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Abstract

Sea star wasting disease (SSWD) describes a suite of disease signs believed to have led to

catastrophic die-offs in many asteroid species, beginning in 2013. While most studies have

focused on large, easily visible sea stars with widely-dispersing larvae, less information is

available on the effect of this disease outbreak on smaller sea star species, such as the six-

armed sea star Leptasterias spp. Unlike many larger sea stars, Leptasterias brood non-

feeding young instead of broadcast-spawning planktonic larvae. Limited dispersal and thus

limited gene flow may make these sea stars more vulnerable to local selective pressures,

such as disease outbreaks. Here, we examined Leptasterias populations at sites along the

California coast and documented abundance changes coincident with recent Pacific coast

SSWD in 2014. Detection of Leptasterias in central California declined, and Leptasterias

were not detected at multiple sites clustered around the San Francisco Bay outflow in the

most recent surveys. Additionally, we categorized disease signs in Leptasterias in the field

and laboratory, which mirrored those seen in larger sea stars in both settings. Finally, we

found that magnesium chloride (MgCl2) slowed the progression of physical deterioration

related to SSWD when applied to sea stars in the laboratory, suggesting that MgCl2 may

prolong the survival of diseased individuals.

Introduction

Since 2013, sea star wasting disease (SSWD) has affected over 20 different species of sea stars

on both the east [1] and west coasts of North America [2–7], and has caused the largest epizo-

otic of marine invertebrate wildlife currently known [6]. The scale and severity of impact on

multiple ecologically important species of asteroids has caused great concern about ecosystem-

wide effects, leading researchers and managers to call for emergency measures to track disease

effects and develop models to predict future disease outbreaks [8, 9].

Reports of SSWD pathology describe a range of gross morphological signs, including

necrotic lesions, twisting rays, change in turgor, “melting” appearance, ray loss and eventual
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death [2, 3, 6, 10, 11]. Exact pathological impacts of SSWD may vary among individuals and

species, however, highlighting the need for standardized assessment and comparison.

The causative agent or agents of this epizootic are not well understood [1, 12]. While the

outbreak of the disease was originally linked to a sea star-associated densovirus (SSaDV) in

Pycnopodia helianthoides, Pisaster ochraceus, and Evasterias troschelii [6], newer findings sug-

gest that a single virus is not the sole causative agent of the widespread disease [12]. Multiple

interacting pathogens, or perhaps a general decline in asteroid immunity, possibly due to envi-

ronmental stressors, may contribute to the severity and extent of SSWD [7, 12,13]. Increased

sea surface temperature has been correlated with increased severity of SSWD at local and

regional scales [2, 10, 11]; however, lower temperatures have been implicated as well [3].

Across larger spatial scales, anomalously high water temperature was implicated in severity of

SSWD, but not outbreak itself [7]; thus, the role of temperature in SSWD is ultimately

uncertain.

Sea stars such as P. ochraceus and P. helianthoides have been the focal point of most studies

of SSWD thus far [2–7, 10, 14–16] due to their large size, their known ecological importance

[17, 18], and the dramatic impacts of SSWD on their populations. Considerably less is known

about wasting in smaller asteroids found along the North American Pacific coast, such as Lep-
tasterias spp., though these species are also hypothesized to play a significant role in intertidal

food webs [19–22]. In addition to its smaller size, Leptasterias contrasts with P. ochraceus and

P. helianthoides in life history. While the latter disperse via planktonic larvae [23], Leptasterias
lack a planktonic larval stage and brood young until they are fully developed [24–26]. This life

history limits larval dispersal, which may increase vulnerability to disease events by preventing

immigration and genetically isolating local populations [27–31]. Further, severe but localized

mortality has been documented in Leptasterias in California prior to the emergence of SSWD

[32, 33], highlighting the need for broad-scale surveys of regional population abundance

changes, such as those occurring concurrent with SSWD [32, 34]. Size and life history are criti-

cal factors that should be compared among species when describing and reporting a disease

outbreak.

