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Myasthenia gravis (MG) is a devastating acquired autoimmune disease. Previous studies
have observed that disturbances of gut microbiome may attribute to the development
of MG through fecal metabolomic signatures in humans. However, whether there were
differential gut microbial and fecal metabolomic phenotypes in different subtypes of MG
remains unclear. Here, our objective was to explore whether the microbial and metabolic
signatures of ocular (OMG) and generalized myasthenia gravis (GMG) were different,
and further identify the shared and distinct markers for patients with OMG and GMG.
In this study, 16S ribosomal RNA (rRNA) gene sequencing and gas chromatography-
mass spectrometry (GC/MS) were performed to capture the microbial and metabolic
signatures of OMG and GMG, respectively. Random forest (RF) classifiers was used
to identify the discriminative markers for OMG and GMG. Compared with healthy
control (HC) group, GMG group, but not OMG group, showed a significant decrease
in α-phylogenetic diversity. Both OMG and GMG groups, however, displayed significant
gut microbial and metabolic disorders. Totally, we identified 20 OTUs and 9 metabolites
specific to OMG group, and 23 OTUs and 7 metabolites specific to GMG group.
Moreover, combinatorial biomarkers containing 15 discriminative OTUs and 2 differential
metabolites were capable of discriminating OMG and GMG from each other, as well
as from HCs, with AUC values ranging from 0.934 to 0.990. In conclusion, different
subtypes of MG harbored differential gut microbiota, which generated discriminative
fecal metabolism.

Keywords: myasthenia gravis, clinical subtypes, gut microbiota, metabolome, biomarker panels

INTRODUCTION

Myasthenia gravis (MG) is an autoimmune disease caused by autoantibodies that target the
neuromuscular junction (NMJ), leading to partial or systemic muscle weakness and abnormal
fatigability (Gilhus et al., 2016). Based on the location of the affected muscles, patients with MG are
classified as ocular (OMG) or generalized MG (GMG) (Qiu et al., 2018). Ocular myasthenia gravis
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(OMG) is distinguished by fatigable weakness of the extraocular
muscles, eyelids, or both, leading to fatigable ptosis and diplopia
(Vaphiades et al., 2012). Almost 30–80% of patients with OMG
would convert to generalized myasthenia gravis (GMG) within
2 years (Wong et al., 2016). These subjects not only suffer
from ptosis and diplopia but also from limb weakness, bulbar
symptoms, or even respiratory failure (Apinyawasisuk et al.,
2019). Therefore, early recognition and treatment are of great
importance for patients’ quality of life.

Although standard diagnostic tests for MG have good
specificity, they are generally hindered by low sensitivity (thus
high negative predictive value), particularly in cases of isolated
OMG (Benatar, 2006). For example, acetylcholine receptor and
MUSK antibodies have low sensitivity (approximately 0.38–0.71
for OMG, compared to 0.87–0.98 for GMG), although recent
data suggest the sensitivity may be slightly higher than previously
reported (Peeler et al., 2015). Repetitive nerve stimulation
also has poor sensitivity (0.11–0.39 for OMG,0.53–0.98 for
GMG). Single-fiber EMG has higher sensitivity (0.62–0.83 for
OMG, 0.75–0.98 for GMG), but is a technically challenging
procedure with limited availability (Benatar, 2006). Meanwhile,
in the absence of reliable confirmatory tests, the diagnosis
of OMG is often delayed. Furthermore, the physicians must
often consider whether to pursue empiric treatment with agents
including pyridostigmine, corticosteroids, and sometimes other
immuno-suppressant drugs (Dalakas, 2019); and the toxicities
associated with these medications are not trivial. The improved
diagnostic sensitivity can help patients with MG to choose
the right treatment. Therefore, a new test that retains high
specificity while offering improved sensitivity would be a
welcome addition to the diagnostic evaluation available for these
patients (Sashank Prasad, 2016).

The gastrointestinal (GI) tract is an intricate ecosystem
harboring a large number of symbiotic microorganisms, of
which genetic information is 50 to 100 times more than that
of human beings (Whitman et al., 1998). Therefore, the gut
microbiota is considered as the largest and most direct external
environment for human, which plays an indispensable role in
maintaining human health (Rooks and Garrett, 2016). In recent
years, mounting evidences have shown that gut microbiota plays
a crucial role in the onset of central [e.g., autism spectrum
disorder (Hsiao et al., 2013; Sharon et al., 2019)] and peripheral
[e.g., irritable bowel syndrome (Duerkop et al., 2018)] diseases.
Meanwhile, previous studies have found that gut microbial
disorders may attribute to the onset of MG patients through
fecal metabolism (Qiu et al., 2018; Zheng et al., 2019a). For
instance, previous studies have observed that patients with MG
showed a decrease in α-phylogenetic diversity, and significantly
altered gut microbiome and fecal metabolome. Furthermore,
germ-free (GF) mice colonized with MG microbiota (MMb)
showed substantially impaired locomotion ability relative to the
mice colonized with healthy microbiota (HMb). And this effect
could be effectively reversed by co-housing procedures (Zheng
et al., 2019a). However, until now, whether there were significant
differences of gut microbial and metabolomic phenotypes in
different subtypes of MG patients (OMG and GMG) remains
largely unknown.

