
animals

Article

Effect of Fishmeal Content in the Diet on the Growth and
Sexual Maturation of Olive Flounder (Paralichthys olivaceus)
at a Typical Fish Farm

Su-Jin Park 1, Bong Seung Seo 1, Hung Sik Park 2, Bong-Joo Lee 3 , Sang-Woo Hur 3, Taek-Jeong Nam 4 ,
Kyeong-Jun Lee 5, Seunghyung Lee 1,6,* and Youn Hee Choi 1,4,6,*

����������
�������

Citation: Park, S.-J.; Seo, B.S.; Park,

H.S.; Lee, B.-J.; Hur, S.-W.; Nam, T.-J.;

Lee, K.-J.; Lee, S.; Choi, Y.H. Effect of

Fishmeal Content in the Diet on the

Growth and Sexual Maturation of

Olive Flounder (Paralichthys olivaceus)

at a Typical Fish Farm. Animals 2021,

11, 2055. https://doi.org/10.3390/

ani11072055

Academic Editor: Ana Tomás-Vidal

Received: 22 May 2021

Accepted: 6 July 2021

Published: 9 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Fisheries Biology, Pukyong National University, Busan 48513, Korea;
sujin_park@pukyong.ac.kr (S.-J.P.); smail5963@naver.com (B.S.S.)

2 AlphaAqua, Busan 47042, Korea; hspak@chol.com
3 Aquafeed Research Center, National Institute of Fisheries Science, Pohang 37517, Korea;

bonglee@korea.kr (B.-J.L.); maverickhuh@korea.kr (S.-W.H.)
4 Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Korea; namtj@pknu.ac.kr
5 Department of Marine Life Science, Jeju National University, Jeju 63234, Korea; kjlee@jejunu.ac.kr
6 Department of Marine Bio-Materials & Aquaculture, Pukyong National University, Busan 48513, Korea
* Correspondence: shlee@pknu.ac.kr (S.L.); unichoi@pknu.ac.kr (Y.H.C.); Tel.: +82-51-629-5915 (Y.H.C.)

Simple Summary: Increasing demand for an efficient and economic fishmeal feed for sustainable
aquaculture has urged the aquafeed sector to seek an optimum fish-feed formulation. This study
investigated the physiological response in olive flounder fed various fishmeal diets in a typical
fish farm. The fish were farmed for 20 weeks, using the following experimental feeds: a con-
trol feed (CON), a replacement by 20% (F20), and 30% (F30) of the fish meal content of the CON.
All groups showed no significant difference in growth and survival rates. However, due to investigat-
ing hormone expression associated with maturation, high expression of PSS-I and low expression of
FSH-β, ER-α, and ER-β in FM30 compared to other experimental groups were observed. Therefore,
up to 30% fishmeal replacement does not affect growth, but it appears to have a slight effect on the
sexual development of olive flounder.

Abstract: Olive flounder (Paralichthys olivaceus) is a commercially important and valuable species for
aquaculture in Korea. Due to the unstable supply of fishmeal for farmed fish, an optimum fish-feed
formulation should be researched to ensure the sustainability of P. olivaceus aquaculture. This study
investigated the effect of three experimental diets: Con (basal diet); FM20 (20% fishmeal replacement
of CON); and FM30 (30% fishmeal replacement of CON) on P. olivaceus over 20 weeks at a typical
farm by monitoring the growth and factors relating to sexual maturation. The results showed that
no differences in growth were observed between the CON and diet-replacement groups. Gonadal
oocyte development was similar between the CON and diet-replacement groups. Moreover, sbGnRH
and GH expression did not differ between the CON and diet-replacement groups. The levels of Erβ
and Vtg expression were significantly higher in the FM20 group than in the CON and FM30 groups
after the experimental period. The expression of PSS-I was significantly higher in the FM30 group
than in the CON and FM20 groups. Therefore, although growth occurred when 30% of the fishmeal
was replaced, such high dietary protein replacement may be ill-advised during the maturation of
olive flounder at the commercial fish farm.

