on cancer, novel precise

reagents that block the most effective protective strategies will have to be designed and

applied as adjuvants to the therapeutic antibodies.

Keywords: complement, C5b-9, complement-dependent cytotoxicity, regulated necrosis, cancer

immune resistance

PREFACE

The complement system may affect cancer in several forms,
ranging from promotion of cancer growth and metastasis, on the
one hand, to antibody-based cancer eradication, on the other.
Upon encounter of the cancer cells with the complement system,
activation may proceed via the classical, alternative, and/or lectin
pathways (1) (Figure 1). This initiation step leads to formation of
a C3 convertase (C4b2a or C3bBb) that deposits C3b molecules
on the cells, followed by formation of a C5 convertase (C4b2a3b
or C3bBb3b) that cleaves C5 and initiates formation of the C5b-
9 complexes, termed the membrane attack complexes (MAC).
Here, we will focus on the anti-cancer cytotoxic activity of
complement, with an emphasis on the mode of action of the
MAC. Reviews on the cancer-promoting activities of complement
(2–4) and on complement activation by clinical anti-cancer
antibodies (5–7) have been published recently; therefore, these
topics will not be covered in this review. Another topic recently
reviewed is the insights into the fine structural details of the
complement MAC (8–11). MAC expresses a plethora of non-
lytic and sublytic activities that have been reviewed elsewhere
(12–15) and are thus excluded from this review. Here we will
describe the current status of research on the cytotoxic effects
of MAC, emphasizing the findings, dogmas, and open questions
in our quest to better understand the fine mechanistic details
of MAC-induced cancer cell death. Next, we will present the
currently recognized counter-mechanisms utilized by cancer cells
to resist complement-dependent cytotoxicity (CDC). Finally,
we will discuss several potential therapeutic approaches for
the intervention and potentiation of antibody-based anti-cancer
immunotherapy that have been proposed and tested.

MECHANISMS UNDERLYING
COMPLEMENT-MEDIATED CANCER
CELL DAMAGE

Perspective: The Early Studies on Osmotic
Cell Death
Studies on cancer cell killing by complement have been
conducted long before the identification of the complement
terminal pathway responsible for mediating cell damage and
death. As early as 1950s, Kalfayan et al. (16), Ellem (17),
and Green et al. (18) investigated the action of antibody and
complement on rabbit Brown-Pearce carcinoma cells, rat Ehrlich
and mouse Krebs ascites tumor cells, respectively. They observed
cell swelling and increased plasma membrane leakiness. They
proposed that complement impairs cell membrane integrity,
increases cell permeability to anions, cations, and water, and

causes osmotic cell swelling up to the point that the membrane
collapses, culminating in osmotic cell lysis (19). The leakage from
the cells was proposed to occur through functional, stretching,
and possibly reversible “holes” in the swelling cells, which
could be blocked, to some extent, by increasing the osmotic
pressure of the extracellular medium (20). The concept of
complement-induced osmotic lysis of target cells is still popular
today but, as discussed later, it must be viewed with a grain
of salt. Kim et al. (21) subjected Ehrlich ascites tumor cells
to CDC and demonstrated that osmotic protection effectively
prevented cell swelling but did not rescue the cells from death.
They hypothesized that the cells died following activation of
metabolic events that were detrimental to cell survival or through
activation of a “suicidal” mechanism of programmed cell death.
In conclusion, osmotic burst of inflated complement-damaged
cells may occur, but these bursts are most likely a consequence of
metabolic collapse of the cell rather than the cause of cell death.

The Complement Cell Death Mediator: A
Concerted Action of Toxic Moieties
Membrane pores caused by complement were first visualized
by electron microscopy on red blood cell membranes as large
ring structures (22). Similar lesions were viewed on E. coli
cell walls (23). Over the years, ample information on the fine
ultrastructure of the MAC that can activate cell death has been
gathered (24) and has been recently further examined (8–11,
25–27). For a complete updated view of the MAC structure,
the reader is referred to those publications. The observed ring
structure apparently corresponds to the structure of polymerized
C9 molecules attached to their polymerization accelerator, the
C5b-8 complex (28). However, even today we have only a partial
view of the fine details of the cytotoxic mechanisms activated
by MAC, eventually leading to the point of no return and cell
death. Besides the paucity of investigations on the subject, several
reasons account for that. First, the early dogmas were based on
investigations with complement-targeted artificial membranes
and red blood cells, which are clearly different, largely passive
targets, compared with nucleated cells (29–34). Second, very
large variation exists in refractoriness to the MAC, even among
closely related cancer cell lines and even within a supposedly
homogenous population of cultured cancer cell lines. Third,
in target cells MAC activates concomitantly several signaling
pathways and biochemical events, some cytotoxic and others pro-
survival, and it is the particular balance among them that dictates
cell fate, survival, or death. Finally, activation of the terminal
complement pathway may result in generating, in the target cell
membrane, a cocktail of membrane-inserted protein complexes:
C5b-8, C5b-91, C5b-92, C5b-93, and so on, up to C5b-9 with 12-
18 polymerized C9 molecules (28, 35). Each of these complexes
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FIGURE 1 | Activation and regulation of the complement pathways. Activation: Complement activation proceeds through four converging pathways shown in this

simplified scheme, i.e., the classical (CP), lectin (LP), alternative (AP), and terminal (TP) pathways. Activation of the CP and LP can be potentiated by components of

