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Limonene nanoemulsified with 
soya lecithin reduces the intensity 
of non-isothermal treatments 
for inactivation of Listeria 
monocytogenes
Alberto Garre  1, Jennifer F. espín2, Juan-pablo Huertas2, Paula M. periago2 & Alfredo palop2*

Consumers’ demands for ready-to-eat, fresh-like products are on the rise during the last years. This 
type of products have minimal processing conditions that can enable the survival and replication 
of pathogenic microorganisms. Among them, Listeria monocytogenes is of special concern, due to 
its relatively high mortality rate and its ability to replicate under refrigeration conditions. Previous 
research works have shown that nanoemulsified essential oils in combination with thermal treatments 
are effective for inactivating L. monocytogenes. However, previous research works were limited 
to isothermal conditions, whereas actual processing conditions in industry are dynamic. Under 
dynamic conditions, microorganism can respond unexpectedly to the thermal stress (e.g. adaptation, 
acclimation or increased sensitivity). In this work, we assess the combination of nanoemulsified D-
limonene with thermal treatments under isothermal and dynamic conditions. The nanoemulsion was 
prepared following an innovative methodology using soya lecithin, a natural compound as well as the 
essential oil. Under isothermal heating conditions, the addition of the antimicrobial enables a reduction 
of the treatment time by a factor of 25. For time-varying treatments, dynamic effects were relevant. 
Treatments with a high heating rate (20 °C/min) are more effective than those with a slow heating rate 
(1 °C/min). This investigation demonstrates that the addition of nanoemulsified D-limonene can greatly 
reduce the intensity of the thermal treatments currently applied in the food industry. Hence, it can 
improve the product quality without impacting its safety.

One of the present trends of citizens in developed countries is a higher demand for fresh-like products with nutri-
tional and quality properties similar to raw products1. Linked to the increased consumption of these fresh-like 
foods, the incidence of foodborne illnesses associated to these food types has also grown. One of the foodborne 
pathogens of greatest concern in developed countries is Listeria monocytogenes2. This microorganism is the caus-
ative agent for the illness called listeriosis3, whose mortality rate is about 14%2 (one of the highest among the 
foodborne diseases). L. monocytogenes has been found in a wide variety of food products where it is able to grow 
at refrigeration temperatures (dairy, raw meat, raw vegetables or ready-to-eat foods)4,5. In spite of the efforts by 
regulatory agencies and governments, there has been a significant increase of the listeriosis cases in the European 
Union during the period 2008–20172. One of the latest outbreaks of listeriosis has taken place in Spain involving 
more than 200 confirmed cases, as well as several deaths and miscarriages6. Besides being a hazard for public 
health, the contamination of food by this microorganism can cause irreparable damage to the image of a com-
pany7. L. monocytogenes has the ability to form biofilms and replicate in this state, increasing its potential to 
prevail in food industries8. Consequently, there is a need to find more effective treatments for inactivating this 
microorganism.
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The application of heat treatments is the most common technology used in food industries to inactivate path-
ogenic microorganisms and render food products safe. However, the application of high temperatures can also 
have a negative impact on the nutritional and sensorial attributes of the food9. Due to consumers’ demands for 
high quality products, present food industries are pushed towards reducing the intensity of the treatments or 
seeking alternative technologies that can complement and/or substitute thermal treatments. Among these tech-
nologies, the use of antimicrobials has gained popularity during the last years10. Of special interest are compounds 
of natural origin with an antimicrobial effect, probably due to the consumers distrust for synthetic antimicrobials. 
Among these natural compounds, components of essential oils have shown remarkable antimicrobial and even 
antioxidant and anti-carcinogenic properties11,12. The antimicrobial action of essential oils has been attributed to 
their ability to interact with the membrane of microbial cells, which they can often penetrate. Then, they can cause 
the leakage of different elements of the cytoplasm, finally leading to cellular breakdown13.

