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Abstract: Terahertz metamaterial plays a significant role in the development of imaging, sensing, and
communications. The function of conventional terahertz metamaterials was fixed after fabrication.
They can only achieve a single function and do not have adjustable characteristics, which greatly
limits the scalability and practical application of metamaterial. Here, we propose a vanadium dioxide-
based terahertz metamaterial device, which is switchable between being a transmitter and an absorber.
The transmission and absorption characteristics and temperature tunable properties of phase change
metamaterials in the terahertz band were investigated. As the temperature of vanadium dioxide
is varied between 20 ◦C and 80 ◦C, the device can switch between transmission and quad-band
resonance absorption at the terahertz frequency range, with a high transmission rate of over 80%
and a peak absorbance of 98.3%, respectively. In addition, when the device acts as an absorber, the
proposed metamaterial device is tunable, and the modulation amplitude can reach 94.3%; while the
device is used as a transmissive device, the modulation amplitude of the transmission peak at 81%.
The results indicate that the proposed metamaterial device can promote the applications of terahertz
devices, such as switching, modulation, and sensing.

Keywords: metamaterial; vanadium dioxide; tunable metamaterials; perfect absorption

1. Introduction

Terahertz (THz) technology has recently attracted extensive attention due to its unique
advantages. For example, THz waves have high penetration and very low energy. THz
radiation plays a significant role in the development of sensors, biomedicine, radar, se-
curity detection, and imaging [1,2]. However, few natural materials can interact with
THz radiation. Therefore, researchers are interested in a metamaterial that can respond to
THz waves [3]. Metamaterials are artificially designed sub-wavelength electromagnetic
structures with unique physical properties [4], which makes them a desirable solution to
this problem. Metamaterials have fast growth in THz perfect absorbers, perfect lenses,
and transmitters. Among them, THz perfect absorbers based on metamaterials have many
advantages, such as ultra-thin dielectric layers, lightweight, and controllable performance
(including frequency and absorbance) [5]. As a result, perfect absorbers, including sin-
gle and double band, multi-band, and broadband devices, have become a hot topic for
researchers [6–8]. However, the function of conventional THz metamaterials was fixed
after their preparation. Therefore, the study of tunability and multi-functionality in meta-
materials is essential for the practical application of THz waves.

To address this problem, researchers have proposed various solutions over the past few
years, including the idea that metamaterial devices could be tunable over a range by chang-
ing geometry parameters and dielectric properties of metamaterials [9,10]. Furthermore,
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the intrinsic properties of tunable materials, such as conductivity, electron mobility, and
dielectric constant [9,11], can be efficiently modulated by external excitations to influence
the electromagnetic properties of functional devices. Recently, vanadium dioxide (VO2),
graphene, black phosphorus, and liquid crystals were introduced into the metamaterial
design to actively control the optical and electrical properties of the functional devices in
the THz range [12–14]. Among them, VO2 is a phase-changing material that can switch
between an insulator and conductor by external excitations (including photo-excitation,
electrical bias, and thermal tuning) [15–19]. During the transition process, the conductivity
of VO2 can be changed by up to five orders of magnitude [20], which suggests that it is
an appropriate candidate for an active tuning device. However, the previously reported
tunable devices only have a single function. Therefore, it is desirable to integrate diversified
functionalities into a single device.

This study presents a VO2-based THz metamaterial device, which is switchable be-
tween being a transmitter and an absorber. The tunability of such devices is achieved by
changing the temperature and therefore driving the phase change of the VO2 material.
Four discrete resonant absorption bands are achieved in the THz region, two of which
can achieve high absorption rates (>98%) for perfect absorption [21,22]. In addition, the
device can switch between transmission (higher than 80% transmissivity) and multiband
absorption (absorption can reach up to 98.3%) by changing the temperature. The absorp-
tion rate is tunable from 3.9% to 98.3%, and its modulation amplitude can reach up to
94.4%. The transmission peak of the transmission device can be dynamically adjusted, with
temperature change over a range of 0.02% to 81.8%, showing a modification amplitude
over 81%. This study provides a design method for a multi-band tunable dual-functional
device in the THz band, which can also be used for more applications in other bands by
varying the structural dimensions.