the AP (Amplification loop). Binding of C1 (a complex of C1q, 2C1r, 2C1s) via C1q to antigen-bound antibodies initiates the CP, whereas binding of MBL or ficolin (in

complex with MBL-associated serine proteases, MASP) to carbohydrates (e.g., microbial) initiates activation of the LP. The AP is initiated by C3 spontaneously

hydrolyzed at a low rate into C3(H2O) or following another C3-tickover event. The three pathways generate a C3 converting enzyme, a C3 convertase (that cleaves C3

into C3a and C3b), by activation of C4 and C2 (CP and LP: C4b2a), or of factors B and D (AP: C3bBb). AP activation is facilitated by properdin (P). The resulting C3b

not only opsonizes target cells but also joins the C3 convertases and turns them into C5 convertases, which convert C5 into C5a and C5b. Subsequent TP activation

by assembly of C5b with C6, C7, C8 and multiple C9 molecules, generates the membrane attack complex, (C5b-9, MAC). By binding to specific receptors, C3a and

C5a exert multiple cell stimulatory activities, ranging from allergy and anaphylaxis to promotion of acquired immunity by stimulation of lymphocytes and antigen

presenting cells. Regulation: Complement activation is tightly regulated by multiple soluble and membrane proteins. Soluble inhibitors include: C1 inhibitor (C1-INH),

C4 binding protein (C4BP), factor H (FH), factor I (FI), Clusterin and Vitronectin. The membrane regulatory proteins are: Decay Accelerating Factor (DAF, CD55),

Membrane Cofactor Protein (MCP, CD46), Complement Receptor 1 (CR1, CD35), and CD59. As shown in the figure, C1-INH interferes with activation of C1r, C1s,

and MASP. C4BP, FH, CD55, and CD35 restrict formation and stability of the CP and AP C3/C5 convertases or promote FI-mediated inactivation of C4b (CD35/CR1,

CD46/MCP, C4BP) or C3b (CD35/CR1, CD46/MCP, FH). Clusterin and vitronectin prevent the association of the forming C5b-9 complexes with the membrane,

whereas CD59 limits cell damage by preventing MAC complex formation.

may induce in the target cell slightly different signals that have
not yet been discretely characterized. Detailed analysis of the
effect of the terminal complement complex size on the lysis of
rat Ehrlich ascites tumor cells by human complement indicated

that complexes containing more C9 per C5b-8 are cytolytically
more potent. Nevertheless, the kinetics of cell death appeared
similar in cells bearing C5b-9 complexes that have either 1 or
4 C9 molecules per C5b-8 (36). Moreover, some human cancer
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cells, such as U938, HL60, and B-CLL cells, could be lysed by
C5b-8 alone, in the absence of C9, when a sufficient number
of complexes were deposited on them (37, 38). Hemolysis of
sheep red blood cells could be efficiently activated by C5b-9
complexes generated with thrombin-cleaved C9, which cannot
undergo classic ring-like polymerization, but forms apparently,
string-like oligomeric structures that may lead to leakage of
membranes (39, 40). Hence, it is improbable that MAC, with its
various intermediary complexes, activates a unified mechanism
of cell death in all cell types. An additional level of complexity
has been introduced by reports of apoptotic cell death induced
by MAC (41), but this has not been observed so far with cancer
cells undergoing CDC.

Calcium Ions Influx: Dose-Dependent
Dichotomy
At non-toxic or sublytic doses, MAC has been shown to trigger
numerous signals in many types of cells, normal and malignant.
This topic has been extensively discussed recently and will not
be covered here (12–15). Initially, measurements with pigeon
erythrocyte sealed “ghosts” revealed an increase in intracellular
calcium ions, which begins within seconds after binding of MAC
and supposedly precedes the cell death process activated by
lytic doses of MAC (42). This transient rise of intracellular free
Ca2+ in target cells was thought to be required for cell death.
However, later it became apparent that the rise in the level
of intracellular calcium ions is essential for cell survival and
recovery (43). Reduction of the extracellular Ca2+ concentration
by chelation delays the onset of cell death, as measured by LDH
release, but the cells eventually die like control cells (44, 45).
Similarly, increasing the concentration of Ca2+ around the cells
accelerates the rate of cell death without affecting the final
percentage of dead cells (36). An intriguing question is: can
CDC be blocked by intracellular chelation of the calcium ions?
Intracellular Ca2+ chelation with BAPTA-AM was shown to
efficiently block mitochondrial distress in human lung epithelial
cells responding to a non-lytic dose of MAC, cells that do not
undergo cell death (46). Furthermore, calcium ionophores that
pump Ca2+ into the cell induce in K562, human erythroleukemia
cells, a state of resistance to CDC (47). Can BAPTA-AM block
CDC when cells are exposed to lytic MAC doses? BAPTA-AM
reduced the release of LDH from rat hepatocytes subjected to
lytic antibody and complement by ∼40% without affecting the
rate of cell death (48). Clearly, MAC activates a surge of [Ca2+]i
in target cells but its exact impact on the process of cell death
still awaits clarification. Furthermore, based on earlier findings,
the involvement of calcium-independent processes in the critical
events determining cell death cannot be ruled out.

