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Abstract
Objective To clinically validate a fully automated deep convolutional neural network (DCNN) for detection of surgically proven
meniscus tears.
Materials and methods One hundred consecutive patients were retrospectively included, who underwent knee MRI and knee
arthroscopy in our institution. All MRI were evaluated for medial and lateral meniscus tears by two musculoskeletal radiologists
independently and by DCNN. Included patients were not part of the training set of the DCNN. Surgical reports served as the
standard of reference. Statistics included sensitivity, specificity, accuracy, ROC curve analysis, and kappa statistics.
Results Fifty-seven percent (57/100) of patients had a tear of the medial and 24% (24/100) of the lateral meniscus, including 12%
(12/100) with a tear of both menisci. For medial meniscus tear detection, sensitivity, specificity, and accuracy were for reader 1:
93%, 91%, and 92%, for reader 2: 96%, 86%, and 92%, and for the DCNN: 84%, 88%, and 86%. For lateral meniscus tear
detection, sensitivity, specificity, and accuracy were for reader 1: 71%, 95%, and 89%, for reader 2: 67%, 99%, and 91%, and for
the DCNN: 58%, 92%, and 84%. Sensitivity for medial meniscus tears was significantly different between reader 2 and the
DCNN (p = 0.039), and no significant differences existed for all other comparisons (all p ≥ 0.092). The AUC-ROC of the DCNN
was 0.882, 0.781, and 0.961 for detection of medial, lateral, and overall meniscus tear. Inter-reader agreement was very good for
the medial (kappa = 0.876) and good for the lateral meniscus (kappa = 0.741).
Conclusion DCNN-based meniscus tear detection can be performed in a fully automated manner with a similar specificity but a
lower sensitivity in comparison with musculoskeletal radiologists.

Keywords Artificial intelligence . Neural networks (computer) . Tibial meniscus injuries . Data accuracy . Magnetic resonance
imaging

Introduction

Meniscus tears are common findings in patients with knee pain,
which in most cases are caused by trauma or degeneration
[1–3]. Studies showed an association of meniscus tears with

persistent knee pain, reduced function, and early osteoarthritis
[4–6]. Treatment can be divided into conservative and surgical
management options, depending on a variety of factors, includ-
ing the shape, size, and location of the meniscus tear, as well as
the age and physical activity of the patient [7–10]. Adequate
treatment may reduce sequela of meniscus tears, improve qual-
ity of life, and reduce health care costs [11–14]. Therefore,
accurate diagnosis of meniscus tears is important.

Owing to the high soft tissue contrast of MRI, fluid-
sensitive sequences are accurate for detecting meniscal tears.
In comparison with arthroscopy, MRI has a sensitivity and
specificity of 93% and 88% for medial and 79% and 96%
for lateral meniscus tear detection, respectively, replacing di-
agnostic arthroscopy in large part nowadays [15–17].

Increasing computing power and improved big data man-
agement have led to substantial advances of artificial
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intelligence (AI) [18, 19]. Machine learning and deep learning
are subcategories of the broader field of AI, which describe
concepts of self-learning computer algorithms with the capa-
bility of solving specific tasks without being programmed
with explicit rules [20, 21]. In particular, great progress has
been made in the field of image classification over the past
decade. This progress was driven by improvements of the
deep learning algorithms and graphic processing units.
Algorithms based on convolutional neural networks (CNN),
which today are the state-of-the-art methodology in many vi-
sual recognition tasks [22, 23], may recognize and localize
objects in images with similar or even better accuracy than
humans [24]. CNN compose of multiple connected layers,
which each alter data and learn to detect specific image fea-
tures, eventually leading to a classification output. Despite this
progress, training of a CNNmodel is still a challenge, because
the tasks are often computationally intense and require large
training data sets. With multiple new MRI techniques that
permit full knee MRI exams in 5–10 min, fast interpretation
with the aid of AI is expected to become more and more
important in order to match the efficiency of study acquisition
and interpretation [25–27].