To address this issue, the gut microbiome and fecal
metabolome among OMG, GMG and HCs were compared. 16S
ribosomal RNA (rRNA) gene sequencing is beneficial to describe
the microbial composition (Yarza et al., 2014), but cannot explain
the functional changes. Furthermore, Gas chromatography-mass
spectrometry (GC–MS)-based metabolomics were performed
to unravel the overall metabolite profiles of fecal samples.
Thus, these two complemental methods were used to identify
the shared and distinct markers for patients with OMG and
GMG. In addition, we ought to determine the discriminative
performance of these microbial and metabolic markers in
different subtypes of MG.

MATERIALS AND METHODS

Subject Recruitment and Sample
Collection
All the data were derived from our previous investigation (Zheng
et al., 2019a). Briefly, ptients with MG were diagnosed and
classified based on previous literature (Cortes-Vicente et al.,
2016). The quantitative myasthenia gravis (QMG) test was used
to quantify the severity of MG (scores range from 0 to 39) (Wolfe
et al., 2016). Moreover, MG subjects were classified as one of two
subtypes including OMG cohort (class I, n = 31) and GMG cohort
(class IIa and IIb,n = 39) based on modifications of Osserman’s
(Jaretzki et al., 2000). At last, 31 OMG patients [age, 41.0 (27.0–
67.0); sex, male: female, 18:13; BMI, 22.2 (19.5–25.2)] and 39
GMG patients [age, 45.0 (33.0–56.0); sex, male: female, 13:26;
BMI, 22.9 (19.6–24.5)] were recruited. Similarly, 74 HCs [age,
41.5 (26.0–52.3); sex, male: female, 30:44] were recruited from
the medical examination center of the First Affiliated Hospital
at Chongqing Medical University (Table 1). Participants with
hepatic and/or renal diseases, gastrointestinal tract disorders,
tumor, metabolic diseases, psychiatric disorders or any other
disease that could affect the results of the study were excluded.
None of the individuals took any antibiotics, probiotics, or
prebiotics within 1 month prior to sampling. Fresh midstream
stool samples from the recruited subjects were collected with a
sterile cup and then quickly transferred to the sterile tubes. All
collected samples were preserved at 4◦C during transportation.
Then, we stored all the fecal samples at -80◦C till subsequent
processing. The study protocol was reviewed and approved by
the ECCMU. All participants signed a written informed consent
before any procedures were performed.

DNA Extraction, PCR Amplification, and
Illumina MiSeq Sequencing
Total microbial DNA was extracted from stool samples by
means of the QIAamp

R©

DNA Stool Mini Kit (Qiagen, Hilden,
Germany) according to the manufacturer’s protocol. The V3-
V4 regions of the bacterial 16S rRNA gene were amplified by
PCR using primers 338F and 806R (Zheng et al., 2019b) which
contained an eight-base sequence unique to each sample. PCR
reactions were carried out in triplicate 20 µl mixtures. PCR
products were extracted from 2% agarose gels, purified using the
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TABLE 1 | Detailed clinical characteristics of the subjects.

Characteristics OMG GMG HC P-valuea

Sample size 31 39 74 –

Female, n (%) 13 (41.9%) 26 (66.7%) 44 (59.5%) 0.104

Age, median (IQR)b 41.0 (27.0–67.0) 45.0 (33.0–56.0) 41.5 (26.0–52.3) 0.166

BMI, median (IQR) 22.2 (19.5–25.2) 22.9 (19.6–24.5) – 0.615

Duration of disease, median (IQR) 3.0 (1.5–10.0) 4.0 (1.0–6.0) – 0.631

Thymoma/Thymic hyperplasia, n (%) 10 (32.2%) 13 (33.3%) – 0.924

Thymectomy, n (%) 6 (19.4%) 10 (25.6%) – 0.534

AChR antibody test, n (%) 9 (29.0%) 14 (35.9%) – 0.544

Anti-AChR antibody (+), n (%) 6 (19.4%) 9 (23.1%) – 0.706

Immunosuppressive treatment, n (%) 12 (38.7%) 19 (48.7%) – 0.402

QMG, median (IQR)c 2 (1.0–3.0) 5 (2.0–8.0) – 0.002**

OMG, the ocular myasthenia gravis; GMG, the generalized myasthenia gravis; HC, healthy control. aChi-square analyses for categorical variables (sex); non-parametric
factorial Wilcoxon rank-sum/Kruskal–Wallis test for continuous variables (age). bValues are expressed as median with interquartile range (IQR). cQuantitative Myasthenia
Gravis (QMG) test, QMG scores range from 0 to 39. *p < 0.05, **p < 0.01, and ***p < 0.001.

AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union
City, CA, United States) and quantified with QuantiFluorTM-
ST (Promega, United States). The Illumina MiSeq sequencing
protocol was according to our previous published literature
(Zheng et al., 2019a). Briefly, paired-end sequenced (2 × 250)
on an Illumina MiSeq platform according to the standard
manufacturer’s protocols.

16S rRNA Gene Sequence Analysis
Raw FASTQ files were demultiplexed, and quality-filtered using
QIIME (version 1.171). The 250 bp reads were truncated
at any site of more than three sequential bases receiving
an average quality score < 20. Reads shorter than 50 bp
containing ambiguous base calls or barcode/primer errors were
removed. Chimeric sequences were checked by UCHIME2 and
removed from subsequent analyses. Operational taxonomic
units (OTUs) clustering was carried out at a 97% (Gevers
et al., 2005; Grice et al., 2008) similarity threshold using
usearch (version 7.03). α-diversity was measured by microbial
community richness (Chao, Ace) (Minamoto et al., 2015) and
diversity (Shannon, Invsimpson) (Zheng et al., 2019b). Beta
diversity were assessed using unweighted UniFrac algorithms
and visualized by non-metric multidimensional scaling (NMDS)
analysis (Yang et al., 2019). The key different OTUs responsible
for discrimination among the three groups were identified
using linear discriminant analysis (LDA) effect size (LEfSe)
analysis (Riquelme et al., 2019). An implementation of LEfSe
including a convenient graphical interface incorporated in
the Galaxy framework (Blankenberg et al., 2010; Goecks
et al., 2010) is provided online at LEfSe4 (Segata et al.,
2011). We modified the default calculation by controlling
the multiple testing using Benjamini–Hochberg (BH) false
discovery rate (FDR) correction procedure. LEfSe analysis
was conducted under the following conditions: p < 0.05,

1http://qiime.org/
2http://drive5.com/usearch/manual/uchime_algo.html
3http://drive5.com/uparse/
4http://huttenhower.sph.harvard.edu/galaxy/

FDR < 0.1 and LDA > 2.5 (Erawijantari et al., 2020;
Zheng et al., 2020).

Fecal Metabolome Analysis
Fecal metabolomic analysis was performed using gas
chromatography-mass spectrometry (GC/MS; Agilent
7890A/5975C). The acquired MS data from GC/MS were
demultiplexed, and quality-filtered by ChromaTOF software
(v 4.34, LECO, St. Joseph, MI, United States). Any known
pseudo positive peaks, such as peaks caused by noise, column
bleed and BSTFA derivatization procedure, were removed from
the data set, and the peaks from the same metabolite were
combined. The resulting data were imported into a SIMCA
(version 14.0, Umetrics, Umeå, Sweden) to perform orthogonal
partial least-squares discriminant analysis (OPLS-DA) (Chen
et al., 2018). R2X, R2Y were used to assess the goodness-of-fit,
and Q2 was used to assess the predictability of the model. In
addition, using Benjamin Hochberg method (BH method),
FDR values for multiple testing of differential fecal metabolites
between OMG or GMG and control groups were calculated.
By analysis of OPLS-DA loadings, the differential metabolites
responsible for discriminating between the two groups were
identified with p < 0.05, FDR < 0.1 and variable importance
plot values (VIP) > 1.0 (Liu et al., 2016). Kyoto Encyclopedia
of Genes and Genomes (KEGG) database was used to explore
the molecular pathways and biological functions of the identified
differential metabolites (Chou et al., 2009).

To identify combinatorial biomarkers across the OMG, GMG,
and HC groups, the different OTUs and metabolites among the
three groups were analyzed using LEfse and OPLS-DA analysis,
respectively. Further, all discriminative OTUs and metabolites
were input for the random forest classifier (Python’s scikit-
learn package) to predict the discrimination OMG and GMG
(from each other and from HC). In each case, 1000 trees were
considered (other scikit-learn defaults were left unchanged). The
receiver operating characteristic (ROC) curve was obtained (SPSS
V.21.0) for the display of the constructed models, then the area
under the ROC curve (AUC) was used to designate the ROC
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effect. Then, to confirm that testing performance does not benefit
from potential overfitting of RF classifiers, a five-fold cross-
validation was used to investigate prediction errors associated
with our models (Zheng et al., 2020).

Statistical Analysis
Statistical analyses were carried out using SPSS version 21.0
(SPSS, Chicago, IL, United States). For continuous variables such
as age, we used the t-test or analyzed data by ANOVA followed
by LSD’s multiple comparisons tests. We applied non-parametric
factorial Wilcoxon rank-sum test or Kruskal–Wallis test followed
by Dunn’s multiple comparisons tests to compare two or three
groups in case of heteroscedasticity or non-normally distributed
variables. Furthermore, categorical data such as sex were analyzed
by Chi-square test. Statistical significance level was set at p< 0.05.