Beyond Calcium Ions: The Cell Death
Propagators in a Regulated
Necrotic Process
The molecular checkpoints that tilt the balance within MAC-
bearing cells between a protective state and cell collapse have
not yet been identified. It is well-accepted that exposure of
nucleated cells to multiple (“lytic”) MAC hits (34) is needed

to overcome the cells’ innate resistance (described below) and
to kill the cells by necrotic-type cell death. Intensive research
on apoptosis, and more recently on necroptosis induced by
numerous effectormolecules, has clearly revealed that compound
regulated molecular processes accompany and/or lead to cell
death (49–52). Those findings have prompted adopting a similar
research approach in the analysis of the mechanism underlying
CDC. Recently, MAC was shown to activate RIPK1, RIPK3, and
MLKL, known transducers of necroptotic cell death activated by
several exogenous ligands of TNF receptor, Fas, TLR, and other
membrane receptors (53). Necroptotic cell death, also termed
regulated necrosis, is characterized by increased membrane
permeabilization and mitochondrial damage (49, 50, 54, 55),
much like CDC. Inhibitors of RIPK1, RIPK3, and MLKL
reduce the extent of CDC, whereas overexpression of these
proteins enhances cell sensitivity to CDC (53). Two additional
intracellular proteins that may play a role in the multi-factorial
cell death process activated by lytic MAC are the c-Jun kinase
JNK (56) and the BH3-only protein Bid (57). Apparently, in some
cells, the RIP kinases, MLKL, JNK, and Bid, act as components in
one or more lined cascades of intracellular molecular interactions
activated by sublytic and lytic MAC concentrations (53, 57). At
lytic MAC concentrations, this cascade may promote a regulated
necrotic cell death (Figure 2). Blocking any of these five proteins
markedly lowers the extent of CDC but does not block it
completely. Therefore, it appears that this cascade acts in concert
with other death-promoting processes, calcium-dependent or -
independent, which still await characterization. Of note, activated
MLKL was shown in necroptotic cells to oligomerize at the
plasma membrane, increase membrane permeabilization, and
induce a Ca2+ influx (55, 58–60). Co-localization of MAC with
MLKL at the plasma membrane (53) suggests that they may
collaborate in mediating cell death. In general, cancer cells that
express sufficient levels of the RIPKs, MLKL, and Bid might be
sensitive to this necroptotic-like pathway once activated byMAC.
In contrast, cancers that suppress the expression or function of
any or all of these proteins are expected to be protected from this
cytotoxic pathway even if triggered by MAC.

Lytic MAC: Mitotoxicity and
Metabolic Depletion
Mitochondria play a pivotal active role in activating the intrinsic
pathway of apoptotic cell death, mostly after mitochondrial
outer membrane permeabilization (61). Mitochondrial swelling
and damage were observed in cells undergoing necrotic cell
death induced by complement (62, 63). The cellular ATP level
drops rapidly in cells attacked by MAC in copy numbers that
are above the lytic threshold, apparently after mitochondrial
dysfunction, accompanied by leakage of cytosolic ATP from
the cells through pores in the plasma membrane (64–66). In
theory, mitochondrial damage and cellular metabolic depletion
beyond a point of “no return” may induce cell collapse and
death. However, to date, there is no strong evidence supporting
an active role for mitochondria in CDC. Perhaps, they are
mere innocent bystanders damaged by the necrosis executioners?
Reactive oxygen species are generated throughout the necrotic
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FIGURE 2 | Schematic presentation of the cytotoxic pathways, induced in cancer cells by the complement C5b-9, the counteractive cellular resistance mechanisms,

and postulated approaches to overcome this cancer evasion. Following the binding of antibodies to cancer cells, the complement system is activated and deposits

C4b and C3b molecules that serve as initiators of C3/C5 convertase activation. The C5 convertases initiate the activation of the terminal complement pathway and

the formation of the C5b-9 complexes (24). Upon insertion of the C5b-9 complexes into the plasma membrane of cancer cells, they induce calcium ion influx and

activate pro- and anti-lytic signals. This scheme depicts the proteins proposed to be involved in the ensuing cancer cell death (encircled) and the proteins protecting

the cancer cells from the lytic processes. Extracellular (gray boxes) and intracellular (purple boxes) protective proteins are indicated. Several reagents (white boxes)

that will block the protective proteins are indicated and proposed for adjuvant therapy to therapeutic antibodies. Ab, antibody; Bcl-2, B-cell lymphoma/leukemia-2;

BH3, Bcl-2 homolog domain-3; Bid, BH3 interacting domain death agonist; CK2, casein kinase 2; ERK, extracellular signal-regulated kinase; HSP90, heat shock

protein 90; HSP70, heat shock protein 70; JNK, c-jun N-terminal kinase; MAC, complement membrane attack complex; MLKL, mixed lineage kinase domain-like

protein; MMP, matrix metalloproteinase; PKC, protein kinase C; RIPK1, receptor-interacting protein kinase 1; RIPK3, receptor-interacting protein kinase 3; serine-,

serine protease; siRNA, small interfering RNA.

process (15). Still, whether they take part in the MAC-induced
cell death process is also an open question. The involvement of
mitochondria and mitochondrial ROS in necroptosis triggered
by various necroptosis inducers was extensively investigated in
several types of target cells (67). Ample earlier findings have
supported a pivotal role for mitochondria in necroptosis, but
more recently, several investigations casted doubt on that notion

(67). Thus, for example, mitochondrially deficient cells were
shown to be responsive to TNF/zVAD treatment and to undergo

necroptosis (68). It will be of interest to examine the relative
sensitivity of these cells to CDC. At present, we can conclude

that whether mitochondria are dispensable or essential for MAC-

induced necrotic cell death remains to be further investigated.
Similar to necroptosis (67), it is likely that different cell types may

mediate CDC by an array of distinct mitochondria-dependent
and -independent strategies.

