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Abstract

In the current study, we aimed to develop and validate a model, based on our

nationwide centralized coronavirus disease 2019 (COVID‐19) database for predicting

death. We conducted an observational study (CORONATION‐TR registry). All

patients hospitalized with COVID‐19 in Turkey between March 11 and June 22,

2020 were included. We developed the model and validated both temporal and

geographical models. Model performances were assessed by area under the curve‐
receiver operating characteristic (AUC‐ROC or c‐index), R2, and calibration plots. The

study population comprised a total of 60,980 hospitalized COVID‐19 patients. Of

these patients, 7688 (13%) were transferred to intensive care unit, 4867 patients

(8.0%) required mechanical ventilation, and 2682 patients (4.0%) died. Advanced age,

increased levels of lactate dehydrogenase, C‐reactive protein, neutrophil–lymphocyte

ratio, creatinine, albumine, and D‐dimer levels, and pneumonia on computed tomo-

graphy, diabetes mellitus, and heart failure status at admission were found to be the

strongest predictors of death at 30 days in the multivariable logistic regression model

(area under the curve‐receiver operating characteristic = 0.942; 95% confidence in-

terval: 0.939–0.945; R2 = .457). There were also favorable temporal and geographic

validations. We developed and validated the prediction model to identify in‐hospital
deaths in all hospitalized COVID‐19 patients. Our model achieved reasonable per-

formances in both temporal and geographic validations.
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1 | INTRODUCTION

The ongoing outbreak of the novel coronavirus disease 2019

(COVID‐19) has posed a challenge for public health, healthcare

systems, and economies globally. It manifests with a broad clin-

ical spectrum, ranging from asymptomatic patients to critical

septic shock and a multiorgan dysfunction.1,2 Elderly patients and

those with comorbidities are at higher risk of COVID‐19 com-

plications.3,4 Delays in the treatment of patients can be detri-

mental.5 A simple and accurate clinical score for the assessment

of disease severity could help identify the COVID‐19 patients at

a high risk of developing critical illness6 and allow physicians to
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determine which patients can be managed safely at local hospi-

tals and which require early transfer to tertiary pandemic

centers.7

Some prediction models have been developed to guide phy-

sicians to triage and treat high‐risk patients rapidly. Wynants

et al.8 evaluated current prediction models for COVID‐19 and

concluded that all models reported good‐to‐excellent predictive

performance. However, all were appraised to have a high risk of

bias, owing to a combination of poor reporting and methodolo-

gical conduct for the participant selection, predictor description,

and statistical methods used.8,9 They recommended that the

studies should adhere to the TRIPOD statement (Transparent

Reporting of a multivariable prediction model for Individual

Prognosis Or Diagnosis).8,10 However, such a reliable and vali-

dated prediction model is still lacking.8,11

In the current study, we aimed to develop and validate a model

based on our nationwide centralized COVID‐19 database for pre-

dicting in‐hospital deaths.

2 | METHODS

2.1 | Study design and population

We conducted an observational, retrospective, and longitudinal

cohort study (CORONATION‐TR registry) in accordance with the

TRIPOD statement. All patients hospitalized in Turkey with at least

one positive reverse transcriptase polymerase chain reaction (PCR)

test for COVID‐19 between March 11, 2020 and June 22, 2020 were

included in the study. We did not include patients with negative PCR

results, who were aged <18 years or who were not hospitalized. The

Turkish Ministry of Health approved the study with a waiver of

informed consent for retrospective data analysis.

2.2 | National data collection

All these data were obtained from the “public health management

system (PHMS) module” to collect COVID‐19‐specific data (symp-

toms, biomarkers, medications, comorbidities, and clinical outcomes

during index hospitalization). Detailed information about data col-

lection has been published in advance.12

2.3 | Study outcomes

The primary outcome for this study is 30‐day all‐cause death.

We did not include all‐cause deaths in the prehospital period,

after discharge from the hospital, or in patients who were not hos-

pitalized. Patients who were admitted to the emergency department

and who died in the emergency department were also not included in

this study.