Keywords: olive flounder; fishmeal replacement; typical fish farm; growth; maturity; hormones

1. Introduction

Olive flounder (Paralichthys olivaceus) is the most cultured fish in Korea, accounting
for 43,320 tons, or 51% of the 85,217 tons of the total fish-farming production in 2019 [1].
It is considered an important and economically valuable aquaculture fish in Korea and
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Japan [2,3]. Thus, it is essential to secure healthy and mature broodstock during the
production of juvenile fish to support production [4,5]. Feed is the major factor influencing
the early growth, gonadal development, and sexual maturation of cultured olive flounder.
High protein proportion in feed is essential, allowing the fish to obtain amino acids
to build up new protein and use it to grow [6]. Therefore, fishmeal is considered the
most optimum choice for the adequate protein supply and many other advantages are
reported, e.g., a rich source of taurine, minerals (i.e., phosphorous), and vitamins without
anti-nutritional factors [7]. Due to the continuous development of aquaculture in recent
decades, a considerable demand for fishmeal is required for aquafeed. However, the supply
of fishmeal is finite, making it necessary to reduce the levels of fishmeal in seeking an
efficient and economic ratio of feed for farmed fish [8–10]. Although the growth and feed
efficiency of olive flounder fed a proper fishmeal replacement are similar to those of fish
fed traditional feed [11,12], research on the growth and sexual maturation associated with
different food sources remains insufficient. Thus, recent studies on fish feed have attempted
to substitute fishmeal and determine appropriate replacement rates.

Hormones synthesized and secreted by the endocrine system in fish play an important
role in reproduction, growth, development, and metabolism [13]. Fish gonads develop un-
der the influence of endocrine hormones produced by the hypothalamic-pituitary-gonadal
axis [14]. The hypothalamus coordinates signals from environmental stimuli to produce
kisspeptin (Kiss), a ligand of the G-protein coupled receptor GPR54, and Kiss stimulates
gonadotropin-releasing hormone (GnRH) neurons to produce GnRH [15]. This hormone
plays a major role in the reproduction of fish with 14 identified forms isolated in ver-
tebrates [16]. Among them, it is proved that a species-specific variant, seabream-type
GnRH (sbGnRH), takes responsibility for gonadotropin secretion and has a connection
with gonadal maturation [3]. In the hypothalamus, preprosomatostatin (PSS), which is
a somatostatin precursor protein, is produced. PSS suppresses the secretion of growth
hormone (GH) and participates in sex steroid hormone activity and reproduction [17,18].
The pituitary gland produces the gonadotropins follicle-stimulating hormone (FSH) and
luteinizing hormone (LH) under the influence of sbGnRH transmitted from the hypotha-
lamus [16]. FSH and LH consist of α and β subunits. The α subunit confers a structural
identity, whereas the characteristics of each hormone are determined by the β subunit [19].
FSH and LH synthesized in the pituitary are transported through the bloodstream to the
gonads. GH is a growth-promoting hormone synthesized in the pituitary gland under
the influence of sbGnRH secreted by the hypothalamus [16]. GH affects somatic cell de-
velopment by acting on all cells and tissues [20]. Vitellogenin (Vtg) is produced in the
liver of female fish upon activation by sex hormones and accumulates in the yolk [21].
The estrogen receptor (ER) is a 17β-estradiol (E2) receptor that induces Vtg synthesis
in the liver. Vtg accumulates in oocytes and becomes an early nutritional source for
developing embryos.

In this study, an experiment was conducted on olive flounder fed a diet with a low
content of fishmeal instead of the high-fishmeal-content diet used on fish farms in Korea.
This experiment was conducted at a typical commercial fish farm not at the laboratory level.
The effects of a low-fishmeal-content diet on the sexual maturation of female flounder were
investigated by monitoring the development of reproductive organs and identifying the
levels of endocrine hormones in the hypothalamus, pituitary gland, and liver.

2. Materials and Methods
2.1. Experimental Fish, Feeding Conditions, and Sample Collection

A total of 28,200 P. olivaceus (initial mean weight 150 g) were randomly distributed into
six 10 m × 10 m concrete tanks (depth: 60 cm and volume: 60,000 L) at a stocking density
of 4700 fish/tank (n = 2 tanks per treatment) at a facility in Seongsan-eup, Seogwipo-si,
Jeju-do, Republic of Korea. Each duplicate group of tanks were randomly assigned to
one of three experimental diets. The fish were hand-fed twice a day (08:00 and 18:00 h)
at the feeding rate (% body weight per day) ranging from 0.42 to 1.46 for 20 weeks.
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A flow-through culture system using the mixture of seawater (35 ppt) and underground
seawater (29 ppt) at the ratio of 7:3, respectively, was used. The rearing water exchange
rate was 2000% per day (i.e., whole water in the tank was exchanged completely 20 times
per day) (see Figure 1). The water quality of the tanks was maintained as follows: salinity,
31± 1.5 (mean± SD) ppt; water temperature, 18.5± 1.01 ◦C; pH, 8.02± 0.04; and dissolved
oxygen, 7.08± 0.06 ppm. The uneaten feed was removed at 1 h after every meal to calculate
feed efficiency, and survival was monitored daily during the feeding experiment.