2. Materials and Methods

The designed dual-function tunable device is exhibited in Figure 1a. As shown in
Figure 1b, the fundamental unit of the device is composed of a 3-layer structure: the surface
layer consists of VO2 and gold, the intermediate polyimide layer offers a transmission
space to THz waves, and the bottom layer is made up of a thin film of VO2. The surface
resonant layer of two square open split-ring resonators made of metallic material form the
pattern, together with VO2. The metallic and VO2 layers and the VO2 substrates are h1 and
h3, respectively. The thickness of the polyimide spacer is h2. Polyimide can be considered
as a lossy dielectric with a relative permittivity of ε = 3.5 + 0.00945i. The conductivity of Au
is σAu = 4.56 × 107 S/m, the gold used here can be considered a lossy material, and the
material properties are shown below (Table 1). The repeat period is p1, the width of the
structural unit is l1 and l2, respectively, and the width of the inter-structural slit is w. The
gap size of the split ring resonator is g1 and g2, respectively. In our simulation, h1 = 0.2 µm,
h2 = 20 µm, h3 = 0.2 µm, p1 = 150 µm, l1 = 90 µm, l1 = 90 µm, w = 14 µm g1 = 35 µm, and
g2 = 80 µm. Those values are constant unless otherwise specified.

Table 1. Parameters of material in simulation.

Material Electric
Conductivity

Thermal
Conductivity Epsilon Tangent

Delta

Gold 4.56 × 107 S/m 314 W/K/m / /
Polyimide / 0.2 W/K/m 3.5 + 0.00945i F/m 0.0027%

CST Microwave Studio 2018 software (CST from Dassault Systemes, Framingham, MA,
USA) has been used to investigate the electromagnetic responses of metamaterial devices.
The adaptive tetrahedral mesh refinement was used for the mesh. In the simulation, the
x- and y-directions were set as unit cell boundary conditions and the z-direction as open
(add space) boundary conditions, which were used to construct an infinite arrangement
of structures to match the periodic array. The optical properties of VO2 can be calculated
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with the Drude model [23,24], which is written by ε(ω) = ε∞ −
ω2

p(σ)

ω2+iγω , where ε∞ = 9, and
γ = 5.75 × 1013 rad/s is the frequency of collision. The conductivity dependent plasma
frequency ω(σ) at σ can be approximately described as ω2

p(σvo2) =
σvo2
σ0

ω2
p(σ0), where σ0 =

3 × 105 S/m, ωp (σ0) = 1.4 × 1015 rad/s. The parameters were set in the software according
to the Drude model described in the manuscript. Previous studies have reported that the
conductivity of VO2 can be increased from 200 S/m to 4 × 105 S/m [25,26]. In this paper,
the conductivity of VO2 needs to be analysed by effective medium theory (EMT).
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Figure 1. (a) Schematic diagram of the array and (b) unit multifunctional tunable functional device
structure; (c) VO2 films conductivity as a function of temperature (warming process T0 = 68 ◦C,
cooling process T0 = 58 ◦C); (d) Absorption response of the absorber for different material cases of
metal and VO2.

During the phase transition process of VO2, the dielectric state of the VO2 film would
be replaced by the metal state. In order to characterize VO2 materials in incomplete phase
transitions, EMT is required. Currently, Maxwell–Garnett EMT and Bruggeman EMT
are commonly used methods [27,28], but Maxwell–Garnett EMT is not suitable for phase
transformation where the volume fraction of the metal component is greater than 20%,
while the Bruggeman EMT can be utilized for VO2 thin films. The dielectric constant εc can
be expressed as:

εc =
1
4
(εD(2− 3 f(T))) + εM(3 f(T) − 1) +

√
(εD(2− 3 f(T)) + εM(3 f(T) − 1)2 + 8εDεM) (1)

where εD and εM are the dielectric functions of the VO2 thin films in the insulation and
metal phase, respectively. The dielectric function of the metallic phase εM is represented
by the Drude model with the activity of the dielectric function of the insulator component
εD = 9. In addition, the volume fraction of the metal component f (T) can be described as:

f(T) = f

(
1− 1

1 + exp( T−T0
∆T )

)
max

(2)
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where T0 is the phase transition temperature of VO2, ∆T is the transition width. Here,
T0 = 68 ◦C and ∆T = 3 ◦C are obtained from the experiment [29]. By combining Equation (1)
with (2), the conductivity of VO2 thin films corresponding to different temperatures is
expressed as σVO2 = −iε0ω(εc − 1). Moreover, the electrical conductivity can be varied as
the temperature change in the VO2 thin films as shown in Figure 1c.

At a temperature of 80 ◦C, the electromagnetic response of the devices proposed in the
study was first demonstrated with VO2 thin films in the metallic phase. Figure 1d shows
the absorption of the device under different materials. The absorption can be calculated by
A(ω) = 1− R(ω)− T(ω) = 1− |S11(ω)|2−|S21(ω)|2, where R(ω) represents the reflec-
tion, and T(ω) is the transmission. The reflection S11(ω) and the transmission S21(ω) can be
obtained by simulation. The device has four absorption peaks in the range of 0.1–3.0 THz,
of which two absorption rates are higher than 98% at the resonant frequencies of about
0.66 THz and 1.22 THz, and the absorption efficiency is 98.2% and 98.3%, respectively.