NORMAL CELLS AND EVEN MORE SO,
CANCER CELLS CAN RESIST
MAC-INDUCED CELL DEATH

The fate of a target cell attacked by MAC is dictated by two
mutually exclusive processes: (a) the rate and extent of the
formation of the C5b-9 complexes and their insertion into the
target cell membrane, and (b) the capacity of the target cell to
block C5b-9 complex formation and to resist cell damage inflicted
by C5b-9. Cancer cells can resist CDC by using a plethora
of extracellular and intracellular mechanisms (Figure 2). The
number of membrane-inserted C5b-9 complexes may be
restricted by inhibiting the complement activation cascade earlier
at the C3/C5 activation stage, by blocking complex assembly
and/or membrane insertion, and by facilitating complex removal
from the cell surface. All these protective strategies have been
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identified in cancer cells and are described below. It is generally
accepted that cancer cells are more resistant to CDC than
are normal cells due to their elevated expression of protective
mechanisms. Apparently, during the tumorigenic process, the
complement system reacts against the transformed cells by
eliminating or modifying the complement-sensitive malignant
cells, thus enriching the cancer cell population for complement-
resistant cells. This process resembles the selection of antibiotic-
resistant bacteria (69). This hypothesis remains to be supported
by in vivo evidence; however, in vitro studies show that sensitive
cancer cells may be transformed into cells expressing increased
complement resistance, transiently, after a brief treatment with
a sublytic dose of MAC (70) and more stably, following several
cycles of exposures to cytolytic MAC (71). A MAC-resistant
phenotype may be acquired upon the elevation or reduction in
the expression level of microRNAs such as miR-200, miR-217
(72), and others that are currently under investigation.

Basal Physiological Cell Resistance to CDC
As shown already in 1974 (73, 74), nucleated cells can resist
MAC-induced damage. Several inhibitors of protein synthesis
were shown to increase the cell’s susceptibility to CDC. Since
the elevated sensitivity to CDC was acquired hours after the
complete shutdown of protein synthesis (75), it is likely that
the treated cells became sensitive only after catabolism of long-
lived protective proteins. These earlier findings were followed
by the development of the concept of multi-hit characteristics
of nucleated cell death by MAC, implicating the cooperation of
multiple MACs in cell death (34). Another interesting earlier
finding was that damaged tumor and mast cells could be rescued
by exogenous application of cAMP (76, 77). Consequently,
activation of cAMP by sublytic MAC supports cell recovery
from MAC damage (78). These findings were confirmed in
leukemia cells treated with dibutyryl cAMP or with activators of
intracellular cAMP (3-isobutyl 1-methyl xanthine and forskolin),
which were shown to reduce cell death (79). In contrast, H-
89, an inhibitor of the cAMP-dependent kinase PKA, enhanced
carcinoma cell sensitivity to CDC. Apparently, phosphorylation
events mediated by several protein kinases dictate the basal
capacity of cells to resist MAC damage (79, 80). Protein
phosphorylation events involving PKC, MEK, and ERK support
the survival of cancer cells undergoing a complement attack (81–
83). Protein phosphorylation may upregulate the expression of
the complement membrane regulators on cancer cells (84–86)
and facilitate MAC elimination from K562 cells (87, 88). The
transcription factor NF-κB also plays a role in cell protection
from CDC (89). One of its postulated functions is upregulation
of a protein phosphatase that inactivates JNK, thus reducing cell
death signaling. However, further investigation is required to
fully identify the pro-survival phosphoproteins and phosphatases
and their precise mode of action.

Proteins of the heat shock protein family (HSPs), well-
known general house keepers, damage/ repair proteins and
targets in cancer therapy (90–92), most probably also contribute
to the basal resistance of cancer cells to CDC. Thus, far,
a role for Hsc70/Hsp70 (93) and Hsp90 (94, 95) in cell
protection from CDC has been shown. Pharmaceutical inhibitors

of Hsp70 and Hsp90 sensitize cancer cells to CDC. Hsc70
relocates within minutes from the cytoplasm to the cell surface
after exposing K562 cells to sublytic complement (93). Upon
inhibition of Hsp90, Ramos cells become more sensitive to
the action of Rituximab and complement (95). Additional
thorough experimentation is required to fully comprehend how
Hsc70/Hsp70, Hsp90, and other HSPs regulate CDC. The fact
that Hsp90 can directly interact with C9 and that Hsp90
inhibitor enhances MAC deposition (95) suggest that Hsp90
down-regulates MAC deposition by blocking its assembly and/or
facilitating its rate of removal from the cell surface. Hsp90 can
potentially reduce CDC by suppressing mitochondria-initiated
calcium-mediated stress responses (96).

