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Abstract: Lesion studies are crucial in establishing brain-behavior relationships, and accurately
segmenting the lesion represents the first step in achieving this. Manual lesion segmentation is the
gold standard for chronic strokes. However, it is labor-intensive, subject to bias, and limits sample
size. Therefore, our objective is to develop an automatic segmentation algorithm for chronic stroke
lesions on T1-weighted MR images. Methods: To train our model, we utilized an open-source dataset:
ATLAS v2.0 (Anatomical Tracings of Lesions After Stroke). We partitioned the dataset of 655 T1
images with manual segmentation labels into five subsets and performed a 5-fold cross-validation to
avoid overfitting of the model. We used a deep neural network (DNN) architecture for model training.
Results: To evaluate the model performance, we used three metrics that pertain to diverse aspects of
volumetric segmentation, including shape, location, and size. The Dice similarity coefficient (DSC)
compares the spatial overlap between manual and machine segmentation. The average DSC was
0.65 (0.61–0.67; 95% bootstrapped CI). Average symmetric surface distance (ASSD) measures contour
distances between the two segmentations. ASSD between manual and automatic segmentation was
12 mm. Finally, we compared the total lesion volumes and the Pearson correlation coefficient (ρ)
between the manual and automatically segmented lesion volumes, which was 0.97 (p-value < 0.001).
Conclusions: We present the first automated segmentation model trained on a large multicentric
dataset. This model will enable automated on-demand processing of MRI scans and quantitative
chronic stroke lesion assessment.

Keywords: stroke; automatic segmentation; stroke; deep neural networks; 3D-UNet; lesion studies;
vascular neurology; precision medicine

1. Introduction

Over the past century, human lesion studies have provided key insights into the
relationship of brain areas to behavior. Lesion studies are highly valuable in cognitive
neuroscience as lesions such as stroke create a dissociation of function. This dissociation
provides causal evidence of a brain area for the function [1].

In this quest, automatic lesion segmentation has emerged as a crucial tool [2]. Auto-
matic image segmentation refers to assigning non-overlapping boundaries in an image
to regions dissimilar in core features such as intensity or texture [3]. There are numerous
automatic segmentation algorithms for acute stroke; however, in comparison, there is a
paucity of algorithms for chronic stroke lesions [2]. The reasons for this are multifold. First,
acute stroke requires time-sensitive and precise clinical decision-making. Neuroimaging
plays a pivotal role in this decision-making; therefore, there are concerted efforts to develop
automatic segmentation models for acute stroke [4–6]. Second, the lesions in acute and
chronic stroke are assessed with distinct MR imaging sequences, and segmentation methods
developed for acute stroke imaging are not directly applicable to chronic stroke imaging [7].
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In acute stroke, diffusion, perfusion, and susceptibility-weighted images offer the most
clinically relevant information [8]. In contrast, in chronic stroke, T1-weighted images are
preferred as they offer a high spatial resolution, making them suitable for studying the
structure-function relationship [7]. Third, imaging in acute stroke is mandatory. Therefore,
large neuroimaging datasets exist, which enable automatic model training and testing for
acute stroke [9]. In comparison, large chronic stroke imaging datasets are rare [10].

Due to these reasons, currently, manual segmentation is the gold standard for chronic
stroke lesions. However, it is labor-intensive, time-consuming, prone to inter-observer
variability and biases [9]. All these factors ultimately limit the sample size. Chronic stroke
automatic segmentation models are required to overcome these limitations.

Recent reports have described an improvement in the performance of stroke lesion
segmentation algorithms when using novel methods, for instance, deep learning and
convolutional neural networks [9]. However, most of these algorithms were developed
using a small dataset such as ATLAS v1.2 and limited training size, hence, running the
risk of overfitting and lacking generalization [9]. It was also reported by Liew et al. that,
out of 17 different methods published using ATLAS v1.2, 12 of them did not report the
code as publicly available, thereby limiting the utility of the method to the scientific
community [9]. As a result, we developed a deep learning model based on the recently
released ATLAS v2.0 dataset (Anatomical Tracings of Lesions After Stroke, version 2 [9],
accessed on 16 February 2022) and released our code and trained models for the public.

