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Basal lamina remodeling at the skeletal muscle
stem cell niche mediates stem cell self-renewal
Shantisree Sandeepani Rayagiri1,7, Daniele Ranaldi1, Alexander Raven1,8, Nur Izzah Farhana Mohamad Azhar1,9,

Olivier Lefebvre2,3,4,5, Peter S Zammit6 & Anne-Gaëlle Borycki1

A central question in stem cell biology is the relationship between stem cells and their niche.

Although previous reports have uncovered how signaling molecules released by niche cells

support stem cell function, the role of the extra-cellular matrix (ECM) within the niche is

unclear. Here, we show that upon activation, skeletal muscle stem cells (satellite cells) induce

local remodeling of the ECM and the deposition of laminin-α1 and laminin-α5 into the basal

lamina of the satellite cell niche. Genetic ablation of laminin-α1, disruption of integrin-α6
signaling or blocking matrix metalloproteinase activity impairs satellite cell expansion and

self-renewal. Collectively, our findings establish that remodeling of the ECM is an integral

process of stem cell activity to support propagation and self-renewal, and may explain the

effect laminin-α1-containing supports have on embryonic and adult stem cells, as well as the

regenerative activity of exogenous laminin-111 therapy.
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Substantial progress has been made in understanding the
molecular and cellular control mechanisms of embryonic,
germline, and adult stem cell activity. The recognition that

stem cell activity does not involve solely intrinsic factors, but also
depends on extrinsic cues provided by the niche is a major insight
into the regulatory events underlying stem cell function and tissue
homeostasis1. Despite a focus on the niche support cells and the
secreted factors they produce, the role of the extra-cellular matrix
(ECM) and its signaling function in the stem cell niche is mostly
unexplored. Tissue homeostasis in skeletal muscles relies on the
activity of muscle-specific stem cells called satellite cells (SCs)2–5,
which are mono-nucleated cells that express the paired home-
odomain transcription factor Pax7 (and in some cases Pax3)6,7,
and are normally mitotically quiescent. Upon activation caused
by exercise, injury or disease, SCs execute a myogenic program,
reminiscent of that occurring during embryogenesis, which cul-
minates with the fusion of SC-derived myoblasts and repair of
damaged fibers8. SCs are located between the myofibre plasma
membrane and sheathing basal lamina (BL)9, which provides a
niche environment that is not thoroughly investigated. The
muscle BL is a supra-molecular ECM structure connecting two
networks of laminins and collagen polymers via the bridging
function of glycoproteins and heparan sulfate proteoglycans, such
as nidogen and perlecan10. Laminins belong to a family of sixteen
distinct heterotrimer proteins made of one α, one β, and one γ
subunit, and are critical for BL assembly and function11. The
predominant laminin in healthy adult muscle fiber BL is a
laminin-α2-containing isoform (laminin-211), although addi-
tional isoforms are present at the neuromuscular junction BL, and
at the intramuscular nerve and vascular network BLs12,13. This
adult muscle BL forms through the progressive replacement of
the embryonic laminins, laminin-111 and laminin-511, by the
adult isoform laminin-211 at the non-synaptic muscle BL during
fetal and post-natal muscle development13. Interestingly, laminin-
α5 has been reported to be upregulated transiently in human and
mouse dystrophic muscle fiber BL, suggesting a degree of plas-
ticity in the BL composition in the pathological muscle12. Given
the role of laminin-111 in patterning and differentiation of ske-
letal muscle cells during embryonic development14–16, we inves-
tigated the role of the ‘embryonic’ laminin isoforms, laminins α1
and α5, in adult myogenesis.

Here, we report that upon SC activation, a remodeling event
mediated by matrix metalloproteinases (MMPs) leads to the
deposition of laminin-α1 and laminin-α5 at the SC niche during
muscle regeneration. Notably, we observe a differential spatio-
temporal distribution of laminin-α1 and laminin-α5 in the BL
overlying activated SCs and regenerated myofibers, respectively.
Loss-of-function of laminin-α1 impairs SC proliferation and self-
renewal, and results in decreased long-term regenerative cap-
ability. Laminin-111 mediates its effects via integrin-α6β1 sig-
naling, and by maintaining SC polarity and asymmetric cell
division. Together, our observations indicate plasticity of the BL
at the SC niche that supports SC propagation, differentiation, and
self-renewal. These findings may be of importance for the design
of therapeutic interventions for muscular dystrophies and to
combat muscle aging.