The severity and widespread impact of this disease (both in space and time) mandate the

establishment of pre-disease baselines making considered use of existing data from multiple

sources (e.g. scientific or professional broadscale monitoring data, citizen science data, spe-

cies-targeted collection data for varied purposes) to determine population level impacts. Spe-

cies-targeted baseline population surveys or collections are especially important for relatively

cryptic invertebrate species, such as Leptasterias, that are not currently the detailed focus of

large-scale efforts (though see [35]). Leptasterias spp. are cryptic in that they are both difficult

to locate in the field and to differentiate into species using morphological characters [25].

Multi-year data sets of sea star abundance have historically been rare (though see [7, 35–38])

especially those covering large geographic scales [39–41]. What datasets do exist often vary in

methodology to best fit individual research objectives of smaller studies [42]; though, the coor-

dinated ecosystem-wide monitoring in Miner et al. [35] is an outstanding example of a large,

multidimensional dataset. Large-scale monitoring efforts (e.g. [7, 35]) by professional scien-

tists, as well as those involving citizen scientists (e.g. [35, 43]), have focused on easily quantifi-

able, generally larger species to gain robust data across many collectors and locations. For

example, while P. ochraceus is a target species in coastwide long-term monitoring surveys [35],

Leptasterias is not.Thus, there is a need for baseline datasets for more challenging taxa with

alternative life-history features that may drive different kinds of population trajectories, such

as patchy distributions, highly varied abundances, and cryptic habitats [42, 44–46].

Assessment of disease condition in affected Leptasterias individuals can be challenging, as

their small size and variable, mottled coloration complicates identification of disease signs.
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Thus, standardized documentation of SSWD morphological signs in Leptasterias is necessary

to understand the range and impact of the disease as in other species [8, 47–49].

The goals of this study are to document the population-level impact and etiology of a severe

mortality event in Leptasterias. Our primary demographic focus was detecting abundance

changes in populations near the San Francisco Bay outflow in central California. To provide

geographic context for these surveys and maximize coverage, we made use of existing data of

varied types and goals (timed counts, transects, and quadrats; Leptasterias-focused and general

surveys). Though we recognize potential issues with using multiple data sources, we neverthe-

less feel that the goals of this project are best served by including as much data as possible with

appropriate caution. In addition to taking advantage of survey data, we documented morpho-

logical signs of disease as they appeared in Leptasterias in field and laboratory settings. We

compiled these morphological signs into a 0–4 scale of disease progression with the following

goals: 1) to assess the severity of infection, 2) to compare to other published infection observa-

tions (e.g., [2, 3, 11]) and 3) to allow for standardization and reproducibility across researchers

examining SSWD in Leptasterias. Additionally, we show that magnesium chloride (MgCl2)

application may slow progression of SSWD in a laboratory environment.

Methods

Leptasterias abundance

We used four different data sources available for sites in California: 1) timed counts (S1 Table

“Cohen TC”), 2) Leptasterias-specific data from other projects that did not specifically assess

abundance via timed counts (S1 Table “Cohen other”), 3) published Leptasterias abundance

data [32] (S1 Table “Jurgens et al.”) and 4) data from ongoing long-term rocky intertidal moni-

toring focused mainly on P. ochraceus [35] (S1 Table “MARINe”). 1) and 2) were long-term

surveys focused on central California sites near San Francisco Bay, sites largely excluded by 3)

and 4). Shortly after SSWD was observed, 1) and 2) were expanded northward, further north

than sites included in 3) but overlapping with long-term monitoring in 4) at some sites.

Though the focus of 4) was not exclusively on assessment of Leptasterias abundance change,

we sought to use as much available data as possible to give a more complete picture of abun-

dance and provide context for San Francisco Bay outflow-associated population surveys. To

account for varied sampling methods (long-term monitoring program data [32, 35], timed

counts, quadrat mapping, and sample logs), we converted the highest reported Leptasterias
total count on any single sampling date for each site and year (S1 Table “Leptasterias counted”)

into one of five abundance ranks (S1 Table “abundance rank”). If in a given year multiple data

records were available for a site, we selected the highest reported Leptasterias count for that

year to ensure that presence of Leptasterias at a site was documented. Thus, the overall report

is biased towards higher abundances. An abundance rank of zero indicates that Leptasterias
were not observed in the field at that time. For sites where no Leptasterias were found, we

report the total search effort in observer-hours as well as the total time searched in observer

hours (S1 Table “Leptasterias counted”).