This study evaluates a deep convolutional neural network
(DCNN) for detection of medial and lateral meniscus tears,
which was trained on more than 18,500 MR examinations
from various institutions. However, no clinical evaluation
and correlation to surgical findings have been performed yet,
and the DCNN’s true capabilities for meniscus tear detection
in a clinical setting are unclear so far. Therefore, the purpose
of this study was to clinically validate a fully automated
DCNN for detection of surgically proven meniscus tears.

Material and methods

This retrospective study was approved by our local ethics
committee. Written informed consent for retrospective data
analysis was obtained from all included subjects.

Study design and participants

Figure 1 presents a flowchart of the study design. Knee MRI
exams of clinical patients were retrospectively evaluated by
two radiologists and by a deep convolutional neural network
(DCNN)-based software for detection of medial and lateral
meniscus tears (Fig. 2). All included patients had undergone
arthroscopic knee surgery with meniscus evaluation after the
MRI. The report of the knee surgery served as the standard of
reference of this study. Radiological assessments and results
of the DCNN were compared, and differences of diagnostic
performances were calculated.

We included 100 consecutive patients, which were referred
to our institution for MRI of the knee joint by a board-certified

physician for the evaluation of knee pain. The included pa-
tients were not part of the set used for training or internal
validation of the DCNN and were included if the following
criteria were met: (1) MRI of the knee joint performed at our
institution on a clinical 1.5 Tesla or 3 Tesla clinical whole-
body MRI system using our standard protocols for evaluation
of knee pain (Table 1); (2) arthroscopic knee surgery per-
formed at our institution by a specialized knee surgeon, at a
time interval of less than 3 months after the kneeMRI; and (3)
signed informed consent for retrospective data analysis.
Patients were excluded in case of previous knee surgery
or impaired image quality due to motion. Knee MRI were
performed between April 2016 and April 2018. The study
population consisted of 46 women and 54 men with a mean
age of 39.9 years (standard deviation (SD) 14.3 years;
range 14–74 years). Age was not significantly different
between women (mean 40.1 ± 14.2 years) and men (mean
39.7 ± 14.6 years) with p = 0.893. Sixty-four patients were
examined on a 1.5 Tesla (T) and 36 patients were examined
on a 3 T MR scanner.

Surgical report

All surgeries were performed by board-certified specialized
knee surgeons. Using standard anterolateral and anteromedial
arthroscopic portals, a structured arthroscopic evaluation of all
knee compartments and all intraarticular structures (i.e., me-
nisci, ligaments, cartilage, synovitis) is performed on any pro-
cedure. Due to institutional guidelines, detailed reports of all
findings were performed for each knee compartment in a stan-
dardized fashion.

MR imaging

All patients were examined on a clinical 1.5 T or 3 T MRI
system (Magnetom Avanto fit or Magnetom Skyra fit,
Siemens Healthcare, Erlangen, Germany) with a dedicated
15 channel transmit/receive knee coil. All examinations
consisted of a coronal T1-weighted, coronal short-tau inver-
sion recovery (STIR), axial fat-suppressed intermediate
weighted (IW), and sagittal fat-suppressed and nonfat-
suppressed IW sequences, acquired in Dixon technique (in-
phase and water-only images). Parameters for the 1.5 T and
3 T protocol are given in Table 1.

Meniscus evaluation

Knee MRI of all patients were separately evaluated by two
full-time and fellowship-trained musculoskeletal radiologists
(reader 1: BF, 7 years of experience in musculoskeletal radi-
ology; reader 2: CP, 21 years of experience in musculoskel-
etal radiology). Evaluations were performed on anonymized
data sets after removal of any personal or clinical
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information on a state-of-the-art picture archiving and com-
munication system (PACS) workstations (MERLIN
Diagnostic Workcenter, version 5.2, Phönix-PACS GmbH,

Freiburg, Germany) in radiological reading room conditions.
Both readers were blinded to the patients’ clinical histories,
intraoperative findings, or the indications for knee surgery.