Figure 1. Picture of the flow-through tank systems at a land-based facility used for the current study.

To assess growth and maturation, 20 fish (24 h post starvation) were randomly selected
from each experimental group at 0, 8, 16, and 20 weeks and euthanized with 100 ppm
of 2-phenoxyethanol. Total length (cm), total weight (g), body height (cm), body width
(cm), and gonad weight (g) were measured. Tissues samples were dissected from these fish
and fixed for histological (gonads) and qPCR (brain, pituitary, liver) analyses, accordingly.
The equations used for calculation of growth performance, including weight gain (%),
specific growth rate (%/day), condition factor, feed conversion ratio, protein efficiency
ratio, feed intake (g), and survival (%) is provided as follows:

Weight gain (%) = (FBW − IBW)/IBW × 100

Specific growth rate (%/day) = (Ln(FBW) − Ln(IBW))/days of feeding × 100

Condition factor = FBW/TL3 × 100

Feed conversion ratio = Dry feed fed/(FBW − IBW)

Protein efficiency ratio = (FBW − IBW)/protein given

Feed intake = Total dry feed consumed/number of fish

Survival (%) = Final fish number/initial fish number × 100

where IBW, FBW, and TL were initial mean body weight (g), final mean body weight
(g), and total length (cm), respectively. To analyze changes in whole-body proximate
composition of the flounders fed the test diets, after 20 weeks of experiment, addi-
tional 20 fish per tank were randomly selected after 20 weeks, euthanized with 100 ppm
of 2-phenoxyethanol, and kept at −20 ◦C until analysis. The samples were pooled
and grounded, after the freezing-fry and were subjected to the proximate composition
two tanks per treatment). The analysis was performed following, an AOAC [22] method.
In brief, moisture was analyzed using the heating and drying method (125 ◦C, 3 h),
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and ash was analyzed using the classic dry ashing technique (550 ◦C, 4 h). Proteins were
determined via automated crude protein analysis (Kjeltec 2300, FOSS, Hillerød, Sweden).
Lipids were analyzed according to the method in Folch et al. [23].

2.2. Experimental Diet Preparation

In the control diet (CON) used in the experiment, no fishmeal was replaced.
The composition of the basal diet is shown in Table 1. Sardine fish meal, anchovy fish
meal, tankage meal, poultry by-product meal, soybean meal, wheat gluten, and soy protein
concentrate were used as the feed protein sources (Table 2). Flour was used as the carbohy-
drate source, and fish oil was the lipid source. The contents of crude protein and crude
lipid were designed to be the same in all experimental feeds. Three experimental diets
were tested: a basal diet in which none of the fishmeal was replaced, which was the CON
diet, a diet in which 20% of the fishmeal in the CON diet was replaced (FM20), and a diet in
which 30% of the fishmeal in the CON diet was replaced (FM30). Analysis of the general
components of the fish feed was performed using the same method described earlier.

Table 1. Composition of the basal diet for the olive flounder Paralichthys olivaceus (%, dry
matter basis).

Component
Diets

CON FM20 FM30

Sardine FM 31.50 25.00 21.75
Anchovy FM 31.50 25.00 21.75
Soybean meal 12.00 12.00 12.00
Wheat flour 16.90 14.90 14.95

Wheat gluten 1.00 3.50 4.50
SPC - 3.50 5.30

Tankage meal - 3.50 6.25
Poultry by-product meal - 3.50 4.00

Fish oil 3.40 4.00 4.30
Lecithin 0.50 0.50 0.50
Betaine - 1.00 1.00
Taurine - 0.40 0.50

Mono calcium phosphate 0.50 0.50 0.50
Mineral mix 1.00 1.00 1.00
Vitamin mix 0.80 0.80 0.80
Vitamin C 0.30 0.30 0.30
Vitamin E 0.30 0.30 0.30
Choline 0.30 0.30 0.30

Total 100 100 100

Proximate composition (%, dry matter basis)

Crude protein 56.80 ns 57.20 56.80
Crude lipid 8.96 ns 9.29 9.66
Crude ash 11.3 ns 10.80 10.80

Proximate composition (%, wet basis)

Moisture 7.70 ns 7.75 7.42
Crude protein 52.40 ns 52.90 52.60

Crude lipid 8.27 ns 8.59 8.94
Crude ash 10.40 ns 10.00 9.97

FM, fishmeal; SPC, soy protein concentrate; ns, not significantly different among groups.
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Table 2. International names of the protein sources used in this study.