This study aims to develop a fully automatic algorithm to segment chronic stroke
lesions on T1-weighted MR images. We used a deep neural network architecture (DNN)
to develop our model. Among the machine learning algorithms, DNN is a class that has
become well-established in computer vision tasks such as automatic segmentation [11].
Recent studies have reported that DNNs, specifically 3D-UNet, effectively segment stroke
lesions [7,12–17]. As a variation of 2D-UNet, 3D-UNet takes three-dimensional volumes as
inputs [18]. The encoder and decoder structures are identical to those in the 2D-UNet. The
encoder, however, extracts the features using 3D convolution followed by 3D max-pooling,
and the decoder reconstructs the annotated images using 3D upsampling [18]. Therefore,
we chose 3D-UNet as it is suitable for volumetric segmentation of medical imaging [19].

The rest of the paper follows the following structure. We begin by describing how the
model was developed. A qualitative and quantitative evaluation of the model will follow
in the next section. Finally, we conclude by discussing the application of our developed
model in both basic and clinical research.

Overall, we found that DNN enabled objectives and automated assessments of chronic
lesions secondary to stroke in vascular neurology at high throughput and could ulti-
mately serve to improve clinical decision-making. Our model, in conjunction with voxel-
based lesion-symptom mapping, will facilitate the study of brain-behavior relationships in
chronic stroke.

2. Materials and Methods
2.1. Dataset

We employed an open-source dataset: ATLAS v2.0 (Anatomical Tracings of Lesions
After Stroke, version 2). This dataset has 655 T1-weighted MR images in a training set
assembled from worldwide multicentric cohort sites as a part of the ENIGMA Stroke
Recovery Group study [10]. Each site obtained ethical approval, and was conducted in
accordance with the Declaration of Helsinki, 1964. In addition, the central image receiving
site obtained ethical approval for the reception and dissemination of the deidentified
MR images.

2.2. Manual Tracing

Manual tracers followed standard operation protocol to trace lesion labels on the raw
T1-weighted images. This was done using ITK-SNAP software (version 3.8.0) [20,21]. The
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lesion masks were assessed by two raters separately and edited based on a standardized
protocol. The link to the standardized protocol is provided in the supplementary materials.

2.3. Preprocessing and Dataset Partitioning

Preprocessing included intensity normalization, registration to a standardized tem-
plate (MNI-152), and defacing using the “mri_deface” tool from FreeSurfer (v1.22) (https:
//surfer.nmr.mgh.harvard.edu/fswiki/mri_deface). Automated brain extraction using
the HD-BET algorithm was performed on all the MR images [22]. HD-BET is a rigorously
validated deep learning algorithm that uses artificial neural networks. During our initial
testing, we found that the brain extraction (skull removal) process reduces the training
time and improves the model performance. For training, the dataset was partitioned into
unique five-folds containing 20% of the data in each fold.

2.4. Lesion Characteristics

Lesion characteristics are depicted in Table 1. 59.9% of subjects had a single lesion,
and 38.1% had multiple lesions. Of the subjects with multiple lesions, 7.2% had unilateral
lesions, 18.5% had bilateral lesions, and 12.4% had lesions in either brainstem or cerebellum.
Lesion location was considered unilateral if the lesions were present in only the left or the
right hemisphere. Lesion location in the brainstem or cerebellum was indicated as other.
Additionally, lesions were classified as cortical, subcortical, and other.

Table 1. Data characteristics for training dataset.