However, there are still several technological challenges that limit the application of natural antimicrobials in 
food industries. They are susceptible to oxidative degradation (which greatly reduces their effect) and they have 
a pronounced aromatic character that can impact the flavor of the food product. Moreover, they are immiscible 
in aqueous media, which hampers their application in food products. Therefore, the development of techno-
logical solutions to optimize the application of these compounds in foods has become an important part of the 
research in food science. Nanoemulsion technology has emerged in the last years and is providing very promising 
results14–16. Nanoemulsions, with droplet size of up to 0,5 µm, are usually more kinetically stable than coarse 
emulsions17. This results in an increase in the presence of the antimicrobial agent in food matrices, where they 
may interact with the relevant foodborne microorganisms18,19. Nanoemulsions of essential oils have provided 
satisfactory results against a wide variety of microorganisms. Their antimicrobial effect was even more acute when 
applied in a nanoemulsified form12,14,18,20–22. The reason for that is that the smaller size of the nanuemulsified 
droplets increases the surface area coming in contact with bacterial cells and promotes the interaction between 
the antimicrobial agent and the cell membrane of the microorganism22–24.

Among the essential oils, D-limonene has shown remarkable antimicrobial properties when combined with 
thermal treatments20,25–27. D-limonene is an important flavour component in citrus essential oil (lemon, orange, 
tangerine, etc.), and has the generally regarded as safe (GRAS) status28. Maté et al.25,26 and Ros-Chumillas et al.27 
have studied the synergistic effect of a mild heat treatment and an essential oil nanoemulsion. The synergistic 
effect led to a 100-fold reduction of the thermal resistance of L. monocytogenes both in culture medium26 and 
in apple juice25, and a 50-fold reduction of the thermal resistance of Salmonella Senftenberg27, which are, by far, 
the largest reductions in microbial heat resistance ever published when combining heat with natural antimicro-
bials. However, these studies were limited to the application of isothermal treatments (constant temperature), 
whereas in the ones actually applied in industry the temperature is dynamic. Indeed, to our knowledge, no pre-
vious research has been performed on the effect of such combined processes on dynamic thermal treatments. 
Although thermal inactivation of microbial cells has been studied for over a century, due to the limitations of the 
experimental equipment, until the late 1990s most studies were limited to isothermal conditions. In the last cou-
ple of decades, the study under controlled laboratory conditions of dynamic treatments has shown the difficulties 
for predicting the microbial response under dynamic conditions based on isothermal experiments29. There is 
empirical evidence that dynamic treatments may enable microbial cells to develop a physiological response that 
may increase their resistance to the thermal stress30–34. On the other hand, some research works have observed 
that a rapid heating of the cells may result in an increased sensitivity, reducing its resistance to posterior stresses35. 
These physiological mechanisms are not yet well understood at a molecular level and is currently an active field 
of research36,37. Consequently, it is required to perform dynamic experiments at a population level to observe 
possible interactions between the temperature level, the dynamics of temperature and other effects, such as the 
presence of an antimicrobial. Hence, the aim of this study is to evaluate the combined effect of a thermal treat-
ment with a nanoemulsion of D-limonene, using an innovative emulsification technique based on soya lecithin, 
on the inactivation of L. monocytogenes. We have performed experiments under isothermal and dynamic heating 
conditions to assess the interaction between the dynamics of the temperature and the effect of the nanoemulsified 
natural antimicrobial.

Results
Figure 1 compares the survivor curves obtained under isothermal conditions for control samples (without nano-
emulsified D-limonene added to the heating medium) and those with nanoemulsified D-limonene. The addition 
of the natural antimicrobial to the heating medium has a dramatic impact on the resistance of the L. mono-
cytogenes cells to the treatment. At 50.0 °C, the control treatment was unable to reduce the microbial count. 
However, the treatment at the same temperature supplemented with nanoemulsified limonene reduced the 
microbial count by 3 log-cycles after only 15 minutes. This level of inactivation is similar to the one attained for 
the control treatment at 57.5 °C after the same treatment time (15 minutes). Consequently, the addition of the 
nanoemulsified natural antimicrobial enables to reduce the treatment temperature from 57.5 °C to 50.0 °C with-
out a negative impact on the safety of the product with respect to L. monocytogenes.