For timed searches that we carried out ourselves, sites were selected based on habitat type,

geographical representation, and availability of previous records of Leptasterias. At each site,

large areas of rocky intertidal habitat suitable for Leptasterias (e.g. pools, crevices, cobble, boul-

ders, mussel beds, rocky shelves and walls) along the mid-low intertidal zone were located and

GPS waypoints or physical markers were noted. Within a given time period, habitats were

searched and the number of Leptasterias recorded. To account for the low number of Leptaste-
rias at some sites, search effort of Cohen Lab timed counts is recorded as observer-hours (S1

Table “Leptasterias/observer hour”), the number of hours spent searching by the number of
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people (e.g. 3 people for 10 min represents a search effort of 0.5 observer-hours). If multiple

timed searches were conducted at a single site during a single outing, the total number of Lep-
tasterias from all timed searches on that date was recorded and all timed searches were used to

calculate a total effort. We considered a total time of 3 hours or more solely dedicated to find-

ing Leptasterias (as in the Cohen TC data) to be a robust data point, given the time and effort

requirements of searching for Leptasterias. Counts were performed by at least 2–3 practiced

observers of intertidal habitats for all central and most northern California sites and, following

an initial visit, always included at least one person familiar with individual features of the site

and with past observations of Leptasterias at that site.

While the Cohen lab has been studying Leptasterias at various sites in central California

since 2007, projects conducted prior to the onset of SSWD were primarily focused on repro-

ductive ecology, behavior, and population genetics. Where timed count data were not available

(especially for years prior to 2014), we included available data such as number of Leptasterias
collected for genetics and culture lab experiments or followed over time in marked plots (S1

Table “Cohen other”) at selected sites, e.g., Mussel Rock. For lack of other more specific data,

we have used the conservative number of individuals collected or monitored, though in most

cases the abundance is likely higher, due to time limitations of collecting trips with numerous

goals.

For data from [32], we used the published total number of Leptasterias counted in 0.25m2

quadrats (S1 Table “Jurgens et al”). Data from [35] (downloaded from https://www.eeb.ucsc.

edu/pacificrockyintertidal/methods/index.html; S1 Table “MARINe”) consists of annually to

biannually sampled sites. We used data from all sites along the California coast that had data

for Leptasterias. Leptasterias counts from 2–3 plots reported for a sampling day were added

together and reported as total counts.

Surveys from varied data sources ranged geographically from Del Norte County (41˚47’N)

to San Luis Obispo County (34˚33’N; Fig 1), and spanned a time period of six years (2010–

2016). Where additional data were available from select central California sites for an earlier

time period (2002–2009), the highest abundance found in that entire seven year period is

reported. Maps of sampling locations were created in R using the ggmap package [50].

Field pathology observations and assessment

We observed morphological disease signs in Leptasterias in the field during repeated trips to

ten intertidal locations between June of 2016 and June of 2017 (see S2 Table for complete list

of sites). These sites range geographically from Friday Harbor, Washington (48˚32’N) to San

Mateo County, CA (37˚11’N) and are varied topographically, often characterized by large

boulders or cobble extending into the ocean, shallow channels, and pools. These tidal areas are

exposed to varying degrees of wave impact, and support a diversity of algae and sessile inverte-

brates. Leptasterias often reside on exposed rock faces, in crevices, in mussel beds, or in or

near pools, often in contact with algae or seagrass.

To assess SSWD severity, a 0–4 scale for Leptasterias was developed (Table 1) based on pre-

vious work on SSWD in P. ochraceus [2,3, 10, 35] and signs of wasting observed in Leptasterias
in the field and lab.