Anticomplementary Response on the
Cancer Cell Surface
Like all normal cells, cancer cells are protected from autologous
complement attack by several specific cell-surface complement
inhibitors: CD55 (decay accelerating factor, DAF), CD46
(membrane cofactor protein, MCP), CD59, and CD35
(complement receptor type 1, CR1) (1, 97–99) (Figure 1).
In addition, certain proteolytic enzymes, protein kinases, and
sialic acid residues (described below) confer on the cells elevated
resistance to CDC (100).

Membrane Complement Regulatory Proteins
Immunohistochemical analysis revealed the expression of CD59,
CD55, and CD46 on uveal melanoma (101), thyroid carcinoma
(102), lung and kidney cancer (103, 104), colon adenocarcinoma
(105), and prostate cancer (106). This was supported by
analysis of human tumor cell lines derived from human
malignant gastrointestinal tumors (107), melanoma (108), breast
cancer (109, 110), renal tumor (110), Burkitt lymphoma (111),
neuroblastoma (112), and ovarian (113), and prostate carcinoma
(79). In primary uterine cervix tissue, the expression of CD46,
but not of CD55, was found to increase during transition from
normal to premalignant to malignant cells (114). CR1/CD35 was
identified in malignant endometrial tissue (115) and on leukemic
blasts (116). Increased membrane regulator expression relative
to the corresponding normal tissue has been reported in many
tumors (103, 105, 114, 115, 117–122). Colorectal and gastric
carcinomas and osteosarcoma have increased the expression of
CD55 (123), whereas gastric carcinoma exhibits high levels of
both CD55 and CD59 (124). Overexpression of CD59 was also
identified by expression profiling for pancreatic cancer (125).
Upregulation of membrane regulator expression on tumor cells is
often correlated with increased complement resistance (86, 111).
In ovarian cancer, resistance to complement correlated with high
levels of CD55 expression (113). In melanoma cell lines with
variable CD59 expression, resistance to death by anti-ganglioside
antibody and homologous complement positively correlated with
the expression level of CD59 (126).

Several clinical studies support a postulated function of
membrane complement regulatory proteins (and thus, the
extent of complement resistance) in cancer progression. Poorer
prognosis in colorectal carcinoma correlates with the expression
level of CD59 (127). Local tumor progression and tissue
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dedifferentiation of prostate cancer also correlate with CD59
expression (128). Analysis of 120 breast cancer patients revealed
a worse prognosis associated with CD59 overexpression (129). In
contrast, another report concluded that loss of CD59 correlated
with poor survival in 520 breast cancer patients (130). In
colorectal cancer patients, a 7-year survival was significantly
reduced when the tumors expressed high levels of CD55 (131).
CD55 overexpression was also reported as an independent risk
factor for recurrence of breast cancer in patients receiving
postoperative adjuvant therapy containing trastuzumab (132).

The expression level of the membrane complement regulators
may also be shaped by cytokines, growth factors, or hormones,
which are released into the tumor microenvironment (83, 133,
134). For example, TNFα and IL-1ß enhanced the expression
of CD55 and CD59 in colon adenocarcinoma cells (135).
TNFα, IL-1α, and INFγ enhanced CD55 expression in lung
cancer cells (136). In hepatoma cells, TNFα, combined with
IL-1ß and IL-6, enhanced CD55 and CD59 expression but
decreased CD46 expression (134). Transcription abnormalities
(137) and the microRNA level of expression (72) may also affect
the expression level of the membrane complement regulators.
Evidently, the factors and molecular mechanisms that determine
the expression level of each of the membrane regulator proteins
in vivo in each cancer type (and in normal cells) remain to be
further investigated.

Exposure to chemotherapeutic drugs may also modify the
level of the regulators′ expression. 5-azacytidine was shown to
elevate the levels of CD55 and CD59 in Burkitt lymphoma cell
lines (111) but only of CD59 in melanoma cells. In contrast,
levamisole reduces CD59 levels in colon adenocarcinoma cell
lines (138) and after pretreatment of breast carcinoma cells
with tamoxifen, trastuzumab-induced CDC was enhanced due
to CD55 down-regulation (132). Conversion of cancer cells
from being drug-sensitive to drug-resistant is also associated
with modification of their complement sensitivity. Doxorubicin-
resistant human colon carcinoma cells are more sensitive to CDC
than are doxorubicin-sensitive cells (139). KB-V1, a multidrug-
resistant variant of KB-3-1, the human oral carcinoma cell line,
exhibits a higher susceptibility to CDC than do its parental
multidrug-sensitive cells (140). The increased complement
sensitivity was associated with a reduced expression of CD55.
Inversely, drug resistance was associated with CDC resistance in
the HL60myeloid leukemia cell lines (141). In ovarian carcinoma
cells, drug resistance was associated with complement resistance
and withmembrane complement regulator overexpression (142).
Hence, the impact of any drug on the expression of membrane
regulators and on CDC resistance needs to be determined for
each drug and cancer type.

Released or secreted membrane complement regulators in the
cancer microenvironment may also support cell resistance to
CDC. Soluble forms of membrane regulators have been identified
in several body fluids, even under normal conditions. They are
either produced by alternative splicing or released from the
cell surface through enzymatic cleavage. Thus, sera of cancer
patients contain active, soluble forms of CD46 (143). Elevated
CD55 concentrations in stool specimens have been proposed to
have diagnostic value for patients with colorectal cancer (144).