Ingredients International Name International Feed Number

Fish meal, sardine Fish, sardine meal, mechanical, extruded 5-02-015
Fish meal, anchovy Fish, anchovy meal, mechanical, extruded 5-01-985

Soybean meal Soybean meal, solvent, extruded 5-04-604
Wheat gluten Wheat gluten meal 5-05-220

Soy protein concentrate Soybean protein concentrate 5-08-008
Tankage meal Meat and bone meal 5-00-388

Poultry by-product meal Poultry by-product, meal rendered 5-03-798

2.3. Male and Female Identification and Histology of Oocyte Development

To observe gonadal development, we used methods as previously described by
Choi et al. [24]. Gonads were fixed in Bouin’s solution (Sigma–Aldrich, Mannheim, Ger-
many) for 24 h, and then in distilled water, and stored in 70% ethanol. The fixed tissues
were embedded in paraffin to prepare tissue blocks for histology. The glass slides were
dyed in a deparaffinization step using xylene. After the gonadal tissues were stained
with hematoxylin and eosin, male and female gonads were distinguished. The results of
the sex ratio of 20 random fish from each experimental group were displayed in Table 6.
To assess the oocyte development, ten random ovarian tissues from each group were
selected and observed using an optical microscope (Olympus BX41, Tokyo, Japan). Further-
more, to calculate the diameters (µm) of the oocytes, each oocyte from 100 random ones of
ten selected female was measured ten times by Motic Image Plus 2.0 (Motic Instruments
Inc., Xiamen, China) and the mean value represented for the diameters of the oocyte,
following Bateman et al. [25] and Ju and Lee [26].

2.4. Expression of Endocrine Hormones Related to Sexual Maturation

According to the result of the sex ratio from three experimental groups (Table 6),
The minimum number of females was ten belong to the F30 group at week 16. Hence,
ten female P. olivaceus will be applied to all hormone-related experiments in this investigation.

2.4.1. Total RNA Extraction

Ten female P. olivaceus of each experimental group from week 0 and week 20 were
selected for this investigation. Their brain, pituitary, and liver tissues were extracted and ho-
mogenized by adding 600 µL of TransZol UP (TransGen, Beijing, China),
and the mixtures were reacted at 4 ◦C for 2 h. After the reaction was completed, 200 µL
of chloroform was added to each sample, and the sample was mixed for 30 s and left to
react at room temperature for 10 min. The tubes were centrifuged at 4 ◦C for 10 min to
isolate the supernatant, after which 200 µL of supernatant was added to a 1.5-mL tube,
200 µL of isopropanol was added, and the solution was mixed for 30 s and left to react
for 10 min at room temperature. The RNA pellet was separated by centrifugation at 4 ◦C
for 10 min. The RNA pellet was washed with 600 µL of 75% ethanol diluted in DEPC
water, then with 600 µL of 100% ethanol diluted in DEPC water, and dried completely in a
37 ◦C oven for 15 min. Thereafter, the RNA pellet was dissolved in 10–50 µL of RNase-free
dH2O and stored at −75 ◦C. Total RNA was quantitatively and qualitatively analyzed
by measuring RNA at A260/280 nm in the range of 1.8–2.0 using the NEO-Nabi UV/Vis
NANO Spectrophotometer (NEOGEN, Lansing, MI, USA).

2.4.2. cDNA Synthesis

Total RNA was diluted to 1 µg as a template, and cDNA was synthesized using a
PrimeScriptTM 1st Strand cDNA Synthesis kit (Takara, Kyoto, Japan). The dNTP mixture
and the Oligo dT primer were added to the diluted total RNA, and the mixture was left to
react at 65 ◦C for 5 min. The temperature was lowered to 4 ◦C, and 5× PrimeScript Buffer,
RNase inhibitor, and PrimeScript RTase were added to the reaction mixture, which was left
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to react at 42 ◦C for 60 min, and RTase activity was stopped at 95 ◦C for 5 min. DNase-free
dH2O (180 µL) was added to dilute the mixture to 100 ng µL−1.

2.4.3. Oligonucleotide Primer Production

Forward and reverse primers for 18S ribosomal, Kiss-I, sbGnRH, PSS-I, GH, FSH-β,
LH-β, Vtg-I, ERα, and ERβ were used in the experiment to amplify 100–250 bp of the
base sequence (Table 3). Fabrication was performed by Macrogen (Seoul, Korea), and the
prepared primers were diluted to 10 pmoles in Tris-EDTA buffer and used for reverse
transcription-polymerase chain reaction (RT-PCR).

Table 3. Primers used for real-time qPCR (qPCR) amplification.