Sea stars were located and collected in small plastic containers for individual assessment

using the 0–4 scale (see above). Individual sea stars were scrutinized in great detail, generally

by multiple observers, who compared assessments so that a consensus score could be recorded

and a common methodology developed. Photographs were also taken of sea stars submerged

in water in plastic tubs, and, when possible, sea stars were further assessed using dissecting

microscopes soon after collection in the field, so that field and lab microscopy assessments
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could be compared. Particular care was taken to consider damage related to SSWD as distinct

from other types of damage common to intertidal sea stars [51].

Laboratory pathology observations

Both visually healthy and visually diseased Leptasterias individuals were collected from three

sites in northern California (Point St. George, Battery Point, and Belinda Point) and two sites

in Oregon (Fogarty Creek, Boiler Bay; S1 Table), and kept in individual aquaria (~14˚C, ~3.0%

salinity; water quality monitored daily).

During the experimental treatment period (6/20/16–8/8/16), sea stars were photographed

daily with a Canon EOS T2i Rebel camera and a Nikon SMZ800 dissecting microscope. Photo-

graphs were taken beginning at the time initial signs of wasting were observed and ending

either at sea star death or the end of the treatment period. Sea stars were removed from tanks

for photography and placed in 80 mL of seawater (3.0–3.2% salinity) in a 237 mL glass dish.

Two relaxation treatments were given to sea stars to slow down motor function for

photography.

All sea stars were chilled on ice for 5–20 minutes each day prior to photography, following

a protocol for relaxing marine invertebrates [52]. The treatment group of sea stars received 20

Fig 1. Map of abundance survey sites in California. Colored symbols indicate regional sampling areas. Refer to S1

Table for more detail.

https://doi.org/10.1371/journal.pone.0225248.g001
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mL of 0.37M MgCl2 added to 80 mL of seawater, and were placed in a refrigerator at ~7˚C for

5 minutes. Temperatures were recorded before sea stars were removed from tanks, after they

remained in bowls on ice for five minutes, after removal from the refrigerator, and again

before returning them to the tank. Careful precautions were taken to avoid cross-contamina-

tion, e.g. hands were washed between each sea star and dishes were bleach-treated and left to

dry before reuse. The number of total days of observations varied among sea stars because not

all sea stars displayed pathological signs of SSWD at the same time during the fixed dates of

the experimental period.

A Logrank test was conducted in Statistix 10 [53] to assess the effect of the MgCl2 treatment

on sea star disease progression and longevity following observation of early signs of wasting

disease.

Results

Leptasterias abundance

The data set consisting of 46 sites along the California coast from 41˚47’N to 34˚33’N was

divided into seven regions based on geographical or oceanographic features (Fig 1, colored

points; [54, 55]). We report regional differences in detection in 2015–2016, with a notable

absence of Leptasterias observations in at least five sites in a region associated with the San

Francisco Bay outflow, spanning approximately 35 km of outer coastline extending both north

and south of the Golden Gate Bridge (Fig 1 orange points; Fig 2; source data, as in Sup file:

Cohen TC, Cohen other, MARINe).

We further report that during this period, both our timed counts and data from [35]

showed abundances in the 100s at multiple sites north of Cape Mendocino, including Enderts,

False Klamath, and Rocky Point. In contrast, Leptasterias were observed in much lower abun-

dance at sites south of San Francisco Bay, where many sites showed abundance in the 10s and

below with the survey methods employed (source for southern data: MARINe. Source for

Table 1. SSWD morphology categories.

Numeric

Category

Category Title Observable morphological signs

0 Visually unafflicted. Unable to detect visual signs of SSWD.

1 Potentially afflicted but not

certain.

Single, small lesion (<¼ surface area of arm), though may not

have lesions at this stage; mild abrasion at end of rays; soft and

spongy tissue; white; “milky” tissue, though may be difficult to

distinguish between normal mottling coloration of Leptasterias
spp.

2 Definite morphological damage

related to SSWD.

Single or numerous small lesions (approximately ¼ surface area

of one or more arms); limited ossicle exposure; some arm tips

show mutilation; mild deflation, twisting rays; rays beginning to

detach from body.