The Geeraerd model was able to describe the microbial response in every case analysed (model predictions 
are illustrated in Fig. 1). This mathematical model enables to quantify the impact of the nanoemulsified limonene 
on the thermal resistance of the microbial cells. Table 1 reports the model parameters estimated for each con-
dition. For the control samples, a D-value of 16.1 min (±0.9 min) was estimated at 53.8 °C. When the natural 
antimicrobial was added to the heating medium, the D-value was reduced by a factor of 25 (0.6 ± 0.1 min at 
53.8 °C). Therefore, according to the model predictions, the addition of the nanoemulsified limonene would ena-
ble a reduction in the duration of the inactivation treatment at 53.8 °C by a factor of 25 without impacting the 
microbial safety of the product. For every treatment where the nanoemulsified limonene was added to the media, 
we observed a tail effect, whose height decreased with the treatment temperature (2.6 ± 0.1 log CFU/ml at 50.0 °C, 
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1.2 ± 0.6 log CFU/ml at 52.5 °C, 0.4 ± 0.5 log CFU/ml at 55.0 °C and 0.4 ± 0.2 log CFU/ml at 57.5 °C). Tail effects 
are common in microbial inactivation and can be attributed to several causes. They can be an indicator of a 
fraction of the microbial population that is more resistant to the treatment due to the inherent between-cell vari-
ability38,39. Another explanation for tail effects is that they are an artefact caused by the sampling error associated 
to the plating technique38,40. Garre et al.40, based on numerical simulations, provided upper bounds for the tail 
effects to be expected for different experimental settings. Accordingly, the tail effects observed at 55.0 and 57.5 °C 
could be artefacts, whereas those observed at 50.0 and 52.5 °C are representative of a resistant sub-population.

Figure 2 compares the microbial counts of L. monocytogenes observed for control samples (red dots) and those 
supplemented with nanoemulsified D-limonene for non-isothermal treatments with different heating rates. As 
well as for the isothermal case, the addition of the nanoemulsified antimicrobial has a strong influence on the ther-
mal resistant of the bacterial cells. For the treatment with a heating rate of 1 °C/min (Fig. 2A), the addition of the 
nanoemulsified antimicrobial reduces the time required to cause 3 log-reductions in the count of L. monocytogenes 
from 22 min to 12 min. Similarly, for the treatment with a heating rate of 10 °C/min, the time is reduced from 
2.5 min to 1.5 min. Finally, for the treatment with a heating rate of 20 °C/min, the time to achieve 3 log-reductions is 
reduced from to 1.25 min to 0.6 min. Consequently, the addition of the nanoemulsified D-limonene is also effective  
at reducing the intensity of the thermal treatment also under non-isothermal conditions.

Discussion
Food producers will face several challenges during the next decades. It is expected that the global population will 
be higher than 9 billion by 205041. On top of that, a growing middle class implies an increase in the demand of high 
quality products, with fresh-like attributes (sensorial and nutritional)16. These challenges require the development  
of novel technologies for food processing, preservation and stabilization1. In this sense, the application of 

Figure 1. Survivor curves obtained under isothermal conditions. Red dots indicate treatments without the 
addition of the nanoemulsified limonene. Samples with limonene are shown are blue triangles. The lines 
illustrate the model fits (dashed for samples with limonene, dotted for samples without). The facets represent 
different treatment temperatures (note the different scales in the x-axis).

Parameter Value

Control samples
D-value at 53.75 °C 16.10 ± 0.85 min

z-value 4.95 ± 0.18 °C

Samples with 
nanoemulsified limonene

D-value at 53.75 °C 0.64 ± 0.07 min

z-value 7.45 ± 0.79 °C

log Ntail at 50 °C 2.60 ± 0.14 log CFU/ml

log Ntail at 52.5 °C 1.16 ± 0.61 log CFU/ml

log Ntail at 55 °C 0.42 ± 0.48 log CFU/ml

log Ntail at 57.5 °C 0.42 ± 0.17 log CFU/ml

Table 1. Model parameters (±standard error) of the Geeraerd model estimated from isothermal inactivation 
experiments.
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nanotechnology to enhance the antimicrobial effect of emulsified natural antimicrobials seems a promising tech-
nique for microbial inactivation.