Primers Sequence Size GenBank Accession

18s rRNA
F: 5′-GGTCTGTGATGCCCTTAGATGTC-3′ 107 bp EF126037.1R: 5′-AGTGGGGTTCAGCGGGTTAC-3′

Kiss-I
F: 5′-AGCCACTTGTATCACCCTGA-3′ 240 bp KP347690.1R: 5′-GCCCTCTCGTGTGTTTTAGA-3′

sbGnRH
F: 5′-AAATGGCTGTGAAGACCTTG-3′ 150 bp DQ074693.1R: 5′-CCTCAACTACATTGCCCAGA-3′

PSS-I
F: 5′-ATGAAGATGGTGTCCTCCTCG-3′ 174 bp AB693833.1R: 5′-CTCGTTCCAGATCCACATGG-3′

GH
F: 5′-GGAGGATCAACGTCTTCTCAA-3′ 183 bp D29737.1R: 5′-ACTGCGGCTGTTACTTATTCA-3′

FSH-β
F: 5′-AGCTTCGACTGTCGTCCAAC-3′ 140 bp AB042422.1R: 5′-TGTTTAGCCGGACCTGTTTC-3′

LH-β
F: 5′-CCGACGTGTCTTCTCATCAA-3′ 136 bp AB042423.1R: 5′-TGTTGAGGAAGGGGATCTTG-3′

Vtg-I F: 5′-TGAGCTCTTTGAGTACAGCG-3′ 181 bp AB200267.1R: 5′-TCCTCTCTGGATGTTCAGCA-3′

ERα
F: 5′-ATGCTGGAGACTATCACTGACG-3′ 113 bp AB070629.1R: 5′-TGTCTGATGTGGGAGAGCAG-3′

ERβ
F: 5′-ACCATCCAGGGAAACTCATC-3′ 189 bp AB070630.1R: 5′-GGCACATGTTGGAGTTTAGG-3′

2.4.4. Real-Time qPCR (qPCR) Analysis

EmeraldAmp® GT PCR Master Mix (Takara, Koyto, Japan) was used for qPCR with
the following program: initial denaturation (94 ◦C, 5 min), one cycle; denaturation (94 ◦C,
30 s), annealing (55 ◦C, 30 s), and extension (72 ◦C, 30 s), 30 cycles; and final elongation
(72 ◦C, 7 min), one cycle. The amplified qPCR product was electrophoresed for 25 min at
100 V in a 1.5% agarose/Tris-acetate-EDTA gel containing 7.5% ethidium bromide. Bands
were confirmed using an Azure Biosystems instrument (C300, Azure Biosystems Inc.,
Dublin, CA, USA). Thereafter, 18s rRNA was used as a reference gene in relative quantifi-
cation analysis with Gene Tools version 4.03 (SYNGENE, Cambridge, UK).

2.5. Statistical Analysis

All results are expressed as the mean ± standard error. One-way analysis of vari-
ance was performed using IBM SPSS Statistics version 25 software (IBM SPSS, Armonk,
NY, USA). Duncan’s multiple range test was used to detect differences between means.
A p-value < 0.05 was considered to indicate significance.
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3. Results
3.1. Growth Performance and Gonadosomatic Index (GSI) Analysis

The growth performance results are shown in Table 4. No significant differences in
weight gain, specific growth rate, condition factor, feed intake, and survival (p > 0.05)
were observed between the CON and experimental groups. The feed conversion ratio did
not differ between the CON and experimental groups (p > 0.05), and the feed conversion
ratio of the FM30 group was significantly lower than that of the FM20 group (p < 0.05).
The protein efficiency ratio did not differ between the CON and experimental groups
(p > 0.05), but the protein efficiency ratio of the FM30 group was significantly higher than
that of the FM20 group (p < 0.05).

Table 4. Growth performance, feed use, and morphological indices of olive flounders (Paralichthys olivaceus) fed experimental
diets for 20 weeks.

Growth Performance
Experimental Groups

CON FM20 FM30

Weight gain (%) 276.45 ± 11.5 ns 273.94 ± 12.4 276.08 ± 12.4
Specific growth rate (%/day) 0.94 ± 0.02 ns 0.93 ± 0.02 0.94 ± 0.02

Condition factor 1.11 ± 0.02 ns 1.11 ± 0.02 1.12 ± 0.01
Feed conversion ratio 1.03 ± 0.04 ab 1.11 ± 0.05 b 0.95 ± 0.04 a

Protein efficiency ratio 1.78 ± 0.07 ab 1.64 ± 0.07 b 1.92 ± 0.08 a

Feed intake (g) 398 ± 54.7 ns 422 ± 14.6 365 ± 10.1
Survival (%) 62.3 ± 2.32 ns 62.5 ± 4.21 65.9 ± 1.37

Data are presented as the mean ± SEM for each group (n = 20). Values in the same row with different superscript letters are significantly
different (p < 0.05). ns, not significant.