2.4 | Selection of candidate predictors

We selected candidate predictors on the basis of known or plausible

associations with exposure to COVID‐19 infection. Candidate pre-

dictor variables obtained at the time of admission are described

below.

(i) Age (years), neutrophil–lymphocyte ratio (NLR), C‐reactive pro-

tein (CRP) (mg/dl), lactate dehydrogenase (LDH) [U/L], D‐dimer

(μg/ml), hemoglobin (Hgb) (mg/dl), albumin (mg/dl), creatinine

(mg/dl), and platelet count (×109/L) were included in the model

as continuous variables using restricted cubic spline (four knots).

(ii) Sex, coronary artery disease (CAD), peripheral vascular disease

(PVD), collagen tissue disorders (CTD), malignancy, lymphoma,

heart failure (HF), chronic obstructive pulmonary disease

(COPD), cerebrovascular disease (CVD), hypertension (HTN),

diabetes mellitus (DM), valvular heart disease, chronic liver dis-

ease, and pneumonia on computed tomography (CT) were

included in the model as categorical variables.

2.5 | Statistical analysis

All statistical analyses were performed using R‐software v. 3.6.3

(R statistical software, Institute for Statistics and Mathematics,

Vienna, Austria) using “rms”, “CalibrationCurves”, “ggplot”, and

“survminer” packages. Continuous variables were presented as a

median and interquartile range, whereas categorical variables were

presented as counts and percentages.

2.6 | Model development

The associations between prespecified candidate predictors and

death were assessed using multivariable logistic regression. The

associations between candidate predictors and outcome were

quantified using the adjusted odds ratio (OR) with a 95% con-

fidence interval (CI). To capture nonlinear associations, con-

tinuous predictors were modeled using restricted cubic spline

transformations (four knots). The adjusted OR for continuous

predictors were shown as inter‐quartile OR. The final model was

fitted using step‐down backward variable selection (α = .05).

Overall predictive accuracy and discriminative ability of the

model were evaluated using R2 and area under the curve‐receiver
operating characteristic (AUC‐ROC orc‐index), respectively.

Agreement between predicted and observed outcomes were

evaluated graphically with calibration plots.

2.7 | Model validation

Validation procedures were as follows13,14:
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TABLE 1 Baseline characteristics of all patients

All patients ICU patients MV 30‐Day death

Variables (n = 60,980) (n = 7688) (n = 4867) (n = 2682)

Age, years 49 (36–63) 65 (52–76) 66 (54–76) 70 (61–79)

Sex, male % 53% (32,303) 60% (4590) 60% (2940) 61% (1643)

NLR 2.30 (1.46–3.81) 3.63 (2.05–6.80) 4.02 (2.20–7.71) 4.95 (2.69–9.48)

D‐Dimer, μg/ml 0.40 (0.22–0.80) 0.84 (0.40–1.95) 0.92 (0.43–2.26) 1.19 (0.57–2.94)

LDH, U/L 225 (184–297) 323 (235–456) 350 (248–492) 410 (298–564)

CRP, mg/dl 6.81 (1.46–27.7) 41.4 (9.43–121) 58.7 (12.5–141) 95.0 (25.3–174)

Hemoglobin, g/dl 13.6 (12.4–14.8) 12.9 (11.4–14.2) 12.7 (11.3–14.0) 12.4 (10.9–13.8)

Platelet counts, ×109/L 208 (169–256) 197 (155–252) 195 (153–250) 187 (147–245)

Creatinine, mg/dl 0.82 (0.69–0.98) 0.93 (0.77–1.20) 0.96 (0.78–1.26) 1.06 (0.84–1.47)

Albumin, g/dl 4.1 (3.7–4.4) 3.4 (3.0–3.9) 3.4 (2.9–3.8) 3.2 (2.8–3.5)

CAD, % 15% (9339) 32% (2452) 33% (1597) 39% (1057)

PAD, % 4.0% (2217) 7.0% (574) 8.0% (369) 9.0% (237)

CTD, % 3.0% (1857) 4.0% (291) 4.0% (198) 4.0% (118)