The first studies analyzing the effect of natural antimicrobials in the heat resistance of various vegetative cells 
observed a mild impact (on the order of a three-fold reduction)42–45. However, when D-limonene was present in 
form of nanoemulsion, Maté et al.26 observed a 100-fold reduction in the thermal resistance of L. monocytogenes 
in Tryptic Soy Broth. A dramatic decrease in heat resistance compared to the one observed in previous research 
works, where the antimicrobial was not nanoemulsified. A similar effect on the heat resistance of L. monocy-
togenes was also observed in apple juice, demonstrating its potential application in foods25. In a similar study for 
Salmonella Senftenberg27, a reduction in the microbial resistance by a factor of 50 was observed. In this study we 
have observed a reduction in the D-value by a factor of 25. The lower impact observed in our study can be asso-
ciated to the effect of the heating medium, whose composition can have a strong impact on the effectiveness of 
the nanoemulsified antimicrobial25. It could also be associated to the emulsifier used, soya lecithin, with a higher 
molecular weight than Tween 80, that could interfere with the interaction between the bacterial membrane and 
the antimicrobial. Soya lecithin has also been shown to promote only slightly the aqueous-phase concentration 
of essential oils, in contrast to other emulsifiers, which, in consequence, significantly enhanced the bactericidal 
activity of these same essential oils46. Even the emulsification procedure could have an effect, catastrophic phase 
inversion versus high shear homogenisation, either of which may diminish the antimicrobial effectiveness of 
the nanoemulsion. Indeed, our data showed a loss on the bactericidal effect of the nanoemulsion when soya 
lecithin was used instead of Tween 80 and propylene glycol. Still, these ingredients could be more appreciated 
by potential customers, due to their preferences for more natural food products47. Despite a lower effect on the 
thermal resistance of the cells, our results imply that the intensity of the isothermal treatment could be reduced 
considerably without affecting the safety of the product with respect to L. monocytogenes. Considering the nega-
tive impact of the thermal treatment in the quality of most food products, the reduction in the treatment intensity 
enabled by the nanoemulsified antimicrobial would improve the product quality. These data open the door for 
new researches that help to improve this natural based technology with the aim of achieving or even overpassing 
the effect of the traditional ones.

The shaded areas of Fig. 2 depict the prediction intervals of the inactivation model based on the parameters 
estimated from isothermal experiments. In every case, there are relatively large deviations between the model 
predictions based on isothermal data and the dynamic observations. This is a common observation in micro-
bial inactivation30–35,48. It has been reported that L. monocytogenes can develop a physiological response to mild 
stresses, that increases its resistance to posterior treatments36,37. This adaptive response has also been observed for 
microbial cells which had been previously received shocks (treatments of short duration and high intensity)49,50. 
This physiological response can also be relevant during non-isothermal treatments, when the temperature is 
raised slowly and enables cells to develop a response that increases its resistance. This type of response is usually 
called “stress acclimation”. Garre et al.33 observed that the adaptive response of L. monocytogenes cells subjected 
to non-isothermal treatments was irrelevant for heating rates higher than 3 °C/min. However, stress acclimation 
could increase the D-value by a factor of 2.2 for lower heating rates. Those results are consistent with the results 
obtained in this investigation for a heating rate of 1 °C/min (Fig. 2A).

It has also been reported that high heating rates can also have an impact on the microbial response of micro-
organisms. Several studies have shown that heating rates above 10 °C/min can reduce the resistance of microbial 
cells to thermal stress35,51. This effect results in a lower microbial count to the one predicted based on isother-
mal experiments. The results obtained in this investigation for a heating rate 20 °C/min are consistent with this 
hypothesis. Regarding the results obtained for a heating rate of 10 °C/min, the samples without limonene show an 
additional sensitivity of microbial cells, which is consistent with the hypothesis that high heating rates increases 
the effect of the thermal treatment. However, the response of samples supplemented with nanoemulsified 

Figure 2. Comparison between predictions based on isothermal data and survivor curves for dynamic 
treatments with a heating rate of (A) 1 °C/min, (B) 10 °C/min and (C) 20 °C/min. Red dots indicate treatments 
without the addition of the nanoemulsified limonene. Samples with limonene are shown are blue triangles. 
The ribbons represent the prediction intervals (95% confidence) based on isothermal experiments for control 
samples (red) and samples with nanoemulsified limonene (blue).
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limonene is more complex. At the beginning of the treatment, a high reduction in the microbial load is observed, 
compatible with the hypothesis that high heating rates result in further microbial inactivation. However, at the 
end of the treatment (t = 2 min), the microbial count is higher than predicted based on isothermal experiments. 
This could be explained by a physiological response of the cells to the treatment that increases its thermal resist-
ance. In many cases, this response can increase the ability of cells to survive stresses of a different nature than the 
one that caused the response52. In a similar fashion, the addition of the nanoemulsified antimicrobial could trig-
ger the physiological response that increases its thermal resistance, resulting in survivor curves similar to those 
observed when stress acclimation is relevant.