Table 5 shows the whole-body analysis results. From the results, lipid contents
in the FM20 and FM30 groups were significantly higher than that in the CON group
(p < 0.05), and the FM30 group had significantly lower ash content than that of the CON
group. No significant differences in moisture or protein content were observed between
the CON and experimental groups (p < 0.05).

Table 5. Whole-body proximate composition of growing olive flounders (Paralichthys olivaceus) fed
experimental diets for 20 weeks (% on wet basis).

Measurement
Diets

CON FM20 FM30

Moisture (%) 70.0 ± 0.01 ns 68.3 ± 1.19 69.4 ± 0.52
Protein (%) 21.3 ± 0.73 ns 21.5 ± 0.58 21.9 ± 0.70
Lipid (%) 4.69 ± 0.19 a 5.44 ± 0.15 c 5.01 ± 0.14 b

Ash (%) 3.40 ± 0.01 b 3.14 ± 0.17 ab 3.05 ± 0.09 a

Values are means of duplicate groups of fish. Values in each row with different superscript letters are significantly
different (p < 0.05). ns, not significant.

The GSI from all experimental groups tended to increase with body weight, and the
CON group had a significantly higher value after 16 weeks (p < 0.05). The FM20 group had
a significantly higher GSI after 8 weeks (p < 0.05), and the FM30 group had a significantly
higher GSI after 16 weeks (Figure 2, p < 0.05).
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Figure 2. Gonadosomatic index (GS (A)) and total body weight (B) of the olive flounder Paralichthys olivaceus. Data are
presented as the mean ± SEM (n = 20). Different letters above the bars indicate significant differences (p < 0.05) between
groups at each sampling time point. CON is the control basal diet in which no fishmeal was replaced, FM20 is the diet with
20% of the fishmeal replaced, and FM30 is the diet with 30% of the fishmeal replaced.

3.2. Male and Female Identification and the Histology of Oocyte Development

The sex ratio of 20 randomly selected flounders from each group was determined
during each experimental week. The sex ratios in the CON, FM20, and FM30 groups at 8, 16,
and 20 weeks are shown in Table 6. There were more females than males. From assessments
of gonadal development, a large number of nucleoli was observed in the nucleus as the size
of the oocyte nucleus increased in all experimental cells (Figure 3). The 20-week oocytes
in the FM20 group were significantly larger than those in the CON and FM30 groups
(p < 0.05), but overall, the size of the oocytes increased over time, with no significant
differences at the other experimental timepoints (Figure 4, p > 0.05).

Table 6. Results of olive flounders (Paralichthys olivaceus) sex ratio from three experimental groups. F,
female; M, male.

Weeks
Experimental Groups

CON (F:M) FM20 (F:M) FM30 (F:M)

8 9:1 8:2 7.5:2.5
16 7.5:2.5 8.5:1.5 5:5
20 7:3 9:1 8.5:1.5
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Figure 3. Hematoxylin and eosin-stained gonads of female olive flounders (Paralichthys olivaceus) fed low-fishmeal diets.
(A–C), oocytes of 8 weeks (n = A − 18, B − 16, C − 15); (D–F), oocytes of 16 weeks (n = D − 15, D − 17, E − 10); (G–I),
oocytes of 20 weeks (n = G − 14, H − 18, I − 17). CON, control diet; FM20, diet with 20% of the fishmeal replaced; FM30,
diet with 30% of the fishmeal replaced. Oc, oocyte; Nc, nucleus; No, nucleolus; Fc, follicular cell; Ol, ovarian lumen.
Scale bars = 50 µm.

Figure 4. Oocyte diameters measured at 100× magnification at 8 weeks, 16 weeks, and 20 weeks.
Data are presented as the mean ± SEM (n = 10). Different letters above the bars indicate significant
differences (p < 0.05) between groups. CON, control diet; FM20, diet with 20% of the fishmeal
replaced; FM30, diet with 30% of the fishmeal replaced.