A constitutive release of soluble CD59, which retains its activity
as well as its GPI-anchor from human melanoma cells, was
reported (145). In primary tumor sections, CD55 and/or CD59
were found in the stroma of breast, colorectal, lung, renal, and
cervical carcinomas (103, 123, 146). In vitro, endothelial cells,
HeLa cells (147) as well as osteosarcoma and colorectal cells
(123, 148) release CD55 in a soluble form or deposit it into
their extracellular matrix. K562 erythroleukemia cells (83) and
breast, ovarian, and prostate carcinoma cell lines (79) secrete
soluble CD59. Elevated plasma levels of soluble CR1 were found
in leukemia patients (149).

The observed correlations between elevated expression
or secretion of one or more of the membrane complement
regulatory proteins on cancer cells and (a) enhanced
resistance to CDC or (b) poor cancer prognosis, suggests
that the membrane complement regulatory proteins have an
effect on prognosis through their impact on complement
resistance. Thus, by suppressing C3 deposition on the
cancer cells, CD46 and CD55 can lower, on one hand, the
extent of MAC generation and CDC, and on the other
hand, reduce immune protection through complement-
dependent cellular cytotoxicity. CD59 can down-regulate
MAC generation and CDC. However, a direct correlation
between cancer patients’ prognosis and the complement
resistance level of their cancer, still remains to be established.
We cannot rule out non-complement-mediated effects of
the membrane complement regulatory proteins of cancer
cells on the patients’ immune response. Thus, the membrane
complement regulatory proteins on cancer cells, through
intracellular signaling, or cooperation with other cell surface
receptors may potentially modulate cell resistance to immune
effector cells such as natural killer cells and cytotoxic T
lymphocytes (150, 151).

Membrane Surface Proteases, Protein Kinases, and

Sialic Acid
Cancer cells become increasingly protected from CDC by
expression on their cell surface of proteases that proteolytically
degrade the deposited complement proteins (152). Thus,
degradation of bound C3b by a C3-cleaving serine (153) or
cysteine protease (154), respectively, was demonstrated on
human and murine melanoma cells. C3-cleaving serine protease
activity was also identified on the surface of U937 cells (155).
Membrane serine proteases on K562 erythroleukemia cells
also appear to contribute to their complement resistance
(156). Matrix metalloproteinases (MMP) membrane type-1
(MT1) can cleave bound C3b off breast cancer cells and
protect in vitro breast carcinoma and melanoma cells from
CDC (157). Transfection of B16F1 melanoma cells with
MT1-MMP enhanced their capacity to form lung metastases
in normal but not in C3-deficient C57BL/6 mice (157).
The effect of those proteases on proteins of the terminal
complement pathway has not been tested. However, it
is conceivable that these and other membrane proteases
have a similar degradative impact on C5-C9. This still
awaits determination.
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Ecto-protein kinases (ecto-PK) are extracellular protein
kinases that can phosphorylate both cell-surface and external
proteins. Serine/threonine and tyrosine ecto-PKs were found
on the surfaces of K562, U937, and HL-60 cells (158), and
an ecto-casein kinase 2 (CK2)-like activity was associated with
breast and ovarian carcinoma cells (159). C9 phosphorylation
by ecto-CK2 was shown to be protective in K562 cells
against CDC, possibly by inhibiting MAC formation or by
leading to the production of an inactive or unstable MAC
(160). Further investigation of this strategy of CDC evasion
is warranted.

Brief treatment with sialidase, which removes sialic acid
from the cell surface, has been shown to confer on several
cell types increased sensitivity to CDC. Thus, removal of sialic
acid from red blood cells (161, 162), murine sarcoma cells
(163), and human bladder carcinoma cells (164) sensitized them
to lysis by complement. Human prostate, breast, and ovarian
carcinoma cells also utilize surface sialylation for protection from
complement (79). High sialic acid expression correlates with
lower complement activation, probably because of inactivation
of C3b by factors H and I, which is more efficient on surfaces
rich in sialic acid (162). The sialic acid inhibitory activity
on CDC of mouse erythrolukemia MEL cells is apparently
abrogated by O-acetylation at its 9-hydroxyl group (165). α2-
6 hypersialylation apparently lowers the response of CLL cells
to Rituximab therapy through its action on complement (166).
Thus, by limiting the extent of C3 deposition, sialic acid
may also control the assembly of C5b-9 complexes on the
cancer cells.

Soluble Complement Regulators in the
Cancer Microenvironment
Soluble complement inhibitors such as C1 Inhibitor, factor
H, and factor I are predominantly synthesized by hepatocytes
and macrophages but can also be released from other tissues,
although in considerably smaller amounts. In the cancer
microenvironment, these secreted inhibitors may contribute to
protection of cancer cells from complement attack by blocking
complement activation at the C1 and C3 activation steps (99).
In support of this, a growing number of reports indicate that
cancer cells of various origins secrete one or more complement
inhibitor. Synthesis of C1 Inhibitor has been described in
astroglioma and neuroblastoma (112), breast cancer cell lines,
and in a primary ovarian carcinoma cell line (156). Factor
H is expressed both in lung adenocarcinoma and cutaneous
squamous cell carcinoma (167, 168) and high levels of factor
H and factor H-like protein-1 were shown to be secreted by
ovarian tumor cells (83, 169). Additionally, factor H was found
to be elevated in bronchoalveolar lavage fluids and the sputum of
patients with lung cancer (170). Chronic lymphocytic leukemia
(CLL) cells that bind factor H to their surface resisted Rituximab-
mediated CDC (171). Factor H was coexpressed with factor I in
glioma and rhabdomyosarcoma cells in its plasma form and in a
truncated form (172). Tumor-associated factor I is postulated to
promote the progression of cutaneous squamous cell carcinoma

(173) and positively correlates with poor survival and recurrence
of breast cancer (174).