If the bottom layer material is replaced from VO2 to gold, the absorption rate becomes
82.9% and the first absorption peak has a red-shift. The absorption rate becomes 85.7%
for the second band and the peak frequency shifted to 1.23 THz. In this case, no peak
values can exceed 90%. If the VO2 in the bottom and top layers is replaced with gold, the
absorption rate of the first band becomes 11.5%, and the peak frequency moves to 0.66 THz.
The absorption rate becomes 27.0% for the second band, and the peak frequency moves to
1.22 THz. In this case, only one peak was higher than 90%. The absorption peak is located
at 2.14 THz with an absorption rate of over 93.8%. However, when using gold material, the
absorption peak of this device is not adjustable and cannot achieve bi-functionality, which
is not the desired goal of our study. Through the analysis above, the performances of VO2
material are better than that of gold in the proposed device.

3. Results and Discussion

The absorption response of the devices is shown in Figure 1d. Quad-band absorption
resonance bands with narrow bandwidths at frequencies of f 1 = 0.66 THz, f 2 = 1.22 THz,
f 3 = 2.14 THz, and f 4 = 2.48 THz were realized. Further structural optimization can provide
the ability to achieve even more perfect absorption peaks. These results indicate that
devices have good absorption modes. To illustrate the origin of the modes, the two dual-
mode perfect absorptions achieved over 98% absorption at f 1 and f 2 are named mode 1
and mode 2, respectively.

The resonance mechanism of the absorption is discussed by studying the near-field
distribution of modes 1 and 2 in the resonance peak, as shown in Figure 2a,b. The electric
field distribution |E| is concentrated in the vacuum gap between the grating and the
top of the structure. The presence of an electric field on the structure’s top indicates that
the surface structure generates surface plasmon resonance (SPR). Figure 2c,d gives the
normalized magnetic field |H| distributions corresponding to modes f 1 and f 2 in the cavity.
At the VO2 and metal structure locations, the magnetic field exhibits transverse regions,
which reflect SPR resonance characteristics. The magnetic field distribution |H| is also
concentrated in the gap between the grating and the top of the structure, with longitudinal
field regions within both modes, which exhibit Fabry–Perot-like gap plasmonic resonance
(GPR) characteristics [10,30]. Therefore, the two-mode perfect absorption is observed from
the field generated by the coupling of GPR and SPR resonance [31–34]. As the incident
energy at the resonance frequency is strongly absorbed by the absorber with almost no
energy reflection, resulting in near-perfect absorption.
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Figure 2. (a,b) The distribution of electric |E| field at the absorber’s resonance frequency. (c,d) The
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Furthermore, the absorption pattern of functional devices can be explained by the
coupled-mode theory (CMT). CMT belongs to the parametric theoretical model, which
can be used to reveal the physical principles of the coupling between artificial atoms in
metamaterials. This algorithm has been tested and validated by many research components.
According to CMT, the absorption intensity is given by [35]:

A = ∑4
i=1

(
4γiδi

(ω−ωi)
2 + (γi + δi)

2

)
(3)

where ωi is the resonance frequency, and γi and δi are the time rate of the amplitude change
and the dissipative losses in the guided resonance of the photonic crystal slab, respectively.
As shown in Figure 3, The electromagnetic response obtained from the simulations and the
CMT calculations are compared. The simulation results are in good agreement with the
CMT calculated results in the operating frequency range of the absorption response.
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Through the detailed analysis above, it is believed that the device acts as a perfect
absorber. To further demonstrate the perfect absorption induced by the device structure,
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we simulated the THz absorption spectra under different geometric parameters. We focus
on variations of six parameters: the width of the two gratings and the gap between the
gratings, the thickness of the VO2 backplane concerned, the thickness of the substrate, and
the height of the gratings. As shown in Figure 4a, when the VO2 backplate is in the metallic
state, changing the backplate thickness will affect the performance of the absorption peak
and inhibit the absorption effect. It can be found that the best absorption effect is achieved
at h1 = 0.2 µm. In contrast to the case of Figure 4a, as shown in Figure 4b, changing the
polyimide spacer thickness not only affects the performance of the absorption peak but
also the frequency of the absorption peak, which is red-shifted by increasing the thickness
of the intermediate layer. The performance of the absorber can reach more than 98%
of the two perfect absorption peaks at h2 = 20 µm. As shown in Figure 4c, there is an
increase in absorbance at peak f 4. The simulation results can demonstrate that the geometry
parameters of the structure thickness have an important role in tuning the absorption
performance of the metamaterial functional device.
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gratings varies.