3 Severe morphological damage

related to SSWD.

Lesions on two or more arms (more than ¼ surface area of arm)

or single extensive lesion (more than ¾ surface area of arm);

tissue disruption sufficient to allow clear ossicle exposure; severe

deflation; loss of one or more rays.

4 Very severe morphological

damage related to SSWD.

Many large lesions (lesions on two or more arms, tissue

disruption on arms takes up more than ½ of surface area on

arm); collapse of body wall in areas and exposure of much of

ossicle surface; loss of several (two or more) rays.

0–4 scale of morphological signs associated with SSWD at each stage.SSWD pathological impacts at each stage may

include some or all of these signs.

https://doi.org/10.1371/journal.pone.0225248.t001
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Fig 2. Leptasterias abundance observed from 2010 to 2016. Sampling sites from North to South (41˚47’N to 36˚38’N). Each square represents the greatest number of

Leptasterias found per sampling day for a particular year converted to abundance ranking as follows: black—abundant (>500 individuals); dark grey—common (100–

499 individuals); medium grey—present (10–99 individuals); light grey—rare (1–9 individuals); red—no Leptasterias; white—no data. Asterisks indicate observations

�3 observer hours.

https://doi.org/10.1371/journal.pone.0225248.g002
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Northern data: MARINe; Cohen TC). (Note: due to low volume of past and recent surveys at

some sites, differences between the “zero” and “1–10” ranks may not reflect actual differences

in abundance, and be caused instead by limited sampling). The highest reported abundance at

these southern sites in 2016 was at Pigeon Point, where 60 Leptasterias individuals were

observed.

Detailed observation of pathology in the field

Leptasterias assessed for wasting in the field showed SSWD morphological signs ranging from

completely absent to extremely severe, including several Leptasterias that were presumed dead,

showing disintegration across much of the body wall and lack of movement of tube feet. Indi-

viduals were assessed using a 0–4 wasting scale (Table 1). Photographs of Leptasterias individ-

uals have been included to show examples of each stage (Fig 3).

Lab pathology observations

A range of pathological signs was observed in Leptasterias individuals (n = 11) that were kept

in the lab for the duration of the experiment. The most commonly observed pathological signs

were lesions on the axilla (n = 4 individuals; Fig 4A); lesions on the rays (n = 3 individuals; Fig

4B and 4C); necrosis on proximal pedicellariae (n = 1 individual; Fig 4D); and a hole on the

central disk (n = 3 individuals; Fig 4E and 4F). Wasting progression to death in the ice-only

group was an average of 6 days (range 3–7 days), while wasting progression to death or the end

of observation period in the MgCl2 and ice group was on average 22.1 days (range 3–46 days;

Fig 5). Three Leptasterias lived for the duration of the experiment in the MgCl2 and ice group

(30 days; Fig 5). Neither disease progression nor regression was observed in the sea stars that

survived. A Logrank test in Statistix 10 [53] was not statistically significant (p-value = 0.07),

perhaps related to the small sample size of the treatment groups.

Discussion

Findings of low abundance in Leptasterias varied locally but were most severe in central Cali-

fornia, including multiple populations around the San Francisco Bay outflow where Leptaste-
rias was not observed in the most recent surveys (west of the Golden Gate Bridge, outside the

bay; Fig 1, orange points). In contrast, populations north of Cape Mendocino (Fig 1, green

points) were observed after the SSWD outbreak, and showed high levels of abundance in most

recent surveys (Fig 2), despite the observation of many sea stars in this region displaying signs

of disease. (Note: Leptasterias in Sonoma County (Fig 1, light blue points) had previously

showed population declines and functional extirpations associated with a harmful algal bloom

[32].) Results of these surveys show that disease impact was variable and may be affected by

multiple factors. Gross features of field pathology matched that in the laboratory and etiologies

described in other species [2, 3, 6, 10, 11].