3.3. Expression of Endocrine Hormones Related to Sexual Maturation

According to the sex ratios in the CON, FM20, and FM30 groups at 8, 16, and 20 weeks,
the minimum number of female olive flounder is ten distributed in FM30 groups. To have
an equal comparison, the number of female olive flounder used in each experiment in this
investigation was ten.
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3.3.1. Hypothalamic Kiss-I, sbGnRH, and PSS-I mRNA Expression

The expression of hypothalamic hormones related to sexual maturation was deter-
mined at the beginning and end of the experiment. The expression of Kiss-I, which affects
sbGnRH synthesis by modulating external environmental stimuli in the hypothalamus, did
not differ significantly in all experimental groups (Figure 5, p > 0.05). sbGnRH expression
in the CON group did not differ significantly from the initial level and that in the experi-
mental groups (p > 0.05). The expression of PSS-I, which affects growth and maturation,
was significantly higher in the FM30 group compared to initial levels and the CON and
FM20 groups (p < 0.05). No significant difference was observed between the CON and
FM20 groups (p > 0.05). The initial PSS-I expression level was significantly lower for the
CON group and both experimental groups (p < 0.05).

Figure 5. Expression of kisspeptin (Kiss) I, gonadotropin-releasing hormone (sbGnRH), and preprosomatostatin (PSS) I
mRNA in the olive flounder Paralichthys olivaceus. Data are presented as the mean ± SEM (n = 10). Different letters above
the bars indicate significant differences (p < 0.05) between groups. CON, control diet; FM20, diet with 20% of the fishmeal
replaced; FM30, diet with 30% of the fishmeal replaced.

3.3.2. Pituitary GH, FSH-β, and LH-β mRNA Expression

Pituitary GH expression did not differ significantly from the initial level and between
the CON and experimental groups (Figure 6, p > 0.05). FSH-β expression was significantly
higher in the FM20 group compared to the initial level and the CON and FM30 groups
(p < 0.05), and levels in the CON and FM20 groups were higher compared to the initial
level (p < 0.05). The expression of LH-β was did not differ significantly in all experimental
groups compared to the initial level (p > 0.05).

Figure 6. Expression of growth hormone (GH), follicle-stimulating hormone (FSH)-β, and luteinizing hormone (LH)-β
mRNA in the olive flounder Paralichthys olivaceus. Data are presented as the mean ± SEM (n = 10). Different letters above
the bars indicate significant differences (p < 0.05) between groups. CON, control diet; FM20, diet with 20% of the fishmeal
replaced; FM30, diet with 30% of the fishmeal replaced.
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3.3.3. Liver ERα, ERβ, and Vtg mRNA Expression

Hepatic expression of ERα was significantly higher in the FM20 group compared to
the initial level and the FM30 groups (Figure 7, p < 0.05). ERβ expression was significantly
higher in the FM20 group compared to the initial level and the CON and FM30 groups
(p < 0.05), and the lowest values were observed for the initial group (p < 0.05). The initial
Vtg level was significantly lower than those in the CON group and both experimental
groups (p < 0.05). No significant difference in Vtg level was detected between the CON
and FM30 groups (p > 0.05), and the FM20 group had a significantly higher level compared
to the initial level and the CON and FM30 groups (p < 0.05).

Figure 7. Expression of estrogen receptor (ER) α, ERβ, and vitellogenin (Vtg) mRNA in the olive flounder
Paralichthys olivaceus. Data are presented as the mean ± SEM (n = 10). Different letters above the bars indicate signifi-
cant differences (p < 0.05) between groups. CON, control diet; FM20, diet with 20% of the fishmeal replaced; FM30, diet with
30% of the fishmeal replaced.