RESULTS

OMG Subjects Exhibited Different Gut
Microbiota Versus GMG Subjects
Totally, 31 OMG, 39 GMG subjects and 74 HCs were
recruited from our previous study (Zheng et al., 2019a).
The detailed clinical characteristics of these subjects were
presented in Table 1. We found that the QMG scores were
significantly lower (indicating more mild clinical status) in
the OMG group than in the GMG group (P = 0.002).
Besides, there were no significant differences of age and
gender among the three groups. Furthermore, these clinical
characteristics including BMI, duration of disease, history of
thymic hyperplasia were not significantly different between OMG
and GMG subjects.

Here, the alpha diversity indices including microbial
community richness (Chao, Ace) and diversity (Shannon,
Invsimpson) were compared among the three groups.
Consequently, we found that the indices of Ace, Invsimpson and
Shannon were depleted in patients with GMG versus HCs. These
indices were not different between OMG and GMG cohorts, or
the OMG and HC cohorts (Figure 1A). To further investigate
whether the overall microbial phenotypes of patients with OMG
or GMG were different from that in HCs, beta diversity using
the unweighted UniFrac distances was performed. Non-metric
multidimensional scaling (NMDS) analysis showed that a
striking segregation among OMG, GMG and HCs was displayed
at the operational taxonomic units (OTU) level (Stress,0.177;
PERMANOVA, p = 0.001) (Figure 1B). In the NMDS1, the GMG
group was significantly different from OMG and HC groups
(p = 0.038, GMG versus OMG; p = 0.001, GMG versus HCs; one-
way ANOVA) (Figure 1C). In addition, both OMG and GMG
were significantly different from HC in the NMDS2 (p < 0.001,
both; one-way ANOVA) (Figure 1D). Otherwise, control
analyses showed that the OMG, GMG or HC subjects were not
clustered based on gender (Supplementary Figures S1A–C),
medication/treatment history (Supplementary Figures S1D,E).

Next, to identify the differential gut microbes related
to the two subtypes of MG, the relative abundances of
microbial compositions were compared among the three groups

FIGURE 1 | Differential gut microbial characteristics among the GMG, OMG,
and HC groups. (A) α-phylogenetic analysis revealed that the generalized
myasthenia gravis group (GMG, n = 39), but not the ocular myasthenia gravis
group (OMG, n = 31), was characterized by lower bacterial richness (chao,
p = 0.011 by one way ANOVA) and diversity (invsimpson, p = 0.003 by one
way ANOVA and Shannon, p = 0.007 by the Kruskal–Wallis test) than the
healthy control group (HC, n = 74). (B) NMDS analysis displayed a striking
segregation among OMG, GMG and HCs at OUT level (Stress, 0.177;
PERMANOVA, p = 0.001). (C) In the NMDS1, GMG subjects were statistically
distinguished from OMG subjects and HCs. (D) In the NMDS2, both OMG
and GMG were statistically distinguished from HCs (multiple comparisons,
one-way ANOVA). Abbreviation: NMDS, non-metric multidimensional scaling.

at family levels (Figure 2). Here, we found that the gut
microbiome was mainly composed of 12 families among the
three groups (Figure 2A). Among them, the relative abundances
of Lachnospiraceae and Erysipelotrichaceae families were lower
in OMG than HCs. Furthermore, Lachnospiraceae was also
significantly decreased in OMG relative to GMG. For GMG,
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FIGURE 2 | Comparison of the gut microbial composition among the three groups at family and OTU levels. (A) The community bar plot illustrated that the gut
microbiome was mainly composed of 12 families. (B) Families Lachnospiraceae and Erysipelotrichaceae were significantly decreased in OMG group versus HCs,
and the relative abundance of Lachnospiraceae in OMG group was also lower than that in GMG group. In addition, Ruminococcaceae was significantly depleted in
GMG group versus HCs. Compared to HC group, Peptostreptococcaceae, Coriobacteriaceae and Clostridiaceae_1 were depleted, while Bacteroidaceae and
Veillonellaceae were enriched in both OMG and GMG subjects. Moreover, the relative abundance of Peptostreptococcaceae in GMG was lower than that in OMG
group. (C) A venn diagram demonstrated that 653 of 894 OTUs were discovered among the three groups, whereas 14, 18 and 78 OTUs were specific to OMG
(yellow circle), GMG (red circle) and HCs (blue circle), respectively. (Each value represents median with interquartile range, p-values were determined by the
Kruskal–Wallis test).

Ruminococcaceae was significant different (lower) from HCs.
In addition, compared to HC group, Peptostreptococcaceae,
Coriobacteriaceae and Clostridiaceae_1 were depleted, while
Bacteroidaceae and Veillonellaceae were enriched in both OMG
and GMG groups. Moreover, family Peptostreptococcaceae was
much lower in GMG group than that in OMG group. Further,
there were no difference in Bacteroidaceae, Veillonellaceae,
Coriobacteriaceae and Clostridiaceae_1 between OMG and GMG
groups (Figure 2B).