Malignancy, % 3.0% (1919) 6.0% (488) 7.0% (341) 9.0% (243)

Lymphoma, % 0.1% (227) 1.0% (71) 1.0% (45) 1.0% (27)

Heart failure, % 5.0% (3004) 15% (1167) 16% (773) 21% (563)

COPD, % 21% (12,581) 33% (2511) 33% (1587) 37% (979)

Cerebrovascular disease, % 7.0% (4059) 16% (1224) 17% (810) 20% (548)

Hypertension, % 37% (22,386) 62% (4768) 64% (3126) 74% (1972)

DM, % 19% (11,863) 32% (2495) 34% (1646) 39% (1036)

CKD, % 3.0% (2096) 10% (763) 10% (511) 14% (384)

Healthcare worker, % 6.0% (3557) 3.0% (194) 2.0% (103) 1.0% (15)

Pneumonia on CT, % 60% (36,778) 81% (6257) 83% (4035) 85% (2268)

Dyspnea, % 37% (22,584) 33% (2518) 32% (1564) 30% (809)

Fever, % 38% (23,083) 33% (2570) 33% (1602) 31% (827)

Valvular heart disease, % 1.0% (690) 2.0% (161) 2.0% (103) 3.0% (72)

Cardiac arrhythmias, % 7.0% (3980) 14% (1104) 15% (732) 19% (499)

Chronic liver disease, % 3.0% (1637) 4.0% (281) 4.0% (201) 5.0% (121)

Pregnancy, % 1.0% (440) 0.1% (16) 0.2% (11) 0.05% (1)

In‐hospital treatments, %

Favipiravir 23% (14,185) 63% (4852) 65% (3167) 72% (1929)

HCQ 84% (51,167) 84% (6495) 84% (4070) 81% (2169)

Lopinavir/ritonavir 3.0% (1936) 12% (892) 15% (744) 16% (439)

Oseltamivir 49% (30,138) 58% (4476) 60% (2925) 60% (1608)

High dose C‐vitamin 61% (36,973) 65% (5031) 40% (1945) 44% (1173)

Azithromycin 16% (9598) 37% (2820) 65% (3175) 63% (1766)

Abbreviations: CAD, coronary artery disease; CKD, chronic kidney disease, COPD, chronic obstructive pulmonary disease; CRP, C‐reactive protein;

CT, computed tomography; CTD, collagen tissue disorders; DM, diabetes mellitus; HCQ; hydroxychloroquine; ICU; intensive care unit; LDH, lactate

dehydrogenase; MV, mechanical ventilation, NLR, neutrophil–lymphocyte ratio; PAD, peripheral artery disease.
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(1) Internal validation was assessed using bootstrap resampling

(1000 replications).

(2) For the temporal internal–external validation, the data were

split into two time periods: March 13 to April 30 (early phase)

and April 30 to June 22 (late phase). We developed the model in

the early phase and tested in the late phase.

(3) For the geographic internal–external validation, the data were

split into two geographic regions: Istanbul (the most densely

populated city in Turkey) and the rest of the Turkey (geo-

graphically called as Anatolia). We developed the model in

Istanbul and tested in Anatolia.

Model performances were assessed by AUC‐ROC (c‐index),
R2, Brier score, and calibration plot (calibration‐in‐the‐large,
slope) in internal, temporal, and geographic validations at

30 days.

(4) Geographic internal–external validation was also assessed, as

described in detail by Harrell and Steyerberg.13 The EuroStat

Nomenclature of Territorial Units for Statistics (12 NUTS)15,16

has been considered to be the most standardized geographic

unit for our model. Every NUTS is left out once, for validation

of a model based on the remaining NUTSs (leave‐one‐NUTS‐
out cross‐validation). The final model is based on the pooled

data set, which is labeled as an internally–externally validated

model. The AUC‐ROC, observed/expected (O/E) ratio, cali-

bration intercept, and slope derived from this procedure for

each NUTS were pooled with a random effect model, and

heterogeneity among NUTS was assessed with prediction

intervals (PrI).