Fig. 2 Schematic illustration of the deep learning-based software. The top
box represents the initial preprocessing step. Out of a full set of sequences
of a knee MR examination, the algorithm selects a coronal and a sagittal
fluid-sensitive fat-suppressed sequence with subsequent rescaling and
cropping around the menisci. Both sequences are the input for the deep
convolutional neural network (CNN), represented by themiddle box. The
sagittal and coronal images are processed by two distinct convolution
blocks and the results are concatenated before being processed by the

dense layers. Finally, a confidence level for a tear of the medial and
lateral meniscus is computed by a softmax layer within the second
dense layer. The bottom box represents the localization of the meniscus
tear on an axial image of both menisci, using a color-coded heatmap.
Therefore, the class activation map (CAM) of the last convolutional
layer of the CNN is calculated. Please note that the heatmap is still
under development and was therefore not evaluated in our study.
ReLU= rectified linear unit

Fig. 1 Flowchart of the study
design
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For each patient, the medial and lateral meniscus was sep-
arately evaluated for the presence or absence of a meniscus
tear (Figs. 3 and 4).

Deep convolutional neural network

The deep convolutional neural network (DCNN) consists of
two main components: preprocessing of the MR images—
during which images are normalized to a predefined
standard—and a predictive component—which computes
the confidence level for the existence of meniscus tear in the
knee that is depicted in the submitted MR study. The

predictive part consists of a DCNN that was trained on a large
proprietary database of knee MR images (Fig. 2).

Preprocessing During the preprocessing stage, the DCNN
automatically selects the coronal and sagittal fluid-sensitive
fat-suppressed sequence, like short-tau inversion recovery or
intermediate-weighted sequences. Images are then scaled to a
standard pixel size, slice distance, and slice numbers using
spline 3rd order interpolation. Finally, the images are
cropped around the meniscus in order to reduce memory
and time needed to process the convolutional neural network
(CNN).

Fig. 3 MRI of the left knee joint
of a 30-year-old male patient. a A
coronal short-tau inversion
recovery image of the body of
both menisci. b A sagittal fat-
suppressed intermediate-
weighted image at the junction of
the posterior horn to the body of
the medial meniscus. c The output
of the deep convolutional neural
network, which calculates a
probability of a tear of the medial
and lateral meniscus as well as
provides a heatmap depicting the
location of the suspected tear. A
horizontal meniscus tear is
present at the body with extension
to the posterior horn to the medial
meniscus (arrows). Knee
arthroscopy confirmed the tear of
themedial meniscus. Both readers
and the deep convolutional neural
network diagnosed the medial
meniscus tear correctly; the
probability of a tear was estimated
with 99.9% by the deep
convolutional neural network

Table 1 Standard MR imaging protocol for knee trauma at 1.5 Tesla and 3 Tesla

Sequence Plane TR/TE (ms) FOV (mm) Slice thickness (mm) Matrix

1.5 Tesla T1 Cor 562/14 170 × 170 3 336 × 448

STIR Cor 4000/39 170 × 170 3 288 × 384

IW fs Tra 3600/31 160 × 160 2.5 314 × 448

IW Dixon Sag 3080/27 163 × 180 3 325 × 448

3 Tesla T1 Cor 700/10 160 × 160 3 358 × 448

STIR Cor 4460/34 160 × 160 3 307 × 384

IW fs Tra 4480/40 150 × 150 2.5 307 × 384

IW Dixon Sag 3780/39 160 × 160 3 358 × 448

TR repetition time, TE echo time, FOV field of view, Cor coronal, Sag sagittal, Tra transverse, STIR short-tau inversion recovery, IW intermediate-
weighted sequence, Fs fat suppression, Dixon Dixon technique with in-phase and fluid-sensitive sequences
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Convolutional neural network The CNN receives as input the
coronal and sagittal sequences and computes both planes in
parallel. Each CNN block (coronal and sagittal) consists of
two series of 3D convolution layers, batch-normalization
layers, rectified linear unit (ReLU) activation layers and at
the end of these two series of layers, one pooling layer is
added. Then, four inception modules [28] preceded each by
a 3D convolution layer, batch-normalization layer, and a ReLu
activation layer complete the block. Each inception module
ended with a pooling layer. Before concatenating the results of
the two CNN blocks, the feature maps are averaged slice by
slice. The network ends with two dense (or fully connected)
layers: the first with a dropout and a ReLU activation layer,
and the second with a softmax activation layer, which extracts
the confidence level for the meniscus tear.