Active Removal of the Membrane-Inserted
MAC
An additional important defensive tactic used by cancer cells to
resist CDC is rapid elimination of MAC from the cell surface.
This was first shown with U937 histiocytic leukemia cells, Ehrlich
ascites tumor cells (175, 176), and neutrophils (177). Neutrophils
remove MAC both by endocytosis and exocytosis (178).
Elimination of MAC by exo-vesiculation has been described in
glomerular epithelial cells, platelets, and oligodendrocytes (179–
181). The intracellular signals involved in MAC elimination
include Gi proteins (182), PKC and ERK (88, 183). The process
of MAC removal through outward and inward vesiculation
was imaged in MAC-bearing K562 erythroleukemia cells (184).
Membrane vesicles shed from MAC-bearing neutrophils contain
MAC and have elevated levels of cholesterol and diacylglycerol,
suggesting selective membrane protein and lipid sorting during
the ectocytosis process (185). In support, the elimination of
MAC by endocytosis is inhibited in K562 cells after cholesterol
depletion (186). MAC endocytosis in K562 cells largely depends
on caveolae and dynamin-dependent intracellular release of
MAC-loaded endosomes (186). The process of MAC removal
by exo-vesiculation was also partially characterized in K562 cells
and was found to require the expression of the mitochondrial
stress protein mortalin/GRP75 (87). Mortalin is over-expressed
in many cancer types and is an essential survival stress protein
(187). It was shown to be significantly protective from CDC
(188). Its exact mode of action remains to be elucidated; however,
evidently, mortalin inhibitors efficiently sensitize K562 cells and
colorectal carcinoma HCT116 cells to CDC (189).

INTERVENTION STRATEGIES TO
OVERCOME CANCER RESISTANCE
TO CDC

As previously described, cancer cells escape CDC through
amplification of an array of resistance strategies that block
the formation of MAC, facilitate MAC elimination from the
cell surface, or inhibit the cytotoxic consequences of MAC
insertion into the plasma membrane (Figure 2). In order
to overcome that resistance, more potent antibodies and
polymeric antibodies have been engineered (5–7). Attachment
of complement-activating proteins such as CVF, C3b, C7, or
C9 directly to therapeutic antibodies represents an alternative
means to strengthen complement attack and thereby to overcome
complement resistance of cancer cells (190–193). Here, we will
restrict our description to intervention strategies that may be
or have been developed to augment the CDC of cancer cells
by weakening their anti-MAC resistance mechanisms. These
include the following: (1) blocking or silencing the membrane
complement regulatory proteins, (2) inhibiting the extracellular
enzymes that interfere with complement activation, and (3)
inhibiting the intracellular pathways that support cell resistance
and recovery (Figure 2). An additional, yet unexplored approach,
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which is based on the earlier findings, is targeting a sialidase to the
cancer microenvironment or blocking the sialylation of surface
glycoconjugates in cancer cells, which is expected to sensitize
them to CDC.

Antibody-Mediated Neutralization of
Complement Regulator Expression
Specific inhibition of complement regulators’ activity is
best achieved with monoclonal antibodies that enhance the
susceptibility of cancer cells to CDC (86, 194, 195). Thus,
blocking antibodies markedly enhance the anti-tumor activity
of Rituximab in vitro and in vivo (196). Neutralization of CD55
in Burkitt lymphoma cells (111), leukemia cells (196–199),
melanoma cells (200), and breast cancer cells (86) increased their
sensitivity to complement. Similarly, inhibition of CD59 with
a monoclonal antibody led to efficient sensitization to CDC of
neuroblastoma cells (112), leukemic cells (83, 199), breast (86),
ovarian (113), renal (201), and prostate carcinoma cells (106).
Mini-antibodies targeting both CD55 and CD59 were shown to
enhance Rituximab-dependent CDC in vitro and to increase the
survival of Rituximab-treated SCID mice in a xenograft model
of human CD20+ B-cell lymphoma (196). Bispecific antibodies
targeting both CD20 and CD55 or CD20 and CD59 were also
shown to potentiate the CDC of CD20-positive lymphoma cells
in vitro and to prevent the growth of human lymphoma cells
in SCID mice (202). Neutralization of the soluble complement
regulators may also be applied to cancer immunotherapy. Thus,
anti-factor H antibody increased antibody-dependent CDC of
colorectal cancer treated with anti-CEA monoclonal antibody
(203). Inhibition of factor H activity with a recombinant protein
reflecting the factor H short-consensus repeat 18–20 improved
the CDC of CLL cells in the presence of Rituximab and the
blockage of CD55 and CD59 further enhanced CDC (171).