2.8 | Handling of missing data

The variables with missing values more than 50% were not included

in the model, whereas for those with less than 50%, with the as-

sumption of missing them at random, multiple imputations were used

to minimize bias and avoid the exclusion of participants. Multiple

imputations were applied for missing values using the aregImpute

function (rms). Five completed data sets were analyzed, and results

were combined using Rubin's rule.17

TABLE 2 Baseline characteristics of hospitalized patients in the
early and late period

Early period Late period

Variables (n = 41,300) (n = 19,680)

Age, years 52 (39–64) 44 (31–57)

Sex, male % 53% (21,815) 53% (10,488)

NLR 2.43 (1.53–4.03) 2.10 (1.35–3.38)

D‐Dimer, μg/ml 0.44 (0.23–0.89) 0.34 (0.19–0.66)

LDH, U/L 232 (187–309) 214 (178–272)

CRP, mg/dl 9.00 (1.91–36.5) 3.92 (0.90–14.7)

Hemoglobin, g/dl 13.5 (12.3–14.7) 13.8(12.6–15.1)

Platelet counts, ×109/L 207 (167–256) 211 (172–255)

Creatinine, mg/dl 0.82 (0.69–0.99) 0.82 (0.69–0.97)

Albumin, g/dl 4.0 (3.6–4.4) 4.2 (3.8–4.5)

CAD, % 17% (7031) 12% (2308)

PAD, % 4.0% (1687) 3.0% (530)

CTD, % 3.0% (1320) 3.0% (537)

Malignancy, % 3.0% (1420) 3.0% (499)

Lymphoma, % 0.1% (171) 0.1% (56)

Heart failure, % 6.0% (2288) 4.0% (716)

COPD, % 22% (9222) 17% (3359)

Cerebrovascular disease, % 7.0% (3074) 5.0% (985)

Hypertension, % 41% (16,741) 29% (5645)

DM, % 21% (8818) 15% (3045)

CKD, % 4.0% (1616) 2.0% (480)

Healthcare worker, % 6.0% (2366) 6.0% (1191)

Pneumonia on CT, % 66% (27,112) 49% (9666)

Dyspnea, % 36% (14,799) 40% (7785)

Fever, % 37% (15,184) 40% (7899)

Valvular heart disease, % 1.0% (495) 1.0% (195)

Cardiac arrhythmias, % 7.0% (3034) 5.0% (946)

Chronic liver disease, % 3.0% (1175) 2.0% (462)

Pregnancy, % 1.0% (295) 1.0% (145)

In‐hospital treatments, %

Favipiravir 24% (10,091) 21% (4094)

HCQ 85% (35,020) 82% (16,147)

Lopinavir/ritonavir 4.0% (1823) 1.0% (113)

Oseltamivir 61% (24,996) 26% (5142)

High dose C‐vitamin 64% (26,451) 53% (10,522)

Azithromycin 18% (7471) 11% (2127)

30‐Day death, % 6.0% (2343) 2.0% (339)

Transferred to ICU, % 15% (6160) 8% (1528)

TABLE 2 (Continued)

Early period Late period

Variables (n = 41,300) (n = 19,680)

Mechanical ventilation, % 10% (4158) 4.0% (709)

Length of hospital stay, days 8 (5–12) 8 (5–12)

Abbreviations: CAD, coronary artery disease; CKD, chronic kidney

disease, COPD, chronic obstructive pulmonary disease; CRP, C‐reactive
protein; CT, computed tomography; CTD, collagen tissue disorders; DM,

diabetes mellitus; HCQ; hydroxychloroquine; ICU; intensive care unit;

LDH, lactate dehydrogenase; MV, mechanical ventilation, NLR,

neutrophil–lymphocyte ratio; PAD, peripheral artery disease.
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3 | RESULTS

The study population comprised a total of 60,980 hospitalized

COVID‐19 patients with positive PCR results at the 945 hospitals in

Turkey between March 13 and June 22, 2020. The median age was

49 years (36–63) and almost half (53%) of the population was male.