To outline the shared and distinct microbial characteristics
between OMG and GMG patients at length, we further
identified key differential OTUs in OMG or GMG group
versus HCs via LEfSe analysis. Overall, we found that 653
of 894 OTUs were discovered in the three groups, while
14, 18 and 78 OTUs were specific to OMG, GMG and
HCs, respectively (Figure 2C). Totally, we identified 34 and

37 differential OTUs responsible for distinguishing the OMG
versus HCs, and GMG versus HCs, respectively (Supplementary
Table S1 and Supplementary Figures S2A,B). Compared to
HC group, fourteen OTUs were identically changed in both
OMG and GMG groups, which included enriched OTUs
belonging to family Bacteroidaceae (3 OTUs) and depleted
OTUs belonging to families Clostridiaceae_1 (2 OTUs) or
Peptostreptococcaceae (2 OTUs). Additionally, majority of
differential OTUs were peculiar to either OMG (20/34) or GMG
(23/37) group. Compared with HC, OMG-specific OTUs were
mainly assigned to the families Lachnospiraceae (4 decreased
and 2 increased OTUs), Bacteroidaceae (5 increased OTUs)
and Veillonellaceae (3 increased OTUs), while GMG-specific
OTUs were mainly assigned to the families Lachnospiraceae
(7 depleted and 2 enriched OTUs) and Ruminococcaceae (4
depleted OTUs) (Figure 3).

Frontiers in Microbiology | www.frontiersin.org 5 September 2020 | Volume 11 | Article 564579

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-564579 September 6, 2020 Time: 20:45 # 6

Tan et al. Differential Diagnosis of Myasthenia Gravis

FIGURE 3 | A co-occurrence network inferred from the relative abundances of differential OTUs associated with OMG or GMG. The discriminative OTUs related to
OMG or GMG were identified based on LDA ≥ 2.5 and fold change > 2.0. Totally, 71 discriminative OTUs were identified between OMG or GMG and HCs. Among
them, 14 of 71 OTUs were identically changed in both OMG and GMG groups versus HC group (dark green area), whereas most of OTUs were specific to OMG
(20/34) (light green area) or GMG alone (23/37) (pink area). Compared with HC, OMG-specific OTUs were mainly assigned to the families Lachnospiraceae (6 OTUs),
Bacteroidaceae (5 OTUs) and Veillonellaceae (3 OTUs), while GMG-specific OTUs were mainly assigned to the families Lachnospiraceae (9 OTUs) and
Ruminococcaceae (4 OTUs). Size of the dots indicates the relative abundance of the OTUs. Red dots represent enriched OTUs in OMG or GMG group relative to HC
group; blue dots represent depleted OTUs in OMG or GMG group relative to HC group. OTUs annotated to family level were profiled. Edges between dots represent
Spearman’s correlation <- 0.45 (light blue), or >0.45 (light red), edges thickness indicate p-value (p < 0.05).

In addition, co-occurrence network analysis provided an
explanation of the interacting correlation among these changed
OTUs (Figure 3). In OMG group, majority of differential OTUs
were positively correlated with each other. In GMG group,
however, the covariant networks composed of altered OTUs
were rather complex and diverse. For instance, we found that
an intricate covariant networks were displayed among families
Lachnospiraceae, Ruminococcaceae, and Erysipelotrichaceae.
Furthermore, all the Peptostreptococcaceae OTUs were positively
covaried with all the Clostridiaceae_1 OTUs and one depleted
Lachnospiraceae OTU (OTU273).

To further determine the microbial differences between
the OMG and GMG subjects, direct distinction between
the two groups was carried out. Consequently, most of
differential OTUs (9/10) were increased in OMG relative to
GMG subjects (Supplementary Table S2 and Supplementary
Figure S2C). These increased OTUs mainly belonged to
Bacteroidaceae (OTU151 and OTU749), Erysipelotrichaceae
(OTU301 and OTU470) and Lachnospiraceae (OTU349 and
OTU47) (Supplementary Figure S3). Together, these results
further confirmed the difference of microbial composition
between GMG and OMG groups.

The Fecal Metabolome Differed Between
Ocular and Generalized MG Patients
Metabolomic studies have shown that molecules derived from the
microbiota may influence metabolic and behavioral phenotypes