As given in Figure 4d,e, the effect of the resonance peaks and the frequency of the
absorber are greatly related to the grating width. The two parameters of the grating
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width l1 and l2, affect the absorption properties. When the value of the grating width
l1 increases, the absorption peaks appear blue-shifted, absorption peaks f 1 and f 2 are
suppressed, and absorption peaks f 3 and f 4 are enhanced. However, when the width
of the grating l2 is increased, absorption peak f 1 is almost constant, but the intensity
of absorption peak f 2 is significantly suppressed; the intensity of absorption peak f 3 is
significantly enhanced and the intensity of absorption peak f 4 is suppressed. All other
absorption peaks have a red-shifted except for the peak f 1. As shown in Figure 4f, the width
of the gap among the grids also has a significant effect on the absorption peaks. The three
absorption peaks, except absorption peak f 1, will appear blue-shifted and the absorption
efficiency is also significantly suppressed with the decreasing width. The three absorption
peaks, except for absorption peak f 1, become red-shifted, while the absorption efficiency is
enhanced with the increasing width. Through the analysis above, it can be explained that
the adjustment of the geometrical parameters of the structure has an important influence
on the absorption performance of the metamaterial device. Therefore, the appropriate
adjustment of geometrical parameters can help the device in meeting the requirements of a
wide range of applications.

Impedance matching theory was used to gain an insight into the physics of the
proposed device [36,37]. S-parameter retrieval gives the relative impedance as:

Z = ±

√√√√ (1 + S11)
2 − S2

21

(1− S11)
2 − S2

21

(4)

where S11 and S22 represent the reflection coefficient at port 1 and the transfer coefficient
from port 1 to port 2, respectively. In this case, Z = Z1/Z0, where Z1 denotes the equivalent
surface impedance of the device and Z0 = 377 W denotes the free space impedance. When
Z = 1, the relative impedance of the device matches the free space impedance. This indicates
that the device can achieve a perfect absorption response. The real part (Re(Z)) and the
imaginary part (Im(Z)) of the impedance is a function of frequency when VO2 is in the
metallic state. Figure 5a,b show the Re(Z) ≈ 1, Im(Z) ≈ 0 at the absorption peak (0.66 THz
and 1.22 THz), respectively. This means that the impedance matching performance is
perfect at this point [37,38].
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Figure 6c shows that a transmission peak with a transmittance of more than 81% was
obtained at 0.9 THz, which is expected because the insulating VO2 films are transparent to
the THz wave. In addition, when VO2 is in the insulating state, resonance generated by
the metal structure occurs. To further research these two kinds of resonances, the effect
of structural geometries on the proposed metamaterial device’s transmission function is
investigated. The variation of two different parameters is discussed: firstly, the size of the
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upside split-ring resonator (SRR) gap, and the second one is the underside SRR gap, with
the SRR line width at 10 µm. As shown in Figure 6a, when the upside SRR is operating
alone, adjusting the gap size has a minor effect on the amplitude of the resonances, but the
change has a significant effect on the frequency of the resonances. With the increasing value
of the gap size g1, the resonance’s frequency appears blue-shifted. As shown in Figure 6b,
when the underside SRR has operated alone, changing the underside SRR gap size also
has a slight effect on the amplitude of the resonances, but the change has a significant
effect on the frequency of the resonances. The results show that the metamaterial resonance
frequency has an obvious blue shift with an increase in gap size g2.
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Through the detailed analysis above, it can be believed that the size of the gap of the
SRR is the key factor affecting the frequency of the resonances. To investigate the mode of
operation of the transmittance, Figure 7a,b provide the electric field |E| distribution of the
resonance at 0.71 THz and the resonance at 1.00 THz, and Figure 7c,d show the magnetic
field |H| distribution. As shown in Figure 7a,c, the fields of the resonance are mostly
concentrated on the bottom and two top corners of the upside SRR. As a result, the mode
of operation at 0.71 THz should be caused by coupling between the dipole response and
the LC resonance. At 1.00 THz, as shown in Figure 7b,d, the fields of resonance accumulate
at the bottom and two top corners of the underside SRR, both the electric and magnetic
field distributions are similar to the modes of the upside SRR. Therefore, we can conclude
that the resonant modes of the resonances at 0.71 THz and 1.00 THz are the same.