Localization (heat map) To visually localize the tear, the soft-
ware computes the class activation map (CAM) of the last
convolution layer in the CNN and maps it to an axial knee
image. The mapped CAM values are then scaled to the

confidence level predicted by the DCNN and are represented
as a heat map on an axial knee image (Figs. 3 and 4).

Training of the CNN To train the CNN for detection of menis-
cus tears, a database of 20,520 MRI studies that met the pre-
processing criteria was used: 18,520 studies were used for
training, 1000 for validation, and 1000 for testing the CNN.
All three data sets consisted of a pair of coronal and sagittal
sequences with balanced labels (same number of knees with a
torn and intact meniscus in each data set). The first data set
was used to train the model (to compute the weights of the
DCNN model), the second data set was used to tune the
hyperparameters of the DCNN model, and finally the third
data set was used as assessment of the model accuracy. The
used data sets consisted of knee MRI of numerous institutions
and were therefore heterogenous in terms of MR-sequence
parameters and field strength. Manufacturers of the MR scan-
ners were GE Healthcare, Waukesha, WI, USA; Philips
Healthcare, Best, The Netherlands; and Siemens Healthcare,
Erlangen, Germany. The data set consisted of knee MRI

Fig. 4 MRI of the right knee joint of a 45-year-old male patient. Sagittal
fat-suppressed intermediate-weighted images at the junction of the body
to the posterior horn of the medial meniscus (a) and the lateral meniscus
(b). cA coronal short-tau inversion recovery image of the posterior horns
of both menisci. d The output of the deep convolutional neural network,
which calculates a probability of a tear of the medial and lateral meniscus
as well as provides a heatmap depicting the location of the suspected tear.

A horizontal meniscus tear is present at the junction of the posterior horn
to the body of the medial meniscus (arrows), while the lateral meniscus
shows a small tear of the central body (arrowhead). Knee arthroscopy
confirmed the tear of both menisci, which was correctly diagnosed by
both readers. The deep convolutional neural network correctly classified
the medial meniscus tear with a probability of 93.5% but missed the small
tear of the lateral meniscus
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acquired between 2013 and 2018. The training task was per-
formed with a binary cross entropy loss function. Adamwith a
learning rate of 0.001 was chosen as an optimizer to train the
CNN. To develop the CNN, the Keras framework on the
TensorFlow backend (keras.io and www.tensorflow.org) was
used. Training was performed on an NVIDIA P-40 graphic
processing unit with a batch size of 10 (studies).

Label extractionThe ground truths (binary labels) used to train
the CNN were extracted from human-produced, anonymized
clinical reports belonging to the MRI studies, using a rule-
based natural language processing (NLP) algorithm. The F1
score of the binary label extraction was 0.97, based on 400
manually extracted labels.

Statistics

Statistical analysis was performed using MedCalc version
17.6 (MedCalc Software bvba). General descriptive statistics
were applied, and continuous data were reported as means and
standard deviations and categorical data as proportions.
Patient age was compared with the two-tailed independent
Student’s t test. Sensitivity, specificity, and accuracy were cal-
culated for radiological and DCNN assessments in compari-
son with the intraoperative findings and were compared using
the McNemar test. Therefore, the DCNN’s probabilities for
the appearance of a meniscus tear were dichotomized into
present/absent using a threshold of 0.5. Using the probabilities
for meniscus tears of the DCNN, receiver operating character-
istic (ROC) curve analyses with calculation of the area under
the ROC curves (AUC) with 95% confidence intervals (CI)
were performed. Graphical visualization of results of the me-
dial and the lateral meniscus was performed using a Zombie
plot [29]. Inter-reader agreement was assessed with Cohen’s
kappa. Kappa values were considered to represent good agree-
ment if > 0.6–0.8 and excellent agreement if > 0.8–1 [30].
Subgroup analyses comparing 1.5 T and 3 T examinations
were performed with Fisher’s exact test. A p value of < 0.05
was considered to represent statistical significance.