It is worth highlighting that our experimental results have been obtained using laboratory media (BPW), 
not an actual food product. Most food products are complex media with several components (e.g. fat and fibers) 
that can affect microbial growth and inactivation25,53–56. For that reason, exploratory research works aiming to 
understand the microbial response, rather than to validate its application in an actual food product are usually 
performed using standardized laboratory media. Naturally, before being applied in an actual food process, the 
use of nanoemulsified D-limonene to improve the efficiency of dynamic thermal treatments should be tested on 
actual food products. Nevertheless, our experimental results, albeit obtained in laboratory media, point out that 
dynamic effects can be very relevant and that they should be analysed when this type of combined treatment is 
validated in an actual food product.

There are still several technological limitations to overcome before antimicrobials can be used at large scale in 
food production. Nevertheless, our results show the big promise that natural antimicrobials bring to reduce the 
intensity of pasteurization processes. The application of nanotechnology to produce a nanoemulsion based on a 
natural essential oil emulsified using an also natural substance can solve several of these shortcomings, increasing 
the antimicrobial effect of the essential oil, as well as increasing its stability. Our results confirm previous investi-
gations, proving the strong effect of nanoemulsified D-limonene on the thermal resistance of L. monocytogenes. 
We also show that the design of non-isothermal treatments bring additional complexity, due to several physio-
logical responses (e.g. stress acclimation) that are not relevant in isothermal treatments. In this sense, the appli-
cation of the antimicrobial may contribute to triggering the adaptive response of the microbial cells, reducing the 
effectiveness of the treatment if applied at conditions that enable for this behaviour (i.e. a slow heating rate). But 
overall, our results show the positive impact on food safety of the synergistic effect observed after the combination 
of a nanoemulsified antimicrobial with heat, moreover, when the target microorganism is a foodborne pathogen 
of great present concern, such as L. monocytogenes. Still, considering that heat treatments applied in industry are 
non-isothermal, further research is needed in order to define realistic treatments supplemented by a nanoemul-
sified D-limonene.

Methods
Bacterial strain. L. monocytogenes CECT 4032 was used in this study and it was provided by the Spanish 
Type Culture Collection (CECT, Valencia, Spain). This strain was stored at −80.0 °C (30% glycerol) until use. 
Fresh cultures of L. monocytogenes were prepared by inoculating a loop of the cryopreserved culture in tryptic 
soy broth (TSB; Scharlau Chemie S.A., Barcelona, Spain) and incubating overnight at 37 °C until the stationary 
growth phase was reached.

Preparation of nanoemulsions. Nanoemulsions of D-limonene were prepared following the protocol 
described by Maté et al.26, but with some significant modifications. Aqueous phase was prepared by mixing 20 mL 
of sterile distilled water and 10 g of commercial soya lecithin (Korott, Alicante, Spain) and keeping the mixture 
for 1 h at 50.0 °C in a water bath to allow for lecithin hydration. After hydration, the mixture was homogenised 
with a mixer. Once the aqueous phase was ready, 3.23 mL of D-limonene (Sigma Aldrich Chemie, Steinheim, 
Germany) were added to 2.5 g of the aqueous phase. Then, sterile distilled water was added to get a final volume 
of 20 mL. Nanoemulsion was prepared using an ultra-turrax ultrasonic homogeniser at 300–500 rpm for 15 min, 
under aseptic conditions. Final concentration of D-limonene in the nanoemulsion was 1M. Nanoemulsions were 
aliquoted in pre-sterilized test tubes and stored in refrigeration until use. Droplet size was determined at the 
beginning and at the end of the experiment. Size distribution of the oil droplets were determined by the laser light 
scattering method using Mastersizer 2000 (Malvern Instruments, Worcestershire, UK), as already described26. No 
differences were found in size distribution along the time the present research was performed (data not shown). 
Droplet size distribution was similar to those obtained in previous researches for D-limonene nanoemulsions20,25.