Of these patients, 7688 (13%) were transferred to an intensive care

unit (ICU), 4867 patients (8.0%) required mechanical ventilation

(MV), and 2682 patients (4.0%) died. The median length of hospital

stays was 8 days (5–12) and that of ICU stays was 6 days (1–13). The

length of hospital and ICU stays and duration of MV are demon-

strated in Figure S1–S3. The baseline characteristics of all hospita-

lized patients, ICU patients, patients on MV, and patients who died

are demonstrated in Tables 1 and 2.

A total of 12% of deaths within 30 days occurred in the first

5 days and 63% in the first 15 days. Also, 33% of the study population

was less than 40 years, whereas 5% weremore than 80 years. With

the increase in age, the increased risk of death became prominent

(0.3% for <40 years, 1.3% for 40–50 years, 3.4% for 50–60 years, 8.2%

for 60–70 years, 14.4% for 70–80 years and, >80 years for 19.1%).

Similarly, in patients with no comorbidity, the 30‐day mortality rate

was 1.25% (n = 356), whereas the frequency of death increased as the

number of comorbidities increased, reached about 20% when the

number of comorbidities weremore than 7. When 356 patients who

died and had no comorbidity were analyzed in detail, 25.8% (n = 92)

were less than 50 years, 48.3% (n = 172) were 50–70 years, 25.8%

(n = 92) weremore than 70 years. In addition, 80.6% of these patients

were male and 19.4% were female. The relationship between the

number of comorbidities and death risk is shown in Figure S4. The

observed frequency of death, transfer to ICU, and need for MV for

number of comorbidities are summarized in Table S1.

Model development: There are 23 baseline variables available for

inclusion in prognostic model. Table 3 summarizes the multivariable

risk model with adjusted odds ratio and 95% CI for each predictor.

After backward step‐down variable selection (α = .05), age, LDH, CRP,

NLR, creatinine, D‐dimer, albumin, hemoglobin, platelet counts, pre-

sence of heart failure, DM, and pneumonia on CT were found to be the

strongest predictors of 30‐day mortality. Age, LDH, albumin, CRP, and

creatinine accounted for 80% of the variation in 30‐day mortality.

Figure S5 displays the relative importance of each continuous pre-

dictor based on their partial χ2 values of in‐hospital death. The re-

lationship between continuous variables and the risk of outcomes was

markedly nonlinear for majority of continuous predictors (Figure 1).

Internal validation: the multivariable logistic regression model

had excellent discrimination for death (AUC‐ROC = 0.942; 95% CI:

0.939–0.945; R2 = .457). There were also excellent agreements be-

tween observed risk and predicted risk by model in calibration plots

at 30 days (Figure 2). There was a negligible model optimism

(AUC = 0.941; R2 = .454) in bootstrap resampling.

Temporal validation: the present study included 42,512 patients

hospitalized with COVID‐19 during the early phase of the study

(March 13 to April 30) and 21,060 patients hospitalized with

COVID‐19 during the late phase of the study (May 1 to June 22).

Model were developed in the early phase and tested in the late

phase. Estimated AUC was 0.933 (95% CI: 0.929–0.937) in the early

phase and 0.956 (95% CI: 0.948–0.964) in the late phase. Calibration

plots demonstrated that prediction model slightly underestimated

the risk of death at 30 days in the late phase (Figure S6).

Geographic validation: the present study included 23,603

patients hospitalized with COVID‐19 in Istanbul region and 37377

patients hospitalized with COVID‐19 in the Anatolia region. The

Model were developed in Istanbul region and tested in Anatolia re-

gion. Estimated AUC was 0.958 (95% CI: 0.939–0.972) in Istanbul

region and 0.896 (95% CI: 0.890–0.902) in Anatolia region. Calibration

plot demonstrated that prediction model moderately underestimated

the risk of death at 30 days in Anatolia region (Figure S3). In Table 4,

apparent, temporal, and geographic validations are summarized. The

EuroStat 12‐NUTS unit and total sample size/number of in‐hospital

TABLE 3 Multivariable logistic regression models for 30‐day
death

Full model Simple model

Variables

Odds ratio, and

95% CI

Odds ratio, and

95% CI

Age, year 4.24 (3.37–5.34) 4.29 (3.44–5.36)