Silencing of Complement Regulators’
Expression by RNAi
Another specific approach is to knock down the expression of
the membrane complement regulators’ expression by siRNAs.
RNA interference (RNAi), mediated by small interfering RNA
(siRNA), is the most efficient strategy for specific silencing of
therapeutically relevant genes (204). In the last years numerous
strategies have been developed for a better delivery of siRNAs in
vitro and in vivo (205). We have shown that silencing of single or
multiple complement regulators by anti-sense oligonucleotides
or siRNAs results in a significant increase of opsonization and
CDC of tumor cell lines of various histological origin (194, 206).
Silencing of CD55 and CD59 in breast cancer cells with specific
shRNA enhanced CDC (207). Using chemically stabilized anti-
complement regulators, siRNAs and AtuPLEX, we observed a
significant knockdown of regulator expression on HER2-positive
carcinoma cells. Subsequently, treatment with a combination
of two anti-HER2 antibodies, trastuzumab and pertuzumab,
and normal human serum, augmented C3 binding and CDC
could be recorded (208). Similar results were observed with
lymphoma cells in which silencing of complement regulators
enhanced antibody-dependent CDC (209). For specific delivery

of liposomes or lipoplexes loaded with siRNA molecules into
cancer cells, transferrin may be attached to them to facilitate their
binding to cancer cells through transferrin receptor (TfR/CD71)
and their active entry into the cells (210). By using this approach,
delivery of siRNA molecules specific to CD46, CD55, and CD59
to transferrin receptor-positive carcinoma cells was achieved and
promoted the knockdown of the complement regulators and
enhanced CDC (211).

Neutralization of Extracellular
Protective Enzymes
Considering the aforementioned anti-complement effects of
certain proteases and protein kinases, it is likely that tailor-
made protease and/or kinase inhibitors will promote antibody-
based immunotherapy. In vitro and a few in vivo results support
this hypothesis. Treatment of K562 cells with serine protease
inhibitors markedly enhanced their sensitivity to CDC (156).
CK2 inhibitors also augmented Raji cell killing by Rituximab
and complement (160). Single-chain variable fragment (ScFv)
directed to cathepsin L was used to inhibit the tumorigenic and
metastatic phenotype of human melanoma cells in nude mice
(212). In addition, injection of an anti-cathepsin L ScFv lentiviral
vector into tumors already induced in nude mice inhibited tumor
growth and associated angiogenesis (213). Whether or not the
complement system is involved in the latter anti-tumor effects of
the anti-cathepsin L treatment remains unresolved.

Inhibition of Intracellular
Protective Pathways
As described above, the list of intracellular molecular pathways
supporting cancer cell resistance to CDC is increasing. Currently,
we can hypothesize that a coordinated inhibition of any of the
following active molecules in the following cancer cells: cAMP,
PKC, MEK/ERK, Hsp70, Hsc70, Hsp90, and mortalin, combined
with complement-activating antibody, will amplify cancer cell
death and increase the sensitivity of cancer to immunotherapy.
For each of these molecules, this claim has been clearly supported
in vitro by data and now awaits in vivo testing. Inhibition
of PKC and MEK1, the ERK kinase, lowers the rate of MAC
elimination from the cells and sensitizes them to CDC (81, 82, 88,
183). Inhibitors of MEK-ERK are in clinical use now in cancer
therapy (214–216), and testing their impact on the therapeutic
efficacy of anti-cancer antibodies is highly warranted. Heat shock
proteins are over-expressed in cancer and play a significant role in
resistance to various types of therapy (217). The list of inhibitors
of heat shock proteins that have been developed for clinical use is
growing and a few have entered clinical trials (90–92, 218, 219).
The use of these heat shock protein inhibitors as adjuvants to
antibody-based therapy may yield a superior clinical outcome.
Mortalin belongs to the family of heat shock proteins and is
also over-expressed in cancer (187). The mortalin expression
level in colorectal adenocarcinoma cells correlates with poor
patient survival (220). Mortalin inhibitors likeMKT-077 could be
considered as complementary treatment to anticancer antibody
therapy. In support, pretreatment withMKT-077 sensitized K562
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cells to CDC (87, 189). Unfortunately, thus far, testing of MKT-
077 in patients has been stalled due to toxicity effects (221)
and alternative inhibitors are being sought. Mortalin silencing
with specific siRNA reduced MAC elimination and increased the
sensitivity of K562 cells to CDC (189). Therefore, it is reasonable
to predict that combining reagents that knockdown or inhibit
mortalin with anti-cancer antibody therapy will be advantageous
to cancer patients.

CONCLUDING REMARKS

Complement activation on and around cancer cells has been
postulated to elicit several concomitant physiological and
immunological responses that may act cooperatively to either
mediate cancer cell death or promote cell survival, growth,
and metastasis. In theory, these responses may also negate and
annul each other. Multiple strategies to overcome complement
resistance, as described here, open up new opportunities for
improving antibody-based immunotherapy. Undoubtedly,
applying any of the intervention treatments described above,
together with a therapeutic antibody, will produce on and around
the cancer cells/mass, besides C5b-9 complexes, additional

complement activation products, such as cancer-bound iC3b,

which promotes antibody-dependent cellular cytotoxicity
(ADCC) and complement-dependent cellular cytotoxicity
(CDCC) as well as C3a and C5a, which may suppress cellular
anti-cancer immune response. Consequently, in the worst
scenario, intervention strategies to augment complement
activation may worsen the outcome of the anti-cancer antibody
therapy. Hence, for each cancer type, therapeutic antibody,
and intervention strategy, an optimal protocol will have to be
developed that favors cancer destruction over cancer promotion.
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