Subjects (n = 655) Location

Cortical lesions Left 12%; Right 13.5%
Subcortical lesions Left 30.2%; Right 29.4%

Other lesions 14.8%

Figure 1 is a visualization of the lesion overlap maps across all subjects (n = 655) in the
MNI space. 57.1% of subjects had at least one left hemisphere lesion, and 58.8% had at least
one right hemisphere lesion [2].
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Figure 1. Lesion map across all subjects (n = 655) visualized in the standard MNI template. Darker
colors indicate a higher frequency of lesions at a given voxel.

2.5. Model Architecture

We applied 3D-UNet, a deep neural network (DNN) architecture, to segment the
volumetric imaging data. Our implementation of the 3D-UNet on the ATLAS v2.0 dataset
is similar to that of Isensee et al. in the nnUnet framework [22]. Previously, we adapted
this architecture to successfully train an automatic segmentation model on the ATLAS v.1.2
dataset [23].

An overview of the 3D-UNet model and its components is shown in Figure 2. The
3D-UNet architecture consists of a symmetrical encoder and decoder structure. During
the analysis phase (encoding), convolutions and down sampling operations combine and
create a bottleneck at the center of the structure. During the synthesis phase (decoding), a
series of convolutions and upsampling (inverse convolutions) reconstructs the image. The
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addition of skip connections improves training by assisting backward gradient flow [18]. A
skip connection allows access to low- and mid-level visual representations of the input to
the decoder component, similar to the bypass connections in the primate visual system [24].

Diagnostics 2022, 12, x FOR PEER REVIEW 4 of 12 
 

 

architecture to successfully train an automatic segmentation model on the ATLAS v.1.2 
dataset [23]. 

An overview of the 3D-UNet model and its components is shown in Figure 2. The 
3D-UNet architecture consists of a symmetrical encoder and decoder structure. During 
the analysis phase (encoding), convolutions and down sampling operations combine and 
create a bottleneck at the center of the structure. During the synthesis phase (decoding), a 
series of convolutions and upsampling (inverse convolutions) reconstructs the image. The 
addition of skip connections improves training by assisting backward gradient flow [18]. 
A skip connection allows access to low- and mid-level visual representations of the input 
to the decoder component, similar to the bypass connections in the primate visual system 
[24]. 

 
Figure 2. Schematic representation of 3D-UNet architecture. 

2.6. Model Training 
We optimized the hyperparameters for the training using a grid search and cross-

validation on a validation set. Model performance on the validation set determined the 
hyper-parameters. The model was trained for 1000 epochs (where an epoch is defined as 
250 batches). Adaptive learning rates were used during the training. For the first 500 
epochs, a cosine-annealing learning rate schedule of 1 × 10−2 to 1 × 10−4 was used; for epochs 
500–1000, a cosine-annealing learning rate schedule of 1 × 10−5 to 1 × 10−9 was utilized. A 
weight decay (3 × 10−5) method was used for regularization. Scaling, rotation, gamma ad-
justments, mirror transformations, and additive brightness were randomly performed at 
probabilities of 0.2, 0.2, 0.3, 0.5, and 0.15, respectively, to augment the 3D data.  

2.7. Model Performance Evaluation 
We assessed the model’s performance both qualitatively and quantitively. For quan-

titative evaluation, we employed a multitude of evaluation metrics. To compare the spa-
tial overlap of the manual and automatic segmentation labels, we utilized the Sørenson–
Dice similarity coefficient (DSC) [25]. It is calculated as: 𝐷𝑆𝐶 2|𝑅 ∩ 𝑀||𝑅|  |𝑀| 100 (1)

where 𝑅 is the ground truth reference brain mask (manual segmentation) and 𝑀 is the 
predicted mask (automatic segmentation). The output values for DSC range from 0 (no 
overlap) to 1 (perfect agreement). We complemented DSC with average symmetric surface 
distance (ASSD). ASSD is the average of all distances between the predicted mask and the 
ground truth boundary [26]. In addition, we compared lesion volumes across cross-vali-
dation folds. 

  

Figure 2. Schematic representation of 3D-UNet architecture.