in humans (Blumberg and Powrie, 2012; Nicholson et al.,
2012). Given that each type of MG individuals displayed
different intestinal microbial disorders, we hypothesized that
the fecal metabolome would be different between OMG
and GMG subjects. Here, we further applied non-targeted
metabolomics to characterize the metabolic differences and
similarities in OMG and GMG patients related to HCs. The
orthogonal partial least-squares discriminant analysis (OPLS-
DA) showed that the metabolic signatures of both OMG and
GMG groups were substantially different from that in HC
group (Figures 4A,B). By analyzing the OPLS-DA loading
coefficient plot, a total of 86 differential metabolites were
obtained in the two groups (VIP > 1.0, p < 0.05 and
FDR < 0.1). Intriguingly, majority of these fecal differential
metabolites were shared between the two subtypes of MG.
A few of differential fecal metabolites were specific to OMG
(9/44) or GMG group (7/42), respectively (Supplementary
Table S3). Further, functional clustering analysis demonstrated
that the majority of these shared metabolites between two
subtypes of MG mainly belonged to microbial metabolism, amino
acid metabolism and carbohydrate metabolism (Figure 4C).
In regard of OMG specific metabolites, three down-regulated
metabolites (ornithine, tryptophan and 3,4-Dihydroxymandelic
acid) were involved in amino acid metabolism; and one down-
regulated (stigmasterol) and one up-regulated (tartronic acid)
metabolite belonged to lipid metabolism. In addition, one
down-regulated (gallic acid) and one up-regulated (galactonic
acid) metabolites were linked with microbial metabolism.
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FIGURE 4 | Metabolic characteristics of two subtypes of MG. (A,B) The orthogonal partial least-squares discriminant analysis (OPLS-DA) scores plots exhibited a
clear separation between the OMG (orange dots, A) or GMG (red dots, B) subjects and HCs (blue dots). (C) The shared and distinct fecal metabolites detected in
OMG and GMG subjects versus HCs. These differential metabolites mainly belonged to microbial metabolism, amino acid metabolism, carbohydrate metabolism,
lipid metabolism and nucleotide metabolism. Red nodes indicate upregulated metabolites, while blue nodes indicate downregulated metabolites in MG subjects
related to HCs. The thickness represents p-value (p < 0.05).

Specifically, one decreased (cytidine-monophosphate) and one
increased (adenine) metabolites were involved in nucleotide
metabolism in OMG cohorts. In contrast, two up-regulated
metabolites (malonic acid and citramalic acid) belonged to
lipid metabolism, and one down-regulated (dehydroascorbic
acid) and one enriched (5-aminovaleric acid) metabolites to
amino acid metabolism, and one downregulated metabolite (4-
hydroxy-3-methoxybenzoic acid) to microbial metabolism were
identified in the patients with GMG relative to HCs. Additionally,
two up-regulated metabolites (1,5-anhydroglucitol and 2-
hydroxybutanoic acid) belonged to carbohydrate metabolism
were also specifically linked with GMG onset.

Combinatorial Biomarker for
Discriminating OMG From GMG Group
To identify microbial and metabolic signatures capable of
discriminating OMG and GMG from each other, as well
as from HCs, discriminative OTUs and metabolites were
identified among the three groups (Supplementary Table S4
and Supplementary Figure S2D). Using LEfSe analysis, a total
of 15 differential OTUs responsible for discriminating among

the three groups were identified based on LDA score > 2.5.
These discriminative OTUs mainly assigned to the families
Lachnospiraceae (5 OTUs), Peptostreptococcaceae (4 OTUs),
Clostridiaceae_1 (2 OTUs) and Bacteroidaceae (2 OTUs)
(Figure 5). Meanwhile, by analyzing the OPLS-DA loading
coefficient plot, we found that cytosine and n-acetylhistamine
were significantly different among three groups based on
VIP > 1.0, p < 0.05 and FDR < 0.1.

Next, we trained random forest (RF) classifiers on above
discriminative metabolites and OTUs to discriminate MG
subtypes. Receiver operating characteristic (ROC) curves were
used to quantify their diagnostic performance. Consequently,
we found that this combinatorial biomarker panel enabled
discriminating OMG and GMG from each other, as well as
from HCs, with high diagnostic accuracy (OMG versus HC,
AUC = 0.990; GMG versus HC, AUC = 0.988; OMG versus GMG,
AUC = 0.934) (Figures 6A–C). In addition, we also observed that
this biomarker panel could predict OMG, GMG or HC labels
correctly 69.7 ± 1.8% of the time. The most common source of
annotation error was classifying patients with OMG or GMG as
HC, or classifying OMG as GMG. Comparatively, patients with
GMG and healthy control individuals were rarely classified into
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FIGURE 5 | Combinatorial microbiota and metabolite biomarkers for discriminating GMG, OMG, and HC groups. Via linear discriminant analysis (LEfSe), 15
discriminative OTUs responsible for discrimination among the three groups were identified based on LDA score > 2.5. These discriminative OTUs mainly belonged to
the families Lachnospiraceae (5 OTUs), Peptostreptococcaceae (4 OTUs), Clostridiaceae_1 (2 OTUs) and Bacteroidaceae (2 OTUs). Meanwhile, based on VIP > 1.0,
p < 0.05 and FDR < 0.1, cytosine and n-acetylhistamine were significantly different among OMG,GMG and HC.

OMG patients, while healthy control individuals were sometimes
erroneously classified as patients with GMG (Figure 6D).