Results

Fifty-seven percent (57/100) of patients had a tear of the me-
dial meniscus and 24% (24/100) had a tear of the lateral me-
niscus, including 12% (12/100) of patients, who had a tear of
both menisci. Thirty-one percent (31/100) of patients did not
have a meniscus tear.

Table 2 and Fig. 5 show the sensitivities, specificities, ac-
curacies, and AUCs of both readers and the DCNN for detec-
tion of medial meniscus tear, lateral meniscus tear, and global
meniscus tear (including medial, lateral, or a tear of both me-
nisci). Statistically significant differences existed only for the Ta
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sensitivities for detection of a medial meniscus tear between
reader 2 and the DCNN with p = 0.039. For all other compar-
isons, no significant differences existed for the medial menis-
cus (all p ≥ 0.146), the lateral meniscus (p ≥ 0.092), or both
menisci combined (all p ≥ 0.344). Graphical visualization
using a Zombie plot demonstrates that the results of the
DCNN were centered in the “optimal zone” (upper left zone)
for the medial meniscus and in the “acceptable zone for ruling
in disease” for the lateral meniscus (Fig. 6) [29]. However, the
results of reader 1 and reader 2 were located closer to the
upper left corner, suggesting superior performance in compar-
ison with the DCNN (Fig. 6).

Detailed analysis of the medial meniscus evaluations
showed that the DCNN had 5 false positive findings (FP)
and 9 false negative findings (FN). In 80% (4/5) of the FP,
at least 1 reader had also an FP. In 33% (3/9) of the FN, at least
1 reader had also an FN. For reader 1, 75% (3/4) of the FP and
50% (2/4) of the FN were also rated as FP or FN by the
DCNN, respectively. For reader 2, 67% (4/6) of the FP and
50% (1/2) of the FN were also rated as FP or FN by the
DCNN, respectively.

Detailed analysis of the lateral meniscus evaluations
showed that the DCNN had 6 FP and 10 FN. In 17% (1/6)
of the FP, at least 1 reader had also an FP. In 80% (8/10) of the
false negative findings, at least 1 reader had also an FN and in

50% (5/10), both readers had an FN. For reader 1, 25% (1/4)
of the FP and 100% (7/7) of the FN were also rated as FP or
FN by the DCNN, respectively. For reader 2, 0% (0/1) of the
FP and 63% (5/8) of the FNwere also rated as FP or FN by the
DCNN, respectively.

Comparison of 1.5 T and 3 T examinations did not show
any significant differences of sensitivities, specificities, or ac-
curacies for any radiologist or the DCNN for neither medial
(all ≥ 0.463), lateral (all ≥ 0.243), nor global meniscus tear
evaluation (all ≥ 0.166).

Between both readers, the inter-reader agreement was very
good for detection of medial meniscus tears with a kappa
value of 0.876 (95% confidence interval 0.78; 0.972) and
good for detection of lateral meniscus tears with a kappa value
of 0.741 (95% confidence interval 0.572; 0.910). The kappa
value for the detection of a meniscus tear in general was very
good with 0.816 (95% confidence interval 0.695; 0.938).

Discussion

In our study, we demonstrated the capability of a deep
convolutional neural network (DCNN) for detection of medial
and lateral meniscus tears. The DCNN’s sensitivities, speci-
ficities, and accuracies ranged between 84 and 92% for

Fig. 5 ROC curves of the deep
convolutional neural network’s
probabilities for a medial, lateral,
and overall meniscus tears. The
areas under the ROC curves
(AUCs) were 0.882 (95%
confidence interval (CI) 0.802;
0.938), 0.781 (95% CI 0.687,
0.858), and 0.961 (95% CI 0.902,
0.990), respectively

Skeletal Radiol (2020) 49:1207–1217 1213



detection of medial and lateral meniscus tears except for the
sensitivity for lateral meniscus tear detection, which was con-
siderably lower with 58%. The DCNN’s sensitivity of medial
meniscus tear detection was significantly lower in comparison
with one of the radiologists; for all other comparisons, no
significant differences existed between the DCNN and both
readers.