2.6. Model Training

We optimized the hyperparameters for the training using a grid search and cross-
validation on a validation set. Model performance on the validation set determined the
hyper-parameters. The model was trained for 1000 epochs (where an epoch is defined as
250 batches). Adaptive learning rates were used during the training. For the first 500 epochs,
a cosine-annealing learning rate schedule of 1 × 10−2 to 1 × 10−4 was used; for epochs
500–1000, a cosine-annealing learning rate schedule of 1 × 10−5 to 1 × 10−9 was utilized.
A weight decay (3 × 10−5) method was used for regularization. Scaling, rotation, gamma
adjustments, mirror transformations, and additive brightness were randomly performed at
probabilities of 0.2, 0.2, 0.3, 0.5, and 0.15, respectively, to augment the 3D data.

2.7. Model Performance Evaluation

We assessed the model’s performance both qualitatively and quantitively. For quanti-
tative evaluation, we employed a multitude of evaluation metrics. To compare the spatial
overlap of the manual and automatic segmentation labels, we utilized the Sørenson–Dice
similarity coefficient (DSC) [25]. It is calculated as:

DSC =
2|R ∩ M|
|R|+ |M| × 100 (1)

where R is the ground truth reference brain mask (manual segmentation) and M is the
predicted mask (automatic segmentation). The output values for DSC range from 0 (no
overlap) to 1 (perfect agreement). We complemented DSC with average symmetric surface
distance (ASSD). ASSD is the average of all distances between the predicted mask and
the ground truth boundary [26]. In addition, we compared lesion volumes across cross-
validation folds.

2.8. Statistical Analysis

Bootstrap resampling (n = 1000) was used to estimate 95% confidence intervals for
the evaluation metrics (DSC and ASSD). We report descriptive statistics (median, 95% CI)
for DSC and ASSD across cross-validation folds. A two-tailed Wilcoxon matched-pairs
signed-rank test was done to test the statistical significance of the differences between
the manual and automatic segmentation volumes. For quantification of the relationship
between manual and automatic segmentation volumes (randomly selected cross-validation
folds, n = 2), the Pearson correlation coefficient was utilized. We employed a randomization
test to estimate the p-value of the correlation coefficient (n = 1000).
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3. Results

We evaluated the performance of our model by comparing manual and automatic
segmentation masks across cross-validation folds.

3.1. Qualitative Performance

Visual evaluation of performance was done across multiple lesion locations and
sizes. To illustrate the model’s optimal performance on both large and small lesions, refer
to Figure 3. The images show manual and automatic segmentations of the T1w input
image to the model. Across different brain locations, the model can segment lesions of
different sizes accurately. Additionally, we provide supplemental videos demonstrating
segmentation examples for multiple subjects with different sizes and locations of lesions
(see Supplementary Materials).
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Figure 3. Axial sections showing examples of manual and automatic segmentation. The top row
depicts the segmentation performance for a Middle Cerebral Artery (MCA) stroke and the bottom
panel demonstrates performance for a lacunar stroke.

Figures 4–6 illustrate the model’s performance across the full extent of the lesion
volume on the coronal, axial, and sagittal sections respectively.
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Figure 6. Axial sections showing automatic segmentation of left MCA stroke.

Since Figure 3 shows only one brain slice, Figures 4–6 illustrate the model’s perfor-
mance across the full extent of the lesion volume on the coronal, axial, and sagittal sections.
The model provides continuous segmentation solutions across slices and sectional views.
As only the model output is displayed in Figures 4–6, these qualitative visualizations
demonstrate how our model can provide non-degenerate segmentation solutions.

3.2. Quantitative Performance

Quantitative performance was evaluated by using DSC, ASSD, and total volume
comparisons. These discrepancy metrics assess the similarity and dissimilarity of automati-
cally segmented lesions as compared to the ground truth, that is, the manually segmented
label [27]. A summary of descriptive statistics for DSC and ASSD is presented in Table 2.
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Table 2. Segmentation performance of the trained model across cross-validated folds.