Results
Laminin-α1 and laminin-α5 deposition at satellite cell niche.
To investigate whether muscle regeneration is associated with a
degree of ECM remodeling, we used quantitative real-time PCR
(qPCR) to determine the expression levels of all Laminin genes
during murine skeletal muscle regeneration. Tibialis anterior
(TA) muscle harvested at 4 days post cardiotoxin-mediated injury
(dpi) was compared to non-injured TA muscle (Fig. 1a). Pax7

and MyoD upregulation in injured TA samples confirmed the
presence of muscle progenitor cells (Fig. 1a). In addition, our
analysis showed significant increase of mRNA levels for Lama1,
Lama4, Lama5, Lamb1, Lamc1, and moderate increase of mRNAs
levels for Lama2, Lamb3, Lamc2, and Lamc3 in 4 dpi injured TA
muscle (Fig. 1a). Expression levels of Lama3 and Lamb2 were
unchanged. Thus, muscle regeneration is accompanied by an
upregulation of laminin-111 (α1β1γ1), laminin-411 (α4β1γ1),
and laminin-511 (α5β1γ1). To confirm this findings, we used
validated antibodies against laminin-α117,18 and laminin-α519 in
an ex-vivo myofiber culture system in which SCs are retained in
their niche in association with the myofiber and surrounding BL,
and recapitulate the adult myogenic program over a 72-hour
period20 (Fig. 1b). Pax7+ SCs did not express laminin-α1 and
laminin-α5 in freshly isolated muscle fibers (0 h) (Fig. 1c–e).
However, after 24 h in culture, laminin-α1 and laminin-α5 were
detected at the SC niche exclusively, in contrast to laminin-α2 and
laminin-β1, which were present throughout the BL overlying both
myofiber and SCs (Fig. 1c–e and supplementary Fig. 1a). Inter-
estingly, laminin-α1 deposition in the SC niche appeared tran-
sient starting with 53.1% of cells expressing at 24 h, peaking at
91.8% by 48 h before decreasing to 69.3% at 72 h. Laminin-α1 did
not display a preferential association with particular fates and was
associated with activated (Pax7+Myf5+), proliferating (Pax7+

MyoD+), as well as differentiating (Pax7−MyoD+) and self-
renewing (Pax7+MyoD−) muscle progenitor cells. In contrast,
laminin-α5 was preferentially associated with differentiating
muscle progenitor cells (Fig. 1c–e and supplementary Fig. 1b).

We next examined laminin-α1 and laminin-α5 deposition in
the murine SC niche in vivo. We injected cardiotoxin into the TA
muscle to cause widespread disruption of the muscle architecture.
Regeneration of cardiotoxin-injured skeletal muscles typically
span 14 days and is characterized by an intense inflammatory
response between 1–7 dpi peaking at 4 dpi and a parallel SC-
mediated repair program characterized by a large number of Pax7
+ and MyoD+ activated SCs at 4 dpi, leading to the emergence of
newly regenerated centrally-nucleated myofibers at 7 dpi
(supplementary Fig. 1c-e). Consistent with previous
reports13,21,22, laminin-α1 was not observed in non-injured adult
muscles and laminin-α5 was confined to capillaries and blood
vessels, and the neuromuscular junction (Fig. 2a and supplemen-
tary Fig. 1i,j). However, laminin-α1 was transiently observed in
the niche of activated (MyoD+) SCs as early as 2 dpi, when it
peaked at 61.5% of SC-derived progenitor cells, and remained
associated with activated SCs until 7 dpi (Fig. 2a, b). By 14 dpi,
laminin-α1 was no longer detected (Supplementary Fig. 1f).
Interestingly, although laminin-α5 was also induced in SCs at 2
dpi, strong expression was not observed until 4 dpi, and by 7 dpi,
laminin-α5 was distributed throughout the BL of regenerated, but
not undamaged, muscle fibers (Fig. 2a and supplementary Fig. 1i).
Thus, muscle regeneration is characterized by a dynamic change
in the laminin composition at the extra-synaptic BL with the
transient deposition of laminin-α1 at the activated SC niche and
laminin-α5 at the BL of regenerated fibers. Laminin-α1 was also
found associated with cells labeled with F4/80, a pan macrophage
cell surface marker (supplementary Fig. 1g,h), suggesting that it
may also contribute to the known cross-talk between SCs and
macrophages23. Finally, laminin-α1 was also observed at the BL of
activated SCs and macrophages in sedentary and exercised mdx
mice, a model of human Duchenne muscular dystrophy
(supplementary Fig. 2a-c). Laminin-α1 and laminin-α5 deposi-
tion into the SC and myofiber BL, respectively, is likely to result
from the re-expression of these embryonic isoforms by SCs
themselves or by myofibers since Lama1 and Lama5 transcripts
peaked at 48 and 72 h in myofiber cultures, respectively, while no
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or little expression was observed in freshly isolated muscle fibers
(Fig. 2c).