Sex, male 0.96 (0.86–1.07) –

NLR 1.39 (1.27–1.51) 1.38 (1.27–1.50)

D‐Dimer, μg/ml 1.14 (1.05–1.24) 1.14 (1.05–1.24)

LDH, U/L 2.72 (2.44–3.03) 2.72 (2.44–3.03)

CRP, mg/dl 1.67 (1.51–1.85) 1.67 (1.51–1.84)

Hemoglobin, g/dl 1.03 (0.90–1.18) 1.01 (0.89–1.15)

Platelet counts, ×109/L 0.66 (0.59–0.74) 0.66 (0.59–0.75)

Creatinine, mg/dl 1.64 (1.41–1.90) 1.61 (1.39–1.86)

Albumin, g/dl 0.34 (0.26–0.45) 0.34 (0.26–0.45)

Pneumonia on CT 1.52 (1.34–1.72) 1.51 (1.33–1.71)

Coronary artery disease, yes 0.94 (0.84–1.06) –

Peripheral artery disease, yes 0.85 (0.71–1.01) –

Collagen tissue disorders, yes 1.08 (0.86–1.36) –

Malignancy, yes 1.02 (0.85–1.21) –

Lymphoma, yes 1.08 (0.67–1.75) –

Heart failure, yes 1.27 (1.11–1.46) 1.28 (1.12–1.45)

COPD, yes 1.06 (0.95–1.17) –

Cerebrovascular disease, yes 1.18 (1.04–1.34) –

Hypertension, yes 1.00 (0.88–1.14) –

Diabetes mellitus, yes 1.23 (1.11–1.36) 1.23 (1.11–1.36)

Valvular heart disease, yes 1.12 (0.82–1.52) –

Chronic liver disease, yes 1.24 (0.98–1.57) –

Abbreviations: COPD, chronic obstructive pulmonary disease; CRP,

C‐reactive protein; LDH, lactate dehydrogenase; NLR,

neutrophil–lymphocyte ratio.
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death for internal–external validations are demonstrated in Figure S3.

When using the “leave‐one‐NUTS‐out” internal–external cross‐
validation methods, across the geographic NUTS, AUC ranged from

0.90 to 0.97. The random effect meta‐analysis estimate of mean cross‐
validated AUC was 0.95 (95% CI: 0.93%–0.96% and 95% PrI:

0.90–0.99) for the identification of in‐hospital death in all hospitalized

patients, which was similar to both apparent and the bootstrap‐
corrected estimate of the AUC (Table S3). The model showed good

calibrations in the internal–external cross‐validations.
The nomogram was based on predictors from a simple multi-

variable regression model (Figure S9). The calculated score ranged

from 15 to 235 (Figure S10). The score less than 110 was associated

with very low risk of death at 30 days (<5%), whereas more than 140

was associated with very high risk of death at 30 days (>50%). The

Kaplan–Meier curve demonstrated survival probabilities according

to score categories (Figure S11). The equation of the model and

TRIPOD checklist are also provided (see Data S1 and S2) (http://

coronation-risk.com).

4 | DISCUSSION

In this study, we developed and validated the prediction model to

identify in‐hospital deaths using predictors measured at admission in

all hospitalized patients. Our model demonstrated reasonable per-

formances in both temporal and geographic validations.

Although the majority of COVID prognostic models reported

good‐to‐excellent discriminations, all were found to exhibit a high

risk of bias due to a combination of poor reporting, bias in participant

selection, low sample size, and the use of improper statistical

methods.8 A high risk of bias suggests that the performance of these

models in new samples will probably be poor, and the estimated AUC

indicating near‐perfect discrimination was consistent with over-

fitting. We used one of the largest populations and developed the

model to generalize our findings and reduce the risk of overfitting.

Our model had excellent discrimination. Additionally, we validated

our model on a large temporal and geographic patient cohort,

providing an assessment of model generalizability with minimal

F IGURE 1 Odds ratio (95% CI) plots for the effects of continuous predictors on the outcome. CI, confidence interval
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(or reduced) bias. Discrimination and calibrations of the model were

acceptable in both temporal and geographic validations.