Possible factors contributing to decrease in detection of Leptasterias
SSWD outbreaks and associated population declines are likely influenced by a multitude of

factors. Classically, higher host population density is thought to increase disease transmission

(e.g., [56, 57]) and was correlated with SSWD in P. ochraceus on a local scale [2], but not

broadly [7]. Population density has also been implicated as a contributing factor in a recent

mortality event observed in the circum-antarctic sea star Odontaster validus [58], though this

event differed from SSWD in etiology and is likely unrelated. In Leptasterias, some sites where

pre-outbreak observations often showed high densities of individuals, such as Slide Ranch, no
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longer show evidence of such high density after SSWD appeared in the two following years

(Fig 2; S1 Table). Although the connection between population density and SSWD incidence

is not clear (Miner et al. [7] found no such link), density is one factor among many that

researchers should continue to monitor and compare to gain a holistic understanding of dis-

ease outbreaks such as SSWD.

Given that SSWD has been reported in up to twenty species of asteroids [2, 6], cross-species

infection may be possible, even if the impact of the disease varies greatly among species [35].

Any reduction in host populations would reduce contact between infected and uninfected sea

stars, which could reduce the chance of density-dependent transmission [59]. This holds true

for changes in overall sea star density as well as species-specific density changes, so it is possi-

ble that an initial severe population decline in some of the larger species may have decreased

the cross-species contact rate and lowered the risk of infection of Leptasterias.

Fig 3. Examples of gross morphological signs observed in field Leptasterias across stages of SSWD (categories

0–4). (a) and (b): Visually healthy Leptasterias—category 0. (c) Possible lesions on multiple arms; however, may be

mottled coloration—category 1. (d) Axillary lesion, possibly the result of SSWD, magnified to show ossicle exposure—

category 1. (e) Deflated appearance, lesions on multiple arms—category 2. (f) Distal lesion, possible abrasion at arm

tip—category 2. (g) Deflated appearance, body wall rupture in central disk and arms, internal organs emerging from

disc and arm—category 3. (h) Axillary body wall rupture, advanced arm autotomization—category 3. (i) Extremely

deflated appearance, necrosis in majority of central disk, body wall rupture across most of body—category 4. (j) Body

wall rupture across majority of central disk, complete autotomization of multiple arms, severe abrasion on multiple

arm tips—category 4.

https://doi.org/10.1371/journal.pone.0225248.g003

Fig 4. Morphological signs of disease observed in the laboratory. (a) Wasting lesion in axilla. (b) Early signs of wasting: white lesion on ray.

(c) Wasting lesion on ray with ossicle exposure. (d) Black tissue on tube feet. (e) Wasting lesion on central disk. (f) Close-up of lesion seen in

5e with arrows denoting madreporite and exposed ossicles.

https://doi.org/10.1371/journal.pone.0225248.g004
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Leptasterias population genetic composition across sites may affect disease impact and may

be linked to differential mortality. Leptasterias have limited dispersal potential at all life history

stages [24–26] and thus may be prone to local adaptation [27, 55]. High levels of differentiation

across sites could lead to dramatically different susceptibilities among clades [60]. Recent fine-

scale molecular analysis of Central California Leptasterias [61, 62] revealed a “Bay-proximal”

clade found almost exclusively at sites near San Francisco Bay where no Leptasterias were

observed in 2015–2016 (Fig 2). Differences in observed abundance at sites with different clade

composition [61, 62] suggest that differential susceptibility may exist among different Leptaste-
rias clades. Further, significant allele frequency changes over time were associated with SSWD

in P. ochraceus [63], suggesting that genetic differences in susceptibility to SSWD could lead to

differential survivorship and selection.

