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1    Introduction

Transdermal drug delivery is a technique to administer 
drugs via the skin for systemic distribution as well as for 
local distributions [1–3]. The method is receiving much 
attention as an alternative to conventional drug adminis-
tration techniques. In their 2015 guidelines, the World 
Health Organization (WHO) recommended the oral route 
as the primary route of drug administration. However, the 
route is inadequate for drugs that are unstable under 
acidic conditions, or easily degraded with digestive 
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enzymes. In addition, absorption efficiencies of large mol-
ecules through this route are low. Hence, increasing 
numbers of drugs, especially vaccines, are administered 
by injection. However, injection carries dangers of unex-
pected infections caused by reuse of needles and syring-
es, and accidental needle-stick injuries, as well as sharp 
waste problems [4]. According to the WHO, 21 million, 
2  million and 260 000 people were newly infected with 
hepatitis B virus, hepatitis C virus and HIV, respectively, 
in the last 15 years, because of the reuse of the injection 
equipment. In addition, nearly 40% of the new hepatitis 
virus infections, and 5.5% of new HIV infections in health-
care workers were caused by accidental injuries. Trans-
dermal drug administration using patches is anticipated 
to eliminate needle stick-related problems. Moreover, the 
convenience of administration enables self-administra-
tion and enhances patient compliance. 

The skin has a barrier function that protects the body 
from invasion of environmental substances and microor-
ganisms; therefore, skin patches use various systems to 
enhance physical or chemical permeation to disrupt the 
barrier [3, 5]. Representative physical enhancers are ion-
tophoresis [6, 7], sonophoresis [8, 9], electroporation 
[10, 11], and microneedles [12, 13]. Chemical enhancers 
include some fatty acids [14, 15], terpenes [16], esters [17], 
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alcohols [18, 19], peptides [20–22], and nanosized carriers 
such as lipid vesicles [23], and solid-in-oil (S/O) nanodis-
persions [24]. With either type of enhancer, crossing the 
stratum corneum, the outermost layer in the skin, is the 
key to efficient transdermal drug delivery [25]. In this 
review, we briefly describe the advantages and disadvan-
tages of nanosized carriers including the S/O nanodisper-
sion systems (Table 1), to overcome the skin barrier by 
simple application of a patch, with a focus on transcuta-
neous vaccination using the immune system in the skin. 

2    Scope of transdermal drug delivery

2.1     Advantages over conventional oral or needle-
stick based administration methods

Since Zaffaroni marshaled advantages of transdermal 
drug delivery in 1981 [26], the skin has been targeted as 
an attractive route of drug administration, and transder-
mal drug delivery could be an alternative to conventional 
oral administration and intramuscular, intradermal and 
subcutaneous injections. The advantages include avoid-
ance of gastrointestinal absorption or first-pass elimina-
tion, providing painless routine administration and ena-
bling a steady drug concentration in the body by the slow 
drug-release rate. The gradual drug influx also permits 
immediate cessation of treatment when adverse events 
occur, such as anaphylaxis during vaccine administra-
tion. Regarding vaccine administration, efficient immuni-
zation is anticipated by the transcutaneous route [27–30], 
because a variety of immune cells are found in the skin, 
including Langerhans cells (LCs) residing in the epider-
mis, and dermal dendritic cell (dDC) subsets in the dermis 
[31]. However, the stratum corneum, the outermost layer 
in the skin, becomes a physical barrier when a drug per-
meates the skin. 

2.2    Structure of the skin

The skin consists of three stratiform tissues, epidermis, 
dermis and subcutaneous tissue. The epidermis com-
prises the stratum corneum and viable epidermis. Viable 
epidermis and dermis are hydrophilic and the stratum 
corneum is hydrophobic. The stratum corneum is 15 µm 
thick and consists of 10–20 layers of corneocytes buried 
in lipids such as ceramides, cholesterol esters and fatty 
acids [32–34]. There is a little amount of water in the stra-
tum corneum (10–25%), which is located between the 
lipid bilayers to form lamellar phases [35, 36]. The average 
thickness of the extracellular space between the corneo-
cytes is 44 nm, which corresponds to eight lines of lipid 
bilayers [37]. Corneocytes are filled with keratin, unlike 
other cells. The hydrophobic and fibrous structure of the 
stratum corneum prevents dehydration of the body and 
invasion of exogenous materials. In addition, adhesive 
membrane proteins form tight junctions in viable epider-
mis, and act as the second physical barrier. Accordingly, 
molecules with modest lipophilicity and small molecular 
weight are likely to permeate through the skin by passive 
delivery, which is known as the 500 Dalton rule [38–40]. 
Chemical permeation enhancers such as nanosized carri-
ers facilitate drug permeation through the stratum cor-
neum toward blood vessels. Regarding the permeation of 
small to large solutes through the stratum corneum, four 
different pathways are proposed: free-volume diffusions 
and lateral lipid diffusions for hydrophobic solutes, and 
the pathways through shunts and pores for hydrophilic 
solutes [41].

2.3    Deliveries of peptide/protein drugs

Recently, proteins and peptides have been being exploit-
ed for medical use to treat various diseases and immune 
disorders [42]. These include insulin, human growth 

Table 1.  Brief portrayal of solid-in-oil nanodispersion systems

Advantages Non-invasive administration
Slow drug-release
Easy handling
Loading capacities of both hydrophilic and lipophilic adjuvants

Disadvantages Require homogenizer and freeze-dryer (High-energy formulation)
Possible preference of small-scale production

Advantageous application area Transcutaneous delivery of proteins and peptides (Protein drugs and vaccines)
Drug delivery efficiencies  
(cumulative amounts in the skin)a)

DFNab) [72]
APM [56]
Insulin [70]
Insulinc) [73]

138.9 ± 39.4 µmcm–2 (46.6 ± 27.9 µm cm–2)
0.25 ± 0.01 µmcm–2 (0.12 ± 0.01 µm cm–2)
1.02 ± 0.26 µmcm–2( 0.13 ± 0.06 µm cm–2)
9.74 ± 4.26 µmcm–2 (0.25 ± 0.03 µm cm–2)

a)Cumulative amounts of drugs in the Yucatan micropig skins after application of the S/O nanodispersion systems for 24 h (APM) or 48 h (DFNa and insulin) were 
examined using Frantz-type diffusion cells. Results show mean ± standard deviations. Controls were tested using naked drugs in IPM (DFNa) or in PBS (APM and 
insulin) and the results were showed in the brackets. 
b) Cumulative amounts of DFNathrough the skin.
c)Surfactant L-195 was used instead of ER-290, and hexa-arginine was co-encapsulated in the nanoparticle.
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hormones, and peptide vaccines for cancers and aller-
gies. The bioactive protein/peptide drugs are hydrophilic 
and often charged, with molecular weights ranging from 
1 to > 50 kDa. Permeation efficiencies of intact proteins 
and peptides through the stratum corneum are low; 
therefore, many studies have investigated delivering 
these biomolecules efficiently into the viable epidermis 
and dermis.

The slow permeation efficiency is favorable for deliver-
ies of whole antigen molecules such as vaccines for 
immunotherapy of allergic diseases, because it may 
reduce the vital risk during therapy. Epicutaneous immu-
notherapy (EPIT) using a patch loaded with whole milk by 
electrospray deposition has succeeded in inducing clini-
cal tolerance in patients with cow’s milk allergy by deliv-
ering the antigen slowly to the epidermis [43]. It is note-
worthy that no serious adverse event was reported during 
the EPIT trials. Although several patients showed local 
erythema/eczema at the position of the patch, the treat-
ment discontinuation rate was low compared with