Matrix metalloproteinases trigger remodeling of the SC niche.
Laminin-α1 and laminin-α5 incorporation into the satellite cell
BL soon after SC activation suggests an active mechanism to

remodel locally the BL associated with SCs. Matrix metallopro-
teinases (MMPs) substrates include ECM components, and thus
are good candidates to mediate BL remodeling during muscle
regeneration24,25. We focused on the gelatinases MMP2 and
MMP9, because gain and loss-of-function studies already sug-
gested a link with skeletal muscle and the pathology of mdx
mice26–28. Although no MMP2 or MMP9 expression was
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Fig. 1 Laminin-α1 and laminin-α5 deposition in the niche of activated satellite cells. a Quantitative PCR analysis of Lama1-5, Lamb1-3, and Lamc1-3 genes
together with Pax7 andMyoD in non-injured (dark gray; n= 3) and 4 dpi injured (light gray; n= 3) TA muscles. b Schematic representation of the myofiber
culture system showing the sequential activation (blue), proliferation (yellow), self-renewal (green), and differentiation (purple) of satellite cells. c
Representative immunofluorescence images of cultured myofibers analyzed for laminin-α1 (green), Pax7 (red), Myf5 (yellow at 24 h), and MyoD (yellow at
72 h). Panels on the right are high magnification images of the area boxed. White arrows indicate satellite cells associated with laminin-α1. Scale bar, 50
μm. d Immunofluorescence analysis of laminin-α5 (green) and Pax7 (red) distribution in cultured myofibers. Arrows indicate Laminin-α5 deposition in Pax7
−cells at 72 h. Scale bar, 50 μm. e Quantification of the number of satellite cells expressing Pax7, MyoD, and laminin-α1 after myofiber culture. The color
code relates to the cell populations described in (b). n= 3 experiments with 20–32 fibers analyzed per time point. Graph shows mean+ sem; *P < 0.05,
**P < 0.01, ***P < 0.001, ****P < 0.0001 (t-test)
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observed in freshly isolated myofibers, MMP2 and MMP9 were
detected in activated SCs within 24 h in culture and remained
associated with SCs undergoing expansion and differentiation
(Fig. 3a, b). Muscle fibers from the Extensor Digitorum Longus
(EDL) muscle were cultured in the presence of two different
MMP inhibitors and assessed for the effect on laminin-α1 dis-
tribution and myogenesis. Consistent with the partial inhibition
of laminin-α1 deposition into the SC niche, ARP-100, a MMP2-
specific inhibitor29, had a significant, but transient effect on SCs
proliferation (Pax7+MyoD+ at 48 h, Fig. 3c, d). Marimastat, a
broad MMP inhibitor that blocks the activity of MMP1, 2, 7, 9,
and 1430, clearly prevented laminin-α1 deposition in the SC
niche, and caused a transient delay in SC activation (indicated by
a higher number of Pax7+Myf5− cells at 24 h) and a permanent
decrease in the number of proliferating SCs (Pax7+MyoD+) at
48 h, and self-renewing (Caveolin+Myogenin−) and differentiat-
ing (Caveolin+Myogenin+) SCs at 72 h (Fig. 3c, d). Thus, MMP2
and MMP9 catalyze remodeling of the BL associated with acti-
vated SCs to facilitate laminin-α1 deposition, and inhibition of

MMP-mediated BL remodeling impairs SC ability to progress
through the myogenic program.