Local abiotic effects may also affect disease impact. Drastic changes in abundance in echi-

noderms have been associated with direct and indirect anthropogenic effects [64]. San Fran-

cisco Bay represents one of the largest urban centers along the west coast of the United States

and the largest population center within the geographic range of this study. Hence, Leptasterias
in coastal sites near the San Francisco Bay outflow (e.g., Mile Rock, Muir Beach, Pt. Bonita)

may experience multiple anthropogenic stressors, such as terrestrial runoff or contaminants,

which could lower immunity and increase disease impacts [65–67]. Additionally, San Fran-

cisco Bay historically experiences varying salinities and water outflow [68], abiotic stressors

which may exacerbate disease impacts [69–71]. These conditions may have become more vari-

able in recent years, as changing climate has been associated with higher temperatures and tor-

rential rains [72, 73], possibly leading to an increase in the frequency and severity of disease

events [74, 75]. Both warmer [2, 11] and colder [3] temperatures have been associated with

SSWD, and further study is needed to elucidate these effects. Little attention has been given to

the effects of salinity on SSWD, though results of a laboratory challenge experiment suggest

correlation between SSWD and lower salinity in Leptasterias [13]. Sea stars are often consid-

ered stenohaline organisms that have limited osmoregulatory abilities [76, 77], and although

Fig 5. Survivorship plot depicting the number of days from initial signs of wasting until death or end of

experiment, with MgCl2 + ice treatment in blue, and ice-only treatment in orange.

https://doi.org/10.1371/journal.pone.0225248.g005
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some evidence for local adaptation to different salinities exists (e.g., [69, 77]), it is unclear how

these varying environmental conditions will affect intertidal organisms’ immunity and reac-

tions to disease events. Hence, the significance of local variation in environmental stressors

cannot be ignored.

Comparison to disease signs in other species

Comparing disease-affected organisms with different life histories remains a crucial goal of

ecological surveillance. In both field and laboratory settings, morphological signs associated

with SSWD appeared similar to those observed in larger asteroids, including white lesions on

the rays, twisting arms, and loss of rays [2, 3, 6, 35]. When initially observed, similarity in phys-

ical disease signs across species led researchers to conclude that SSWD represented a single

disease affecting multiple species across sites and regions that could be traced to a specific

pathogen [6]. More recent studies of SSWD, however, suggest a syndrome caused by several

interacting factors that may have variable impacts across species [12], suggesting further

molecular work is needed to elucidate the underlying mechanism of SSWD and determine

whether this mechanism is present across species.

Challenges of documenting SSWD in Leptasterias
We encountered several challenges when observing physical signs of SSWD in Leptasterias in

the field. First, their small size relative to more commonly studied stars [78] may cause them to

be washed away in later stages of disease, when they begin to “melt” and lose their ability to

remain attached to the substrate, biasing collection towards less diseased individuals. Lack of

severely diseased individuals may also complicate comparison to larger asteroid species that

are easier to find, such as P. ochraceus, both by leading researchers to underestimate the num-

ber of Leptasterias present at a given site and by preventing adequate sampling and observation

of disease signs in individual sea stars.

Second, Leptasterias’ often mottled coloration complicated our assessment of physical dam-

age. Many individuals show speckled, grainy patterns, often with patches of white and light-

grey (e.g. Fig 3B and 3G). These features resemble the lesions associated with SSWD (Fig 3C–

3G, [2, 35]) and so led to some ambiguity when assessing sea stars that were less severely

affected. To combat these challenges, multiple researchers assessed each sea star so that a con-

sensus could be reached, microscopes were used to scrutinize each sea star in great detail, and

comparison was made to stars that showed disease signs in the lab.

Third, the physical effects of SSWD in Leptasterias remain speculative. We based identifica-

tion of disease signs in Leptasterias on signs reported in other species, such as P. ochraceus [2,

3, 35], due to the observed similarities of physical SSWD impacts across species. However, as a

common cause for SSWD-related mortality across species remains elusive [12], we cannot

conclude with certainty that the physical signs are the same. More sampling of diseased indi-

viduals, further comparison between disease signs across affected species, and molecular analy-

sis are necessary to elucidate the physical effects of SSWD.