So far, several studies have successfully implemented ma-
chine learning- or deep learning-based algorithms on clini-
cally oriented radiological tasks. In musculoskeletal radiolo-
gy, various radiograph-based tasks like bone age determina-
tion or fracture diagnosis could be demonstrated with AI-
based algorithms [31, 32]. Furthermore, the feasibility of
AI-based meniscus tear detection on single MRI slices on
fluid-sensitive images has been demonstrated recently [33,
34]. However, AI-trained software algorithms that success-
fully evaluate full sets of cross-sectional imaging studies in
musculoskeletal radiology are sparse so far. This might be
due to several reasons. The amount of data of cross-sectional
imaging is usually a multiple of the data of radiographs. A
knee MR examination usually consists of about 50 mega-
bytes of data. Considering that often thousands of studies
are required for adequate training, a huge amount of data
needs to be handled and vast computing capacities are re-
quired. Furthermore, MR studies consist of several se-
quences of different weightings and often various orienta-
tions. Findings are frequently visible on only certain se-
quences or weightings, and findings need to be cross-
referenced between imaging planes to increase confidence
levels and reach the appropriate diagnosis. The DCNN of

our study overcomes some of these problems by first
selecting only fluid-sensitive fat-suppressed sequences in
the coronal or sagittal plane and by cropping the images to
a smaller field of view, which still contains the meniscus but
excluding other irrelevant structures. Similar to our study,
another publication demonstrated the feasibility of a deep
leaning-based algorithm for evaluation of knee MRI for me-
niscus tears, anterior cruciate ligament tears, and other gen-
eral knee abnormalities [35]. For overall meniscus tear de-
tection, the authors reached a sensitivity of 74.1%, a speci-
ficity of 71.0%, and an accuracy of 72.5%, which were be-
low of our results by 16–17% for all assessments. However,
a notable difference between the published and our study
exists regarding the standard of reference, which limits com-
parability. While our study used surgical correlation as the
standard of reference, the study of Bien et al. established a
standard of reference by consensus of three radiologists [35].
Furthermore, our DCNN calculates a probability for a medial
or lateral meniscus tear separately, while the study of Bien
et al. provided only an overall probability of the occurrence
of a meniscus tear. Nevertheless, the study of Bien et al. as
well as our study demonstrates the capability of deep
learning-trained software algorithms for detection of knee
abnormalities. This is also underlined by another recent
study of Liu et al., which compared the capability of a fully
automated deep learning-based algorithm for detection of
cartilage abnormalities on sagittal fat-suppressed T2-weight-
ed images [36]. The performance of the deep learning-based
algorithm was comparable with the performance of radiolo-
gists of different experience levels, which ranged from

Fig. 6 Zombie plots for graphical visualization of the estimates (solid dots) and confidence intervals of sensitivity and specificity (ellipses) of the DCNN
(green), reader 1 (blue) and reader 2 (red) for medial and lateral meniscus tear detection
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residents to experts. Taking also into consideration that au-
tomated segmentation of the meniscus and knee joint has
become feasible [37–39], all of these studies suggest that a
fully automated evaluation of the entire knee including all
compartments and major structures seems to be possible in
the future.

In our study, both readers showed a similar sensitivity and
specificity for medial meniscus tear detection in comparison
with systematic reviews, which reported pooled sensitivities
of 93% and 89% and pooled specificities of 88% each, respec-
tively [17, 40]. While the DCNN’s specificity for the medial
meniscus was comparable with both readers, its sensitivity
was notably lower. This difference was statistically significant
in comparison with reader 2. However, due to a mildly higher
specificity of the DCNN, no significant differences existed for
the accuracies. However, graphical Zombie plot visualization
indicated that the results of reader 1 and reader 2 were located
closer to the upper left corner, suggesting superior perfor-
mance in comparison with the DCNN.