Loss of laminin-α1 impairs SC proliferation and self-renewal.
To confirm that laminin-α1 deposition into the SC BL plays a role
in SC activity and muscle regeneration, we examined a condi-
tional knockout of Lama1 (named Lama1cko thereafter) generated
by crossing Sox2Cre/+ and Lama1flox/+ mice31,32. As we pre-
viously reported33, Lama1cko mice were born at normal mende-
lian ratios, although with a lower birth weight compared to their
control littermate (Lamaflox/flox), which recovered by 6 weeks of
age (supplementary Fig. 3a). Muscle regeneration after
cardiotoxin-mediated injury of the TA was not overtly affected in
Lama1cko, although Lama1cko regenerated myofibers were smaller
than the control ones by 14 dpi (Fig. 4a and supplementary
Fig. 3b). Consistent with this, there were fewer MyoD+ cells and
Ki67+ cells in Lama1cko mice at 2, 4, and 7 dpi, and fibers cul-
tured from Lama1cko mice had fewer proliferating SCs (Pax7
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+MyoD+) cells (Fig. 4b–d). Laminin-α5 was not upregulated in
Lama1cko mice (supplementary Fig. 3c), suggesting the absence of
functional compensatory mechanisms that would explain the
relatively mild phenotype observed. Notably, the numbers of self-
renewing (Caveolin+Myogenin-) SCs (Fig. 4d) in Lama1cko cul-
tured myofibers and SCs returning to a sublaminal position at 14
dpi in Lama1cko mice were reduced (Fig. 5a and supplementary
Fig. 3d), suggesting a defect in SC self-renewal. To test this, we
carried out three repeated injuries at 21-day intervals and ana-
lyzed animals after the 2nd and 3rd round of injury. Control mice
repaired successfully their tissue 14 days after the second or third
injury, indicating that a pool of SCs self-renewed and re-
integrated into a sublaminal position after each injury (Fig. 5a,b).
In contrast, Lama1cko mice failed to regenerate their injured
muscle, and displayed a high degree of fibrosis and the presence
of MyoD+ cells, as well as a large number of infiltrating cells after
the 3rd round of injury (Fig. 5b), suggesting that SCs became
depleted at each round of regeneration. Consistent with this
observation, there were 26%, 48%, and 54% fewer self-renewing
cells in Lama1cko compared to control muscles after one, two, and
three rounds of injuries, respectively (Fig. 5a). Together, these
data demonstrate that in the absence of laminin-α1, SC fail to

expand and self-renew efficiently during muscle regeneration, a
defect that may originate in part from an earlier post-natal defect
as suggested by the lower number of SCs present in Lama1cko

compared to control freshly isolated myofibers (Fig. 4d).

Integrin-α6 mediates laminin-α1 signaling to SCs. The
deposition of laminin-α1 (presumably laminin-111) at the SC
niche may confer specific properties to the BL that support SCs
self-renewal and progression through myogenesis. We hypothe-
sized that this change in laminin composition initiates distinct
signaling in SCs. Indeed, although laminin-α1 can bind to
integrin-α7β1, the laminin-α2 receptor normally expressed in
adult muscles34, it binds preferentially to integrin-α6β1, a
receptor highly expressed in embryonic muscle16. Thus, we asked
whether integrin-α6 was also re-expressed during adult myo-
genesis. No integrin-α6 was detected in freshly isolated myofibers
(Fig. 6a). However, integrin-α6 was upregulated in activated SCs
at 24 h and remained expressed in SCs at 48 and 72 h, albeit at
lower levels (Fig. 6a, b). Integrin-α6 was also dramatically, but
transiently, upregulated in a sequential manner in vivo in endo-
thelial cells (CD31+), M1 and M2 macrophages (F4/80+ and
CD206+), and in SCs (Pax7+ and MyoD+) following
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cardiotoxin-mediated muscle injury, an observation that corro-
borates previous reports19 (Fig. 6c, d). Preventing signaling
through integrin-α6 with cd49f, an integrin-α6 blocking antibody,
impaired SC expansion in a manner reminiscent of the defect
observed in myofiber cultures from Lama1cko muscles (compare
Fig. 7a, b to Fig. 4d). Notably, there was a significant reduction of
the number of Caveolin-1+/Myogenin- cells at 72 h, which
comprises self-renewing SCs (Fig. 7b). Conversely, culturing
fibers in the presence of exogenous laminin-111 resulted in a 2-
fold increase in the number of SCs by 72 h, with a greater effect

on the population of Caveolin-1+/Myogenin- cells deemed to
self-renew (Fig. 7a, b). When muscle fibers were cultured in the
presence of both laminin-111 and Cd49f, no increase in SC
number was observed (Fig. 7a, b), confirming that laminin-111
effects on SCs are mediated through integrin-α6.

Laminin-111 treatment promotes symmetric cell division. SCs
can divide either in a planar orientation where both daughter cells
are in contact with the fiber and the BL or in an apico-basal
orientation where one daughter cell in contact with the BL adopts
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a self-renewal cell fate (Pax7+) and the daughter cell in contact
with the myofiber adopts a myogenic cell fate (MyoD+)35,36. To
address how laminin-111 treatment causes an increase in the
number of self-renewing cells, we monitored planar and apico-
basal cell divisions and recorded whether daughter cells in
doublets were identical (symmetric cell division) or distinct

(asymmetric cell division) in myofibres cultured for 46 h.
Laminin-111 treatment caused an increase in the proportion of
cell doublets dividing in a planar symmetrical orientation, at the
expense of cells dividing in an apico-basal orientation (Fig. 8a, b).
Apico-basal cell division is linked to the asymmetrical distribu-
tion of cell polarity proteins Par1 and Par336,37. We observed that
Par3 was indeed asymmetrically distributed in dividing pro-
genitor cells, some of which had downregulated Pax7 and were
fated to differentiate, in control conditions (Fig. 8c). In laminin-
111-treated myofibers, Par3 was downregulated or uniformly
expressed at low levels (Fig. 8c). Thus, the addition of laminin-
111 may interfere with the normal distribution of cell polarity
proteins and cause cells to divide in a planar orientation and
adopt a stem cell fate.