Implications of Leptasterias population decline

We report a pattern of local absence in timed count surveys, in at least 5 populations of Lep-
tasterias located in the outflow shadow of San Francisco Bay (Fig 2). This represents a decrease

in abundance and potentially may also represent local extirpations of populations in a clade-

specific pattern, which may have far-reaching ecological implications. Leptasterias are ecolog-

ically important intertidal predators, exerting top-down effects on the abundance and behavior

of prey species such as the snail Tegula funebralis through density- and trait-mediated indirect
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interactions [22, 79, 80]. Recently, Leptasterias removal was correlated with increased T. funeb-
ralis density, leading to increased density of unpalatable algal species over a ten month period

[81], suggesting that changes in community composition may be rapid and severe. Leptasterias
are also competitors with larger asteroids such as P. ochraceus [22, 79, 80], though are thought

to be competitively inferior “mesopredators” [79]. Although the observed reduction of apex

predators such as P. ochraceus [2, 3, 7, 10, 11] could open up more resources to Leptasterias,
this mesopredator release [82–85] may be offset by proportional declines in Leptasterias popu-

lations associated with SSWD, as well as differences in life history that make it harder for Lep-
tasterias populations to recover. Predicting long-term ecological impacts of SSWD is

challenging due to the variable impacts of SSWD across species and locations [2–4, 6], and

future studies should continue to document and compare population declines across species.

Effect of MgCl2 on SSWD disease progression

Laboratory experiments and observations conducted on Leptasterias spp. indicate that SSWD

may not inevitably lead to death in this species. Affected Leptasterias spp. experienced a slowed

or reduced disease progression after exposure to a combined treatment of MgCl2 and ice. The

current mechanism by which MgCl2 affects sea stars still remains unknown; however, these

results suggest MgCl2 may slow or halt either primary or secondary disease progression in

aquarium settings. It may play a role in eliminating harmful secondary bacterial infections,

allowing sea stars to better cope with viral loads [86–88]. Oysters exposed to MgCl2 saw an

inhibition in phenoloxidase activity, which abated after 96 hours [89]. The phenoloxidase

pathway is associated with the enveloping of foreign material in the haemolymph of inverte-

brates, and the production of antibacterial products [90–93]; thus, it seems counterintuitive

that inhibition of phenoloxidase defenses would slow disease progression. MgCl2 alters the

ionic environment of tissues, thereby affecting the mechanical properties of tissues and making

it a useful tool for invertebrate anesthetization [94]. Comparison of the microbiomes of treated

and untreated sea stars may reveal insights into the effect of magnesium chloride and is cur-

rently being investigated. Additionally, a more extensive and detailed study with precise mea-

sures of lesion size could elucidate the effect of MgCl2 on sea stars afflicted with SSWD.

Conclusions

Due to sea stars’ important predatory role in rocky intertidal ecosystems, it is critical to deter-

mine how populations may recover from mortality events, and we must explore treatment

options when possible. Data on both brooding and broadcast spawning asteroids will facilitate

improved understanding of disease dynamics of SSWD, and given the severity and widespread

effects of this disease (both in space and time), it is critical to establish pre-disease baselines to

determine population-level impacts. The use of shared datasets and data repositories, such as

seastarwasting.org, coupled with continued monitoring will help further our understanding of

SSWD and its population dynamics. Further, characterizing pathology of SSWD is essential to

understanding dynamics and impacts. Field surveys supplemented by careful documentation

of disease progression in the lab are central to this process. Finally, we show that magnesium

chloride treatment may slow or halt SSWD progression of sea stars in aquaria, and its role in

infection should be investigated further.

Supporting information

S1 Table. Site names and locations. “Map color” correspond to colored regions in Fig 1. “Lep-
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column refers to Cohen Lab timed counts. “Data used in Fig 2” column indicates whether data

were included in Fig 2, our heatmap. “Previous die-off observed [32]” column indicates

whether population declines were reported in Leptasterias during a HAB event in [32].

“Source” column indicates where data came from: Cohen lab timed counts (“Cohen TC”),

Cohen lab data not exclusively collected for population abundance monitoring (“Cohen

other”), the MARINe online repository [35]: https://www.eeb.ucsc.edu/pacificrockyintertidal/

data-products/sea-star-wasting/ (“MARINe”), or from [32] (Jurgens et al.).

(XLSX)

S2 Table. Sites used for disease sign observation and photography. “Map color” correspond

to colored regions in Fig 1.

(XLSX)
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