Heat treatments. Thermal inactivation kinetics for L. monocytogenes in buffered peptone water (BPW; 
Scharlau Chemie) supplemented or not with 0.5 mM nanoemulsified D-limonene was determined in a thermore-
sistometer Mastia as described by Conesa et al.57. D-limonene was added to pre-sterilized BPW in sterile condi-
tions. Then, the vessel of the thermoresistometer was filled with 400 mL of pre-sterilized BPW supplemented (or 
not) with D-limonene. Heat treatments were conducted at 50.0, 52.5, 55.0 and 57.5 °C for isothermal treatments. 
For dynamic experiments, initial temperature was set at 40 °C. Then, heating rates of 1, 10 or 20 °C/min were 
applied. Once the heating medium temperature had attained stability (±0.05 °C), it was inoculated with 0.2 mL 
of the cell culture (approx. 109 cells mL−1). Every experiment was made with stirring in the vessel. At preset 
intervals, 1 mL samples were collected into sterile test tubes, which were cooled down in ice to stop the thermal 
treatment. Then, decimal dilutions were immediately performed. Surviving cells were enumerated in tryptic soy 
agar (TSA, Scharlau Chemie). Plates were incubated for 24 h at 37 °C. Each treatment was assayed by triplicate in 
independent experiments performed in different days.

https://doi.org/10.1038/s41598-020-60571-9


6Scientific RepoRtS |         (2020) 10:3656  | https://doi.org/10.1038/s41598-020-60571-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

Mathematical modelling and data analysis. Microbial inactivation was described using the Geeraerd 
model for microbial inactivation58. This model is an extension of the 1st order kinetics model which introduces to 
coefficients (α and β) to describe sigmoid survivor curves. It can be written as a differential equation as shown in 
Eq. (1), where N(t) is the microbial count at treatment time, t.

α β= ⋅ ⋅ ⋅
dN
dt

k N t( ) (1)max

The coefficient α describes shoulder effects (deviations from linearity in survival curves that take place at the 
beginning of the thermal treatment), whereas β describes tails (deviations at the end of the treatment). None of 
the survivor curves obtained show any shoulder effect, so α was fixed to one in every case. Consequently, this 
coefficient was set to one, so it does not have any impact. The equation used in the Geeraerd model for β is shown 
in Eq. (2), where Ntail is the tail height. This parameter represents an asymptote of the survivor curve. Experiments 
without the addition of limonene did not have any tail. For that reason, parameter β was fixed to one in those 
cases. On the other hand, survivor curves where limonene was added to the heating media did have tails.

N
N

1 (2)
tailβ = −

Both α and β take values between zero and one, so kmax represents the maximum inactivation rate. Instead of 
kmax, in this article we report the D-value (DT k

ln10

max
= ), which is frequently used in the field of food microbiology. 

This parameter represents the time that a heat stress must be held to reduce the microbial load a 90% (without 
considering non-linearities). The rate of microbial inactivation has a strong dependence with temperature. This 
relationship has been modelled using the Bigelow model59, which assumes a log-linear relationship between the 
D-value and temperature. This is shown in Eq. 3, where z is the z-value of the microorganism, which defines the 
temperature increase required for a ten-fold reduction of the D-value. This model introduces a reference temper-
ature (Tref), without any biological meaning, but with a positive impact on parameter identifiability60. The  
parameter Dref is the estimated D-value at Tref.

= −
−

D T D
T T

z
log ( ) log

(3)ref
ref

10 10

For isothermal conditions (and in the absence of shoulders), the Geeraerd model has the analytical solution 
shown in Eq. (4). Parameter estimates (for N0, Ntail and D) have been calculated from isothermal experiments by 
fitting this equation to the experimental data. The experiments were estimated using the one-step fitting algo-
rithm, where model parameters for every treatment temperature are estimated in one step. This algorithm has 
proved more accurate than the two-step algorithm, where parameter are estimated sequentially61–63. It has been fit-
ted using the Levenberg-Marquard algorithm, implemented in the minpack.lm R package64. These parameter val-
ues have been used to predict the microbial response under non-isothermal conditions using the bioinactivation  
R package65,66. Prediction intervals for the microbial response under non-isothermal conditions have been esti-
mated using Monte Carlo simulations65,67, considering that each model parameter follows a normal distribution 
with the mean and standard deviations estimated from the isothermal experiments. The quantiles of 1000 Monte 
Caro simulations were used to calculate the prediction interval. All the calculations were performed using the R 
programming language version 3.5.368.

N t N N e N( ) ( ) (4)tail D t
tail0

ln10
= − +−
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