Discussion
Adult organ homeostasis relies on the activity of tissue-specific
stem cells, which are controlled by extrinsic factors supplied by a
highly specific micro-environment known as the 'stem cell
niche’1,38. Studies of the past decade have greatly contributed to
our current understanding of the stem cell niche characteristics,
in particular in germline stem cells of Drosophila, and in hae-
matopoietic, hair follicle and intestinal crypt stem cells in
mammals1. SCs operate also within a niche environment, which
provides cues for SC activation, proliferation, differentiation, and
self-renewal39,40. Our results demonstrate that upon activation,
SCs pro-actively modify the ECM within their niche by producing
enzymes that catalyze the remodeling of the SC BL and by syn-
thesizing sequentially laminin-α1 and laminin-α5, two laminin
subunits that are normally associated with embryonic myogen-
esis14. The deposition of laminin-111 into the SC BL is essential
for SC expansion and self-renewal, a process mediated by the
signaling of laminin-α1 through integrin-α6. Thus, remodeling at
the SC BL is a novel mechanism that contributes to the control of
SC self-renewal36,41–43. Two recent reports have implicated the
ECM molecules collagen type VI and fibronectin in the control of
SC activity and self-renewal44,45, suggesting that remodeling of
the ECM following muscle injury and SC activation is a wide-
spread mechanism to maintain a stem cell pool. However, it is
worth noting that while laminin-111 associates directly with SCs
via its receptors, both collagen VI and fibronectin assemble into
fibrillar networks that are components of the interstitial matrix
often associated with fibroblasts. Furthermore, the broad upre-
gulation of fibronectin and collagen VI in injured muscles,
reminiscent of what we observed with laminin-α5, contrasts with
the local upregulation of laminin-α1 reported in this study, and
suggests that the mechanisms underlying laminin-α1 function in
SC self-renewal differ from those of fibronectin and collagen VI.
Consistent with this, while fibronectin binds to syndecan 4 and
modulates frizzled-mediated Wnt response to maintain SCs in
their niche43, laminin-α1 mediates its effect on SC self-renewal

Fig. 5 Impaired long-term regenerative capacity in Lama1-deficient mice. a
Number of satellite cells returning to a sublaminal position in regenerated
myofibers after one round (n= 3), two rounds (n= 3), and three rounds (n
= 3) of injury. b Control and Lama1cko mice analyzed at 14 dpi following
three rounds of repeated injuries at 21-day intervals analyzed by
Haematoxylin and Eosin staining and immunofluorescence for MyoD and
collagen I (red). Black arrows indicate the presence of infiltrating
inflammatory cells in Lama1cko mice. White arrows indicate the site of
fibrosis. The graph shows the minimal Feret diameter analysis of control
and Lama1cko mice after 3 rounds of injury. Scale bar, 50 μm. n= 6
(Lama1cko) and n= 3 (control). Graphs show mean+ sem. *P < 0.05, **P <
0.01, ***P < 0.001, ****P < 0.0001 (t-test for a and one-way ANOVA for b)
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through integrin-α6β1. Given that SC self-renewal is maintained
through asymmetric cell division and that SC asymmetric cell
division occurs primarily following apico-basal cell division,
which yields a daughter stem cell associated with the BL and a
daughter cell committed to differentiation35, one may speculate
that laminin-α1 deposition in the SC niche acts as an initiating
event in the process of asymmetric cell division. Interestingly,
dystroglycan, another laminin receptor and component of the
dystrophin-associated glycoprotein complex, was recently shown
to be asymmetrically distributed and to associate with Par1b, a
microtubule-associated cell polarity protein, in SCs fated to self-
renew following apico-basal cell division37. Here, we showed that
exogenous laminin-111 interferes with the apico-basal distribu-
tion of Par3 and promotes planar cell division at the expense of
apico-basal cell division. This suggests a possible mechanism
whereby upon activation SC-mediated deposition of laminin-111
into the SC BL initiates a cascade of events leading to clustering of
dystroglycan on the basal side, as we previously observed in the
myotomal basement membrane in the embryo46, the apico-basal
localization of Par1b and Par3, and apico-basal cell division to
produce two daughter cells with distinct fates (Fig. 8d–f).