4. Discussion

Fishmeal usually comprises approximately 60% or more of aquaculture feed, and
research to replace fishmeal has been conducted over a long time [27]. Lim et al. [28]
reported that up to 50% of the fishmeal can be replaced when the replacement is properly
blended with concentrated soy protein, wheat gluten, and poultry by-products and added
to feed. Fish growth and biomarkers are monitored to analyze the growth rate of target
species in feeding experiments. In this study, the experimental fish fed less fishmeal grew
at the same rate as the control fish and exhibited similar or good feed conversion and
protein conversion efficiency. This was similar to the results of studies on the growth of
P. olivaceus [12] and the starry flounder Platichthys stellatus [29] in individuals fed a diet low
in fishmeal content. In this study, no difference in whole-body protein content was observed,
so we believe that reducing an appropriate amount of fishmeal in the feed did not affect
protein composition. Liver and muscle protein increase in sea bass (Sebastes schlegelii) [30]
and mudskipper (Boleophthalmus pectinirostris) during ovarian maturation [31]. In this study,
the gonads and GSI increased during the growing season as well. Ovarian development
in teleost fish is subdivided into synchronous, group-synchronous, and asynchronous
types [32]. Flounder undergo an asynchronous type of development in which early popu-
lations of oocytes exist simultaneously with mature oocytes. In this study, the size of the
nucleus of oocytes increased sequentially and numerous basophilic nucleoli at the edge
of nuclei surrounding by uniformed-stain cytoplasm were observed in all experimental
groups at 8 and 16 weeks. At the period of 20 weeks, in accompanying with oocyte growth,
the nuclei and nucleoli increase in size with less densely stained cytoplasm and invisibility
of zone radiata at all experimental groups. Ovarian development can be divided into
growing, maturing, ripening and spawning, recovery, and rest phases. In the CON and
experimental groups, all flounder ovaries had characteristics of growth to maturation in
this study, suggesting that reducing the fishmeal content by 30% did not affect gonadal
development. Sexual maturation in Osteichthyes occurs under endocrine control [33].
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Kiss-I expression in the hypothalamus was found to be higher during the mature
state than during the immature state in Hongbari (Epinephelus fasciatus) [34], as well as
in mammals such as the Siberian hamster (Phodopus sungorus) [35]. In one maturation
induction experiment, the weight of the gonads increased, and the expression of Kiss-I
also increased once maturity was reached. Kiss-I is associated with food intake in addition
to reproduction. In female rats (Rattus), expression of the Kiss-I gene [36] and the Kiss
receptor gene decreased during and at 18 h after fasting [37]. In this study, the expression
of Kiss-I and GSI conflicted with the outcomes expected from food competition among
individuals during fasting, sample collection, and mass rearing in a farm environment.
sbGnRH induced FSH and LH production by activating the sbGnRH receptor located in
the anterior pituitary gland [38] of the black Porgy, Acanthopagrus schlegeli [39] and the
gilthead seabream, Sparus aurata [40]. In this study, sbGnRH mRNA expression did not
differ significantly between the CON and experimental groups (p > 0.05) but exhibited a
similar trend with Kiss-I mRNA expression. FSH stimulates E2 production by oocytes and
is involved in early gamete formation and gonadal growth. LH induces ovulation [41–43].
The expression level of FSH-β was significantly higher in the FM20 and CON group
(p < 0.05). sbGnRH secretion promotes the secretion of FSH-β and LH-β, and although
there was no significant difference in sbGnRH level in this study, it was confirmed that
FSHβ, which is involved in early maturation, was expressed significantly higher in FM20.
There was no significant difference in the expression of LH-β in all groups because it was
only in the maturation phase and not yet in the ovulation phase [44]. The ER subtypes
are regulated by ERα and ERβ. In mammals, ERα is mainly distributed in the mammary
gland, ovaries, bone, and liver tissue, whereas ERβ is distributed in the prostate, ovaries,
and adipose tissue, and both affect ovarian development [45]. Vtg is synthesized upon
E2 binding to the ER [46]. Vtg is produced in the liver under the influence of E2 and the
ER. Vtg is a high-molecular-weight protein with attached lipids, sugars, and phosphates,
which are taken up by oocytes and used as nutrition for embryonic development after
fertilization [47]. The results of our experiment showed that the expression of ERα was
high, along with high Vtg levels in the FM20 group. PSS-I, expressed in the hypothalamus,
is a somatostatin precursor protein that inhibits the expression of GH in the pituitary
gland [18] and is influenced by hormones during puberty. It was reported that PSS-I
was inhibited in the hypothalamus when sex hormones were injected into rainbow trout
(Oncorhynchus mykiss) [48]. GH secretion increases during puberty [49]. GH increased in
the blood with gonadal development in O. niloticus [50]. However, sex hormones did not
affect GH RNA expression in C. auratus or the fathead minnow Pimephales promelas [51,52].
This is an example of species specificity. In the present study, PSS-I increased as the
substitution rate of fishmeal increased, and trends in its expression contrasted with those of
FSH and LH expression. GH expression did not differ between the CON and experimental
groups, but it exhibited a downward trend, as with PSS expression. Thus, PSS-I affected GH,
suggesting that PSS-I and GH expression are affected by the progression of puberty. Taken
together, sex steroid hormone production and reproductive activity were significantly
higher in the FM20 group than in the CON and FM30 groups.

Therefore, although growth was not affected by a fishmeal substitution rate of 30%,
diet replacement may be ill-advised during the early puberty stage of P. olivaceus.

5. Conclusions

Up to 30% fishmeal replacement in the composition of the basal diet in this study
does not affect growth, but it has been shown that there are some low-grade expressions
of mature related hormones. Therefore, to use low-fishmeal diet in the field, it is believed
that the most appropriate proportion of fish content should be selected by examining the
metabolic and physiological responses in olive flounder as well as the growth of fish due
to reduced fish meal content.
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