DISCUSSION

In this study, we compared the microbial and metabolic
characteristics between OMG and GMG. And we firstly outlined
the shared and distinct microbial and metabolic signatures
between two groups. Here, we found that the microbial
composition of OMG was substantially different from that of
patients with GMG. For example, our findings showed that
patients with GMG displayed lower α-phylogenetic diversity
compared with HCs. Indeed, a greater proportion of OMG
subjects presented with higher community richness and diversity
compared with the GMG cohort, although the quantified levels

detected were intermediate to those observed in GMG and HC
groups. Generally speaking, high α-diversity is equal to a “good”
health status (Huttenhower et al., 2012). Therefore, our findings
suggested that gut microbial disturbances in patients with GMG
were more severe than that in patients with OMG, which was
consistent with clinical presentation of two subtypes of MG.

Further, compared with HC individuals, families
Bacteroidaceae and Veillonellaceae enriched in both OMG
and GMG subjects, while families Lachnospiraceae and
Ruminococcaceae depleted in OMG and GMG, respectively.
Consistent with our findings, previous studies have demonstrated
that Enterobacteriaceae, Bacteroidales and Veillonellaceae
positively correlated with some autoimmune diseases,
whereas Lachnospiraceae and Ruminococcaceae, typically
producing short chain fatty acids (SCFA) (Yilmaz et al., 2019),
negatively correlated with these diseases (Gevers et al., 2014;
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FIGURE 6 | Predicting MG subtypes based on gut microbial and metabolic markers. (A–C) We trained random forest (RF) classifiers on discriminative fecal
metabolites and microbial OTUs to identify MG subtypes. Receiver operating characteristic (ROC) curves showed that this combinatorial biomarker panel including
15 discriminative OTUs and 2 discriminative fecal metabolites enabled discriminating OMG and GMG from each other, as well as from HCs, with high diagnostic
accuracy (OMG vs HC, AUC = 0.990; GMG vs HC, AUC = 0.988; OMG vs GMG, AUC = 0.934). (D) “Confusion matrix” evaluations of MG subtype RF classifiers.
The number in row i and column j indicated how many samples were labeled as subtype i but assigned to subtype j. A perfect subtype RF classifier (100% accuracy)
would have 0 counts for all non-diagonal entries (that is, no misclassified samples). Matrix cells were shaded within-row in proportion to their value (yellow, OMG;
red, GMG; blue, HCs). Accuracy values indicated the fraction of correctly classified instances; error values reflect the s.e.m of a proportion. Consequently, the plot
also showed that this combinatorial biomarker panel was capable of predicting OMG, GMG or HCs correctly 69.4 ± 1.8% of the time.

Clemente et al., 2018). These findings suggested that
disturbances of gut microbes may synergistically modulate
the development of OMG and GMG.

We also revealed the shared and distinct microbial
characteristics between OMG and GMG at the OTU level.
Meanwhile, complex covariant networks were presented among
these discriminative OTUs, which may provide mechanistic
insights. For instance, upregulated Bacteroidaceae OTUs
and other OTUs that were positively correlated with them,
constructed an idiosyncratic covariant network mostly
from the OMG-specific OTUs. Moreover, three upregulated
Veillonellaceae OTUs positively covaried with each other,
which also played a cooperative role in the gut microbial

environment of OMG. In GMG group, however, the
correlation networks constructed by altered OTUs were
rather complex and diverse. Among them, an intricate
covariant network was generated with major downregulated
Lachnospiraceae OTUs and all the depleted Ruminococcaceae
OTUs. Importantly, previous studies have explored that
Enterobacteriaceae, Bacteroidales and Veillonellaceae were
thought to contribute to perturbations in the immune function,
but Lachnospiraceae and Ruminococcaceae were associated
with lower levels of inflammation (Gevers et al., 2014;
Clemente et al., 2018). Together, we deduced that microbial
composition of patients with OMG was characterized by
enriched families Bacteroidaceae and Veillonellaceae, yet the
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patients with GMG were mainly linked with decreased family
Lachnospiraceae.

Overall, we found that both OMG and GMG were mainly
involved in disturbances of nucleotide metabolism, amino
acid metabolism, carbohydrate metabolism and microbial
metabolism. The disturbances of fecal metabolism partly
confirmed the altered microbial composition in the OMG and
GMG groups. Previously, it was well-known that the MG is
an autoimmune disease. Here, our findings suggest that the
influence of altered microbial composition on fecal metabolisms
may be linked with OMG and GMG. However, it should be
admitted that how these alterations in intestinal metabolism
attribute to onset of OMG and GMG remains unknown.
We speculate that these following possibilities are worth to
explore: (i) previous studies showed that patients with MG were
associated with alternations of antioxidant markers (Fuhua et al.,
2012; Yang et al., 2016). It is widely accepted that nucleotide
metabolism can modulate the oxidative stress. Thus, it is likely
that microbial nucleotide metabolism may participate in the
development of OMG and GMG via modulation of host’s
oxidative stress; (ii) Recently, Blackmore et al. (2020) found that
MG was associated with disturbances of serum phenylalanine and
tyrosine metabolisms. Here, we found that both OMG and GMG
individuals were linked with altered fecal amino acid metabolism.
As some of metabolites have immune-metabolomic properties,
further studies to integrate the fecal and serum metabolic
changes is required to uncover the underlying roles of microbial
metabolites in the MG onset; (iii) previous studies have shown
that gut microbiome played a vital role in energy regulation and
metabolism (Nieuwdorp et al., 2014), which may account for the
disturbances of carbohydrate metabolism in MG. Interestingly,
we found that adenine and cytidine-monophosphate specific to
OMG subjects were involved in nucleotide metabolism; 3,4-
dihydroxymandelic acid, ornithine, tryptophan 5-aminovaleric
acid and dehydroascorbic acid specific to OMG or GMG
belonged to amino acid metabolism; 2-hydroxybutanoic acid and
1,5-anhydroglucitol specific to GMG subjects were linked with
carbohydrate metabolism. Thus, we deduced that gut microbiota
played an important but complex roles in fecal metabolism of
OMG and GMG subjects.