Our data further suggest that laminin-111 mediate its effects on
SCs via integrin α6β1. Consistent with a possible involvement of
integrin-α6β1 in laminin-111-mediated SC self-renewal, Collins-
Hooper et al. observed higher levels of integrin-α6 in SCs from
young compared to old muscles47, suggesting that loss of self-
renewal capability observed in aged mice48 may be partially due

to reduced integrin-α6β1 signaling. Given that the axis laminin-
111/integrin-α6β1 has been associated with long-term self-
renewal of induced-pluripotent stem cells49,50, with sphere-
forming capacity of human prostate cancer stem cells and
neural stem cells51,52, and with asymmetric cell division of Dro-
sophila ovarian follicle stem cells53, it is likely that interaction
between laminins and integrins represents an ancient mechanism
to maintain stem cell self-renewal. Further investigations are
required to uncover the downstream processes controlled by this
signaling pathway.

The implications of this study to regenerative medicine are
considerable. Indeed, congenital muscular dystrophies (CMD) are
a group of devastating degenerative diseases of the skeletal
muscular tissue caused by mutations in proteins involved directly
or indirectly in the association between the muscle fiber and the
ECM54. There is currently no therapy for this group of diseases,
although recent studies reported that overexpression of laminin-
α1 or injection of laminin-111 improved dramatically the dys-
trophic phenotype in mouse models of CMD55–57. Laminin-111
is thought to rescue the dystrophic phenotype by stabilizing the
sarcolemma and preventing contraction-induced damage of
CMD muscles. Our findings reveal that exogenous laminin-111 is
also likely to improve the dystrophic phenotype of CMD models
by augmenting SC expansion and self-renewal. This is consistent
with previous studies58, showing that SCs cultured on laminin-
111 support have a higher regenerative capability than SCs cul-
tured on fibronectin when engrafted in mdx dystrophic muscles.
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Together with our findings, this provides strong support for the
use of laminin-111 in approaches to generate SCs or induced-
pluripotent stem cells-derived SCs for cell therapy.

Methods
Mice. All mice were housed in the temperature and humidity-controlled barrier
facility of the University of Sheffield. Experimental procedures were performed in
accordance with the Animals (Scientific Procedures) Act 1986, were approved by
the University of Sheffield Ethical Review Process committee, and performed under
UK Home Office Project Licence 60/4354. All experiments were performed on
mice at 8–12 weeks of age. C57BL/6, mdx (kindly provided by Gaynor Miller),
Lama1flox/+30, Tg(Sox2-cre)1Amc (kindly provided by Elizabeth Robertson)31, and
Tg(Pax7-GFP) (kindly provided by Shahragim Tajbakhsh)5 were maintained on a
C57BL/6 background in accordance to the Home Office guidelines for animal
handling and care. Exercised C57BL/6 (control) and mdx mice were allowed access
to voluntary wheel running exercise from the age of 4 weeks for a period of 17 days.
The average distance ran per day was recorded on a pedometer and was 3.23 km/
day ± 0.41 for mdx mice and 4.02 km/day ± 1.21 for C57BL/6 mice. Primers and
protocols used for genotyping of the mice are listed in Supplementary Table 1.

Muscle injury. Muscle injury was induced on 8-week-old mice by a single 50 μl
injection of 10 μM Cardiotoxin (CTX) from Naja mossambica (Latoxan) into the
left TA muscle. At various times following injury (2, 4, 7, and 14 days), the mice
were culled, injured, and contralateral control muscles were harvested for analysis.
Transverse sections of muscles were subjected to Haematoxylin-Eosin staining to
confirm the degree of injury and regeneration. The minimal Ferret’s diameter of
fibers was determined on transverse sections immuno-labeled with laminin-α2
using the ImageJ software.

EDL muscle fiber culture. EDL muscles were dissected from 6–8-week-old C57BL/
6 or Lama1cko mice and incubated for 60–90 min at 37 °C in 0.2% Collagenase type
I (2 mg/ml, Sigma) freshly prepared in DMEM+Glutamax medium with 1% PSF
(antibiotic/antimycotic solution, Sigma). The muscles were then transferred to
DMEM medium supplemented with 10% horse serum (Invitrogen), 0.5% chick
embryo extract (Seralab), and 1% PSF, and the myofibres were harvested by gentle
flushing of medium using a flamed-polished glass Pasteur pipette. Single myofibres
were washed and transferred to a new Petri dish, and either fixed immediately in
4% paraformaldehyde (PFA) for 6 min (time 0 h) or cultured for up to 72 h in
tissue culture dishes (Nunclon) coated with 5% bovine serum albumin (BSA,
Sigma) at 37 °C in 5% CO2. Where indicated, MMP inhibitors, ARP-100 (50 nM,
Alfa Aesar J64151) or Marimastat (5 μM, R&D systems), integrin-α6 blocking
antibody Cd49f (30 μg/ml, clone GoH3 MCA699, AbD Serotec), or soluble
laminin-111 (30 μg/ml, Millipore CC095) were added to the medium. At the end of
culture time, myofibres were fixed in 4% PFA for 6 min if processed for immu-
nofluorescence or directly transferred to Trizol (Life Technologies) if processed for
qPCR.