Micromachines 2022, 13, 715 9 of 12Micromachines 2022, 13, x FOR PEER REVIEW 10 of 13 
 

 

 
Figure 7. (a,b) The resonance electric field |E| and (c,d) the resonance magnetic field |H| for met-
amaterial devices. 

Based on the above analysis, a metamaterial device was designed and optimized with 
typical geometric parameters. To better demonstrate the superior and continuous tuning 
characteristics of the device, the color maps for transmission and absorption spectra of the 
device at different temperatures based on its material properties are shown in Figure 8a,b. 
The tunable function of the device can be achieved through the adjustment of tempera-
ture. When the temperature is 20 °C, VO2 is in the insulated state with the highest trans-
mittance and the lowest corresponding absorbance. In this case, the device can be consid-
ered as an absorber in the off state and a transmissive device function with transmission 
peaks (>80%). When the temperature is 80 °C, VO2 is in the metallic state with the highest 
absorptance and the lowest corresponding transmittance. Interestingly, when the temper-
ature increases, it exhibits a device with four absorption peaks, including two perfect ab-
sorption peaks with high absorbance (>98%), where the maximum tunable range of the 
absorption can be modulated from 3.9% to 98.3%, and the modulation amplitude of 94.2%. 
The transmission peak can be dynamically adjusted with temperature over a range of 
0.02% to 81.8%, with a modification amplitude over 81%. Consequently, the state of the 
device can be switched between a tunable transmitter and a tunable absorber. In general, 
these results show that good performance can be achieved for both functions, which is 
beneficial in practical applications. 

Figure 7. (a,b) The resonance electric field |E| and (c,d) the resonance magnetic field |H| for
metamaterial devices.

Based on the above analysis, a metamaterial device was designed and optimized
with typical geometric parameters. To better demonstrate the superior and continuous
tuning characteristics of the device, the color maps for transmission and absorption spectra
of the device at different temperatures based on its material properties are shown in
Figure 8a,b. The tunable function of the device can be achieved through the adjustment
of temperature. When the temperature is 20 ◦C, VO2 is in the insulated state with the
highest transmittance and the lowest corresponding absorbance. In this case, the device
can be considered as an absorber in the off state and a transmissive device function with
transmission peaks (>80%). When the temperature is 80 ◦C, VO2 is in the metallic state with
the highest absorptance and the lowest corresponding transmittance. Interestingly, when
the temperature increases, it exhibits a device with four absorption peaks, including two
perfect absorption peaks with high absorbance (>98%), where the maximum tunable range
of the absorption can be modulated from 3.9% to 98.3%, and the modulation amplitude of
94.2%. The transmission peak can be dynamically adjusted with temperature over a range
of 0.02% to 81.8%, with a modification amplitude over 81%. Consequently, the state of the
device can be switched between a tunable transmitter and a tunable absorber. In general,
these results show that good performance can be achieved for both functions, which is
beneficial in practical applications.

Finally, we provided a comparison of the device’s performance with others at THz
frequencies. We listed the main properties of the different devices in Table 2. As a result, our
proposed VO2-based THz metamaterial device not only has two switchable and tunable
functions but also has a large increase in the modulation range.

Table 2. Comparisons between THz metamaterial devices.

Sample Type Number of
Layers

Frequency
(THz) Modulation Type Modulation

Depth
Practical

Implementation Multifunction Ref

VO2 2 0.1–1.0 Transmission 50% device no [39]
W-doped VO2 2 0.3–2.3 Transmission 60% device no [40]

VO2 3 3.7–9.7 Absorption 99.9% model no [41]
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Table 2. Cont.

Sample Type Number of
Layers

Frequency
(THz) Modulation Type Modulation

Depth
Practical

Implementation Multifunction Ref

VO2 nanowires 3 0.3–0.5 Polarization & Transmission 65% device yes [42]
VO2 3 3.4–6.7 Reflection & Absorption 99.8% model yes [43]

MoS2 3 0.6–1.2 Transmission 20% device no [44]
Si3N4 4 0.2–0.7 transmission 25% device no [45]
VO2 3 0.1–3.0 Transmission & Absorption 94.2% model yes This work
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4. Conclusions

In conclusion, the functional switchability and tunability of dual-functional THz
metamaterial devices can be achieved by utilizing temperature driving phase change
properties of the VO2 material. Through the simulation, the devices can be used in both
tunable transmitters (transmission peak up to 81.8%) and tunable absorbers (absorption
peak up to 98.3%). The mechanism of the devices is well illustrated by the CMT as well
as the impedance matching theory. Therefore, a wide range of applications in the THz
range, including switching, modulation, and sensing, can benefit from the development of
these devices.
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