Performance Metric Mean (Bootstrap 95% CI)

Sørensen–Dice coefficient 0.65 (0.61–0.67), median: 0.73
Average symmetric surface distance (ASSD) on MNI152

template (in mm) 12.04 (8.44–19.53), median: 2.23

To demonstrate the accuracy of volume prediction, we measured both manual and
automatic segmentation volumes. Scatter plots indicate the linear relationship between
manual and automatic segmentations over varying lesion volumes without bias, as most
data points lie on the diagonal (Figure 7, data from randomly selected cross-validation
folds (n = 2)). The Pearson correlation coefficient (ρ) between the two volumes was 0.97
(p-value < 0.001, randomization test (n = 1000)). A histogram of differences was constructed
to complement these results, which showed no significant difference between manual and
automatic segmentation volumes (p-value = 0.84). The results establish the state-of-the-art
performance of 3D-UNet both qualitatively (Figures 3–6) and quantitatively (Table 2 and
Figure 7). In addition, Figure 7 also shows the stability of segmentation across lesions of
varying sizes.
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4. Discussion

Understanding the brain structure-function relationship remains the fundamental
challenge for both clinical and basic neurosciences. Brain lesions such as strokes offer a
unique insight into brain function [1]. Although stroke lesions tend to be focal in nature,
they usually follow vascular territories and involve concomitant brain areas [28]. Further-
more, the immense variations in stroke lesions and the subsequent functional recovery
add to the challenge of delineating the structure-function relationship [10]. Therefore, to
study this relationship, one needs a large neuroimaging dataset [29] in combination with
the ability to accurately locate lesions.

In this study, we developed an automatic segmentation model using state-of-the-art
deep learning techniques and a novel combination of regularization methods. Figure 8
below illustrates a flow chart of the process involved in assessing a chronic stroke
lesion quantitatively.
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4.1. Regularization Methods to Overcome Overfitting

The ultimate test of a prediction model is its generalizability to novel datasets [30]. It
is, therefore, essential to avoid overfitting the model on the data it is trained on. Overfitting
refers to the model’s high performance on the data it is trained on and a discordant
performance on novel data [11]. It is hypothesized that overfitting occurs when the model
learns irrelevant aspects of data [11].To address this issue, we used two regularization
measures. The first measure was k-fold cross-validation. In k-fold cross-validation, the data
is randomly partitioned into k number of subsets, then the model is trained on k−1 subsets
(termed as training sets) and tested on the left-out subset (termed as testing set). Another
regularization method we utilized is data augmentation [31]. Like k-fold cross validation,
this method does not require a novel dataset to test; rather, it capitalizes on the available
data. In this method, synthetic distortions such as geometric transformation, rotation,
cropping, luminance variation, and magnification are introduced to the images [31]. The
goal is to augment the available dataset with the generation of synthetic images [31].

4.2. A Combination Approach for Quantitative Analysis

Individual metrics are sensitive to specific aspects of segmentation performance; hence,
they are sensitive to different kinds of errors. Therefore, if used singly, they risk ranking
an algorithm high that only performs well on a particular aspect. As no single metric is
considered the gold standard, a combination approach is recommended. The various kinds
of errors that can occur in segmentation tasks include errors in lesion shape, location, and
size [26]. Therefore, we utilized a metric targeting each of these errors and reported these
under the section quantitative assessment of model performance.

As the name suggests, overlap metrics are best at capturing the degree of overlapping
voxels in the two segmentations; however, they are not as sensitive in detecting discrep-
ancies in the overall spatial distribution of the segmentation [26]. The overlap metric
that we used is the Sørenson–Dice similarity coefficient (DSC). This index was originally
described by Dice for ecological studies [25], but it has been commonly used in medical
image segmentation [32].