Immunofluorescence. Fixed myofibres were washed in phosphate buffer saline
(PBS, Fisher Scientific) and permeabilized in 0.5% Triton X100 (Sigma) for 8 min.
Skeletal muscles were harvested, fixed in 4% or 2% PFA for 2 h at 4 °C, and washed
twice in PBS. Skeletal muscles were then transferred into 20% sucrose in PBS
overnight at 4 °C followed by 3–4 h in 30% sucrose. Finally, the muscles were
dipped in OCT (VWR) and immediately frozen in liquid nitrogen-cooled Iso-
pentane (VWR). A total of 7 µm cryosections were collected on superfrost slides
(Menzel-Glaser) using a cryostat (Bright Instruments). Blocking was performed in
20% horse serum in PBS (for isolated muscle fibers) or in blocking solution (5%
BSA, 2% heat-inactivated goat serum, 2% fetal bovine serum (FBS), 0.05% Triton
X100 in PBS for muscle cryosections) for 1 h at room temperature. Appropriate
primary antibody diluted in PBS (for myofibres) or in PHT (1% heat-inactivated
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Fig. 7 Laminin-111 treatment increases SC proliferation and self-renewal. a Representative images of myofibers cultured in control conditions or in the
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goat serum, 0.05% Triton X100 in PBS for cryosections) was added and incubated
overnight at 4 °C. After three washes in 0.05% Triton X100 in PBS (for myofibres)
or in PHT (for cryosections), the secondary antibody diluted in PBS or PHT was
added and incubated for 1 h at room temperature. After three washes, the myo-
fibres were transferred on slides and mounted in Vectashield with DAPI (Vector
labs). Where two antibodies raised in the same species were used, primary and
secondary antibody detection using the first antibody was carried out as described
above, followed by an incubation with normal serum from the host species of the
primary antibody prior to detection using the second conjugated antibody. Primary
antibodies used were anti-caveolin-1 (1:400; sc-894, Santa Cruz), anti-pax7 (1:20,
DHSB), anti-myoD (1:1000; sc-304, Santa Cruz), anti-myf5 (1:2000; sc-302, Santa
Cruz), anti-myogenin (1:50; F5D, DHSB), anti-laminin-α2 (1:200; 4H8–2, Enzo),
anti-laminin-α1 (MAB-1903 at 1:200, Chemicon; mab200 at 1:2, and sc-65645 at
1:100, Santa Cruz), anti-laminin-α5 (1:10000; clone 405, a gift from L. Sorokin59),
anti-laminin-α1 (1:200; MAB1905, Chemicon), anti-integrin-α6 (1:40; MCA699,
AbD SeroTec), FITC anti-F4/80 (1:100; ab105155, AbCAM), FITC anti-CD206
(1:250; clone C068C2, BioLegend UK), anti-CD31 (1:100; AF3628, R&D Systems),
anti-Collagen I (1:300; AB765P, Chemicon), anti-Ki67 (1:300; NCL-Ki67p,
Novocastra), anti-MMP9 (1:200; sc-6841, Santa Cruz), anti-MMP2 (1: 300; sc-
10736, Santa Cruz), and anti-Par3 (1:750; 07–330, Millipore). Secondary antibodies
were Alexa 488 goat anti-rabbit IgG (A11034), donkey anti-rabbit IgG (A21206),
donkey anti-mouse IgG (A21202), and donkey anti-rat IgG (A21208) or Alexa 594
goat anti-rabbit IgG (A11037), donkey anti-goat IgG (A11058), and goat anti-
mouse IgG (A11005) (all used at 1:500, Molecular Probes). To record cell divisions,
only doublets were considered. The following criteria were used: planar cell

divisions were parallel to the myofiber axis, apico-basal cell divisions were per-
pendicular to the fiber axis, symmetrical cell divisions included daughter cells with
same immunolabeling (Pax7+MyoD+), asymmetrical cell divisions included two
daughter cells with distinct immunolabeling (for instance, Pax7−MyoD+ and Pax7
+MyoD+). Images were captured on a Zeiss Apotome microscope using the
Axiovision imaging system. The images were assembled using Photoshop CS
version 6.