The most frequently reported predictors for any outcome in

patients with COVID‐19 were older age, findings derived from

computed tomography scans, LDH, C‐reactive protein, comorbidities,

NLR, and D‐dimer.1,6,8,18 In our model, the impact of age on in‐
hospital death was more prominent at more than 50 years of age,

whereas the relation between age and in‐hospital death was linear.

The male sex, higher levels of LDH, CRP, D‐dimer, Creatinine, and

NLR, and decreased level of albumin and platelet counts were also

found to be associated with the risk of death. In addition,

hypertension, COPD, and CAD did not emerge as predictors in the

CORONATION‐TR model, despite being identified in prior studies.

The individual contributions of predictors in prognostic model seem

to be consistent with generally accepted scenarios for mechanisms of

worsening in severe COVID‐19 infections characterized by hyper-

inflammatory state, cytokine storm, macrophage activation syn-

drome, the burden of extensive microthrombosis with consumption

coagulopathy, and microangiopathic hemolytic anemia, eventually

resulting in potentially lethal multisystem organ failure.19–21

4.1 | Study limitations

As our model was developed for predicting the outcome in hospi-

talized patients, the results could not allow us to generalize our risk

prediction to nonhospitalized patients. Despite the lack of fully in-

dependent data for external validations of our model, the strong

internal and internal‐validations might obviate the need for external

validation. Data were taken from PHMS records that support the

accurate and fast analysis of large populations. However, we did not

include patients' data that required manual review in the analysis. As

our study was a retrospective study, laboratory tests such as tro-

ponin, ferritin, procalcitonin, and interleukin‐6 were not available for

all patients; however, complete blood count and general biochemical

laboratory data were available. Also, as our study was conducted in

the first month of the pandemic, more studies are needed to docu-

ment changes in results as the pandemic matures. Finally, data re-

garding the discharge with complete recovery or occurrence of

outcome events were available in up to 100% of our large study

population. Thus, we used logistic regression, because censoring

could not provide further benefits to our model.

F IGURE 2 Calibration plot for overall
cohorts

TABLE 4 Model performances for
overall apparent, temporal, and
geographic validations

Apparent Temporal splitting Geographical splitting
All patients Early Late Istanbul Anatolia

AUC‐ROC 0.942 0.933 0.956 0.958 0.896

R2 .461 .454 .439 .531 .324

Brier‐scaled 0.272 0.281 0.158 0.352 0.146

Intercept 0.000 0.000 −0.583 0.000 −0.152

Slope 1.000 1.000 1.022 1.000 0.548
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5 | CONCLUSIONS

Our risk prediction model, based on a data from large nationwide

COVID‐19 database, can provide reliable risk prediction for in‐
hospital death in hospitalized patients.
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Ibrahim Halil Tanboğa https://orcid.org/0000-0003-4546-9227

Özcan Özeke https://orcid.org/0000-0002-4770-8159

REFERENCES

1. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mor-

tality of adult inpatients with COVID‐19 in Wuhan, China: a retro-

spective cohort study. Lancet. 2020;395(10229):1054‐1062.
2. Wu Z, McGoogan JM. Characteristics of and important lessons from

the coronavirus disease 2019 (COVID‐19) outbreak in China:

Summary of a report of 72314 cases from the Chinese Center for

Disease Control and Prevention. JAMA. 2020;323:1239.

3. Docherty AB, Harrison EM, Green CA, et al. Features of 20 133 UK

patients in hospital with covid‐19 using the ISARIC WHO Clinical

Characterisation Protocol: prospective observational cohort study.

BMJ. 2020;369:m1985.

4. Tian W, Jiang W, Yao J, et al. Predictors of mortality in hospitalized

COVID‐19 patients: a systematic review and meta‐analysis. J Med

Virol. 2020;92:1875‐1883.
5. Toniolo M, Negri F, Antonutti M, Mase M, Facchin D. Unpredictable

fall of severe emergent cardiovascular diseases hospital admissions

during the COVID‐19 pandemic: experience of a single large center

in Northern Italy. J Am Heart Assoc. 2020;9:e017122.