To capture location-based errors, the boundary-based-distance method is utilized.
These methods assess the dissimilarity of the automatic segmentation with ground truth
based on the contour distances of the two lesion masks. The boundary-based-distance
metric we used is the average symmetric surface distance (ASSD). ASSD focuses on location
errors, but it is not as sensitive in identifying errors in the absolute size [26]. To capture
errors in size, we compared the two segmentation volumes. The total volume comparison
compares the total sizes, but it does not consider the shape and location of the two lesion
masks. Therefore, by employing a combination approach, we ensured a rigorous and
comprehensive performance evaluation [26].

4.3. Limitations

With any machine learning algorithm, one of the limitations is that it can learn bi-
ases from the training dataset. Our algorithm was optimized to be sensitive to manual
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segmentation labels. Therefore, it was prone to learning any biases associated with the
manual segmentation process [33]. Although the dataset was derived from multiple sites,
the manual segmentation was done by a common group of tracers, which can introduce
subjectivity and confounds [2].To overcome this, the model will need to be tested on inde-
pendent datasets. This, however, represents another challenge as there are limited publicly
available datasets for chronic stroke with manual segmentation labels [9]. Moreover, since
the testing is done on a subset of data, it provides evidence for adequate internal valid-
ity, however, this provides little information regarding external validity. As this issue is
common for automatic segmentation of chronic lesions, the authors of ATLAS v2.0 have
created a subset of test data (n = 300), which has only preprocessed images available on
request. The research groups who develop models are encouraged to request access to this
dataset, run the model and submit the automatic labels. In this manner, an objective and
unbiased test of generalization can be done [2].

4.4. Future Directions

Automatic segmentation models have the potential to serve as an aid in clinical
decision-making pertaining to neurorehabilitation [34]. This is a prospective area of per-
sonalized medicine wherein accurate predictions regarding patient recovery and relevant
rehabilitation programs for individual patients will be made [34]. Furthermore, as strokes
tend to reoccur in the same patient, even in cases of acute stroke, the chronic lesion segmen-
tation models can aid in foreseeing the prognosis. Chronic stroke segmentation can predict
the pre-stroke modified Rankin score (pre-mRS) [34], which is an independent predictor of
poststroke prognosis [35]. This highlights the role of chronic stroke segmentation models
in both acute and chronic stroke settings.

From the research standpoint, the combination of this technique with voxel-based
lesion-symptom mapping (VLSM) will enable the establishment of new relationships
between brain structure and function. VLSM is a lesion-defined method in which the
patients are grouped based on similar lesions, and then a comparison regarding behavioral
deficit is made on a voxel-by-voxel basis [36,37]. In terms of cognitive function localization,
VLSM studies in stroke patients have presented localization data pertaining to deficits in
cognition [38], language [39], memory [40], and executive functions [41].

Lastly, we shared our code, detailed model architecture, and trained models in the
Supplementary Materials. Data sharing is of special value when it comes to neuroimaging
segmentation modeling [42]. In addition to potential future use by other authors, sharing
this data enables independent verification, and reproduction of the results, thereby adding
to the credibility of our scientific enquiry and method [43].

5. Conclusions

For the first time, we report an automated lesion segmentation model on the ATLAS
v2.0 dataset. This model facilitates a high-throughput, objective, and automated assessment
of chronic stroke lesions. We utilized a novel combination of regularization methods to
avoid overfitting. To verify the robustness of our model, we utilized a combination of
quantitative metrics. This model, in combination with the latest image analysis techniques,
such as VLSM, will enable the study of structure-function relationships. Ultimately, this
work will facilitate large-scale neuroimaging analyses for stroke rehabilitation research.

Supplementary Materials: Standard operating protocols for manual lesion segmentation by AT-
LASv.2.0 authors can be found here: https://github.com/npnl/ATLAS/ (accessed on 20 December
2021) [2]. The complete code, detailed model architecture, and pre-trained models can be found at
the following link: https://github.com/SatwantKumar/3D-unet. Also provided are supplemental
videos that show segmentation examples for multiple subjects with different sizes and locations
of lesions.

https://github.com/npnl/ATLAS/
https://github.com/SatwantKumar/3D-unet
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