Quantitative PCR. Total RNA was isolated using Trizol (Invitrogen) according to
the manufacturer protocol, and cDNAs were synthesized using the Superscript III
First Strand Synthesis System using random hexamers (Invitrogen). qPCR was
carried out on an iCycler instrument (Biorad) using the SYBR green reagents
(Sigma) or a StepOne real-time PCR instrument (Applied Biosystems) using
TaqMan reagents (Applied Biosystems). The cycling conditions used were as fol-
lows: iCycler: 10 min at 95 °C, and 40 cycles including a 15 s denaturation at 94 °C,
10 s annealing at the primer Tm°C, and a 15 s extension at 72 °C; StepOne: a 20 s
denaturation at 95 °C, followed by 40 cycles of 95 °C for 1 s and 60 °C for 20 s.
Transcript levels were normalized to glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) transcript levels (iCycler) or to eukaryotic 18 s rRNA (Thermo Fisher
Scientific). Primers used are described in Supplementary Table 2. Applied Bio-
systems StepOne Software V2.3 was used to analyze the data and relative expres-
sion levels were calculated using the 2−ΔCT method60.

0

20

40

60

80

Control

Planar
cell division

Apico-basal
cell division

Symmetric SymmetricAsymmetric Asymmetric

Cell division

***

**

ns

**

P
ax

7 
P

ar
3 

D
ap

i 

Control MMP2/9
Dystroglycan
+ Par1b

Laminin α1 Pax7+ stem cell

MyoD+ cell

Activated SC

Basal
lamina

Sarcolemna
Par3

Planar

S
ym

m
et

ric
A

sy
m

m
et

ric

Integrin α6

%
 o

f d
ou

bl
et

s

Laminin-111

Laminin-111

Merge Merge Par3 DapiPar3 Dapi

Apico-basal

Pax7 MyoD DAPI Pax7 MyoD DAPI

a b

c d f

e g

Fig. 8 Laminin-111 treatment alters SC cell polarity and stimulates planar cell division. a Quantification of planar and apico-basal cell divisions (symmetric
and asymmetric) based on the expression of Pax7 and MyoD in T46 myofibers treated with PBS (control; dark gray) or laminin-111 (light gray). n= 3 with
50–82 doublets analyzed per culture. *P < 0.05, **P < 0.01, ***P < 0.001 (t-test). b Representative immunofluorescence images of planar and apico-basal
cell divisions in T46 myofibers analyzed using antibodies against Pax7 (red) and MyoD (green). White arrows indicate cell doublets. Individual color
channels are shown. Scale bar: 50 μm c Representative immunofluorescence of Par3 (green) and Pax7 (red) in myofibers cultured for 46 h in in the
presence of PBS (control) or laminin-111. Arrows indicate Par3 asymmetric distribution in control, but not in laminin-111 treated fibers. The white star
indicates background staining. Scale bar: 10 μm. d–g Proposed model for laminin-111 control of SC self-renewal: d Upon activation, SCs upregulate MMP2
and MMP9 expression, leading to a local digestion of the laminin-α2-containing basal lamina (double orange line) at the SC niche. e Simultaneously, SCs
re-express laminin-α1, which is secreted and deposited into the SC basal lamina (double red line), and the laminin-α1 receptor, integrin-α6 (blue line). f
Laminin-α1-mediated signaling initiates or maintains SC polarity through the asymmetric distribution of the basal determinant Par1b (brown) and the apical
determinant Par3 (purple), leading to apico-basal cell polarity. g Apico-basal asymmetric cell division yields two distinct daughter cells, including a self-
renewing SC associated with the basal lamina (Pax7+ in green) and a differentiating SC (MyoD+ in purple)

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03425-3

10 NATURE COMMUNICATIONS |  (2018) 9:1075 | DOI: 10.1038/s41467-018-03425-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Statistical analyses. Data are presented as the mean ± standard error of the mean
(s.e.m). A minimum of three myofibre cultures with on average 10–20 myofibres
per culture or three mice per genotype and time point with 6–10 sections per
muscle was analyzed. Statistical analyses were performed on the mean values from
different experiments (myofiber cultures or mice). Comparisons between groups
used unpaired t-test assuming two-tailed distributions or one-way ANOVA using
GraphPad Prism 7 for Macintosh (http://www.graphpad.com).

Data availability. The authors declare that all data supporting the findings of this
study are available within the article and its Supplementary Information files or
from the corresponding author upon reasonable request.
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