6. Liang W, Liang H, Ou L, et al. Development and validation of a

clinical risk score to predict the occurrence of critical illness in

hospitalized patients with COVID‐19. JAMA Intern Med. 2020;180:

1081.

7. Ji D, Zhang D, Xu J, et al. Prediction for progression risk in patients

with COVID‐19 pneumonia: the CALL score. Clin Infect Dis. 2020;71:

1393‐1399.
8. Wynants L, Van Calster B, Collins GS, et al. Prediction models for

diagnosis and prognosis of covid‐19 infection: systematic review

and critical appraisal. BMJ. 2020;369:m1328.

9. Sperrin M, Grant SW, Peek N. Prediction models for diagnosis and

prognosis in Covid‐19. BMJ. 2020;369:m1464.

10. Moons KGM, Altman DG, Reitsma JB, et al. Transparent Reporting

of a multivariable prediction model for Individual Prognosis or

Diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med.

2015;162(1):W1‐W73.

11. Collins GS, van Smeden M, Riley RD. COVID‐19 prediction models

should adhere to methodological and reporting standards. Eur Respir

J. 2020;56:2002643.

12. Kundi H, Cetin EHO, Canpolat U, et al. The role of frailty on adverse

outcomes among older patients with COVID‐19. J Infect. 2020;

4453(20):30636‐30638.
13. Steyerberg EW, Harrell FE, Jr. Prediction models need appropriate

internal, internal‐external, and external validation. J Clin Epidemiol.

2016;69:245‐247.
14. Harrell FE. Regression modeling strategies: with applications to linear models,

logistic regression, and survival analysis. New York: Springer; 2001.

15. NUTS statistical regions of Turkey. https://enwikipediaorg/wiki/

NUTS_statistical_regions_of_Turkey 2020.

16. Statistical regions in the European Union and partner countries —

NUTS and statistical regions 2021. https://eceuropaeu/eurostat/

web/nuts/publications 2020.

17. Marshall A, Altman DG, Holder RL, Royston P. Combining estimates

of interest in prognostic modelling studies after multiple imputation:

current practice and guidelines. BMC Med Res Methodol. 2009;9:57.

18. Lippi G, Plebani M, Henry BM. Thrombocytopenia is associated with

severe coronavirus disease 2019 (COVID‐19) infections: a meta‐
analysis. Clin Chim Acta. 2020;506:145‐148.

19. Feldstein LR, Rose EB, Horwitz SM, et al. Multisystem inflammatory

syndrome in U.S. children and adolescents. N Engl J Med. 2020;383:

334‐346.
20. Jin S, Jin Y, Xu B, Hong J, Yang X. Prevalence and impact of coa-

gulation dysfunction in COVID‐19 in China: a meta‐analysis. Thromb

Haemost. 2020;120:1524‐1535.
21. Goshua G, Pine AB, Meizlish ML, et al. Endotheliopathy in COVID‐

19‐associated coagulopathy: evidence from a single‐centre, cross‐
sectional study. Lancet Haematol. 2020;7:e575‐e582.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the

supporting information tab for this article.

How to cite this article: Tanboğa IH, Canpolat U, Çetin EHÖ,

et al. Development and validation of clinical prediction model

to estimate the probability of death in hospitalized patients

with COVID‐19: Insights from a nationwide database. J Med

Virol. 2021;93:3015–3022. https://doi.org/10.1002/jmv.26844

3022 | TANBOĞA ET AL.

https://publons.com/publon/10.1002/jmv.26844
https://publons.com/publon/10.1002/jmv.26844
https://orcid.org/0000-0003-4546-9227
https://orcid.org/0000-0002-4770-8159
https://enwikipediaorg/wiki/NUTS_statistical_regions_of_Turkey
https://enwikipediaorg/wiki/NUTS_statistical_regions_of_Turkey
https://eceuropaeu/eurostat/web/nuts/publications
https://eceuropaeu/eurostat/web/nuts/publications
https://doi.org/10.1002/jmv.26844