Here, we identified a combinatorial biomarker composing
of 15 bacterial OTUs and 2 metabolites including Cytosine
and N-Acetylhistamine, which could distinguish OMG and
GMG individuals with AUC values ranging from 0.934 to
0.990. These discriminative OTUs mainly belonged to the
families Lachnospiraceae (OTU273, OTU378, OTU430,
OTU558, OTU801), Peptostreptococcaceae (OTU361, OTU403,
OTU530, OTU548), Clostridiaceae_1 (OTU562, OTU694)
and Bacteroidaceae (OTU523, OTU749). Furthermore, this
combinatorial biomarker was able to predict OMG, GMG or HC
labels correctly about 69.7% of the time.

This study has the following limitations: (i) due to lack
of blood samples, how the gut microbiome shapes the blood
signatures remains unknown. Further studies to integrate the
fecal and blood metabolic signatures are valuable to deeply
understand the similarities and differences of microbial function
in the OMG and GMG; (ii) due to limited resolution of 16S

rRNA sequencing method, further studies using the shotgun
metagenomics should be performed to identify the definitive
bacterial species and microbial function linked with OMG and
GMG; (iii) the discriminative power of biomarker panel should
be validated using samples from multicenter cohorts; (iv) due
to the long duration of MG, future studies should explore the
alteration in gut microbiota of patients with MG who are newly
diagnosed and drug-naïve, to further validate our findings.

In summary, we found that gut microbiota and fecal
metabolism were significantly different between patients with
OMG and GMG. And we identified gut microbes and metabolites
specific to two subtypes of MG. Furthermore, we identified a
combinatorial biomarker panel enabled discriminating OMG and
GMG (from each other and from HC) with high accuracy. Taken
together, our findings provide a new entry-point to understand
the similarities and differences of microbial composition and
function in OMG and GMG, which is required to be further
clarified in animal studies.
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FIGURE S1 | Impact of confounding variables on global gut microbial
phenotypes. The global microbial phenotypes of two subtypes of MG groups were
not clustered based on gender (n = 44, HC Female; n = 30, HC Male; n = 13,
OMG Female; n = 18, OMG Male; n = 26, GMG Female; n = 13, GMG Male)
(A–C) and medication (n = 12, OMG IT; n = 19, OMG Non-_IT; n = 19, GMG IT;
n = 20, GMG Non-_IT. IT: immunosuppressive treatment) (D,E).

FIGURE S2 | Discriminative OTUs observed in the pairwise comparisons among
HC, OMG and GMG groups. Using LEfSe analysis, differential OTUs responsible

for discrimination among the three groups were identified based on LDA

score > 2.5 and fold change > 2. (A) 34 OTUs attributed to distinguishing OMG
from HCs. (B) 37 OTUs were responsible for distinguishing GMG from HCs. (C)

10 OTUs accounted for distinguishing GMG from OMG. (D) 15 OTUs were
differentially expressed among the three groups.

FIGURE S3 | A co-occurrence network inferred from the relative abundances of

differential OTUs between OMG and GMG. These differential OTUs were identified
based on LDA > 2.5 and fold change > 2. Totally, 10 OTUs were responsible for

this discrimination. Compared with GMG group, these increased OTUs in OMG
group were mainly assigned to families Bacteroidaceae, Erysipelotrichaceae and

Lachnospiraceae. Blue dots, increased microbes in OMG; red dots, increased

microbes in GMG. OTUs classified to family level were profiled. Edges between
dots represent Spearman’s correlation < −0.35 (light blue), or > 0.35 (light red),

edges thickness indicate p-value (p < 0.05).

TABLE S1 | The discriminative OTUs between two subtypes of MG

patients and HCs.

TABLE S2 | The discriminative OTUs between OMG and GMG patients.

TABLE S3 | Differential metabolites between the two subtypes of MG
patients and HCs.

TABLE S4 | The discriminative OTUs and metabolites among the three groups.
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