A similar trend existed for the lateral meniscus. While the
specificities of both readers and the DCNN were at the same
level, the sensitivity of the DCNN was lower by about 10%
in comparison with the readers. No statistical differences
existed, which possibly relates to a low statistical power of
our study since only 24 patients had a tear of the lateral
meniscus. The Zombie plot demonstrated that the DCNN’s
results of the lateral meniscus were mostly located in the
“acceptable zone for ruling in a disease” suggesting that
the DCNN is capable of ruling in a meniscus tear but also
possesses an inferior performance in comparison with reader
1 and reader 2 [29]. It is remarkable that the sensitivities for
lateral meniscus tear detection were overall quite low for
both, the radiologists and the DCNN. Yet, systematic re-
views also report a lower sensitivity for detection of lateral
meniscus tears with 79% and 78%, which is well below the
pooled sensitivities for medial meniscus tear detection of
93% and 89% [17, 40]. Considering that both readers of
our study were full-time musculoskeletal radiologists and
demonstrated good inter-reader agreement, it seems likely
that some of the lateral meniscus tears were just not appre-
ciable on MR images and were probably therefore also
missed by DCNN. This assumption is supported by the large
overlap of the DCNN’s false negative evaluations with the
radiologists, since 80% (8/10) were also misdiagnosed as
false negative by at least one reader.

An important difference exists for the evaluated sequences
between the DCNN and the radiologists, which may have
influenced the study results. For the meniscus assessments,
the readers used the full set of knee MRI sequences, while
the DCNN used only the coronal STIR sequence and the sag-
ittal fat-suppressed IW sequence. The additional coronal T1-
weighted, axial fat-suppressed IW, and the sagittal IW se-
quence used by the readers can offer additional diagnostic

value for meniscal tear detection and may have therefore pos-
itively influenced the performance of both readers. The
ground truth is another factor, which may explain in parts
the lower sensitivity of the DCNN in comparison with radiol-
ogists. The ground truth was established by extracting radiol-
ogists’ diagnoses from MRI reports using NLP. While this is
common practice for label extraction of large data sets, erro-
neous radiological interpretations introduce errors, which may
negatively influence the diagnostic accuracy of the DCNN.
On the other hand, an F1 score of 0.97 indicates a high accu-
racy of our NLP algorithm. Therefore, we believe that the
influence of NLP errors was small.

The evaluated DCNN is the first step of fully automated
meniscus assessment, which is a clinically important task,
since meniscus tears are frequently treated with arthroscop-
ic knee surgery [7]. While the DCNN’s performance for
meniscus tear detection was close to humans, correct deter-
mination of the exact tear location is still under develop-
ment. The software version, which was subject to this study,
provides besides probabilities for medial and lateral menis-
cus tears additional heatmaps, pinpointing the exact tear
location on a two-dimensional axial image by assigning
each pixel a color-coded probability. However, this feature
is still under development and was therefore not specifically
evaluated in our study. It would also be desirable, if future
developments were able to exactly characterize tear mor-
phology and localization in terms of a periphery or center
of the meniscus, which is important for determination of the
adequate treatment in terms of conservative versus surgical
treatment or to determine between partial meniscectomy
and suture.

Our study has limitations. First, the deep learning-based
DCNN was only tested on knee MRI performed at our insti-
tution. Therefore, the results of this study apply to knee ex-
aminations using our standard knee protocol and MR scanner.
However, the DCNN was not fitted to our knee MR examina-
tions but was trained on more than 18,500 knee MRI from a
variety of institutions and therefore including various MR
protocols and MR scanners from all major vendors and differ-
ent field strengths. Therefore, we assume that the performance
of the DCNN will be similar for evaluation of knee MRI of
other institutions. Second, the indication for arthroscopic knee
surgery was influenced by the MRI and the visibility of a
meniscus tear to some degree. Still, knee arthroscopy was also
performed for several other intraarticular reasons, like liga-
ment, cartilage, or synovial abnormalities. Therefore, the
study population has a relevant number of intact medial and
lateral menisci; however, verification bias may be present
[41].

In conclusion, DCNN-based meniscus tear detection can
be performed in a fully automated manner with a similar spec-
ificity but lower sensitivity in comparison with musculoskel-
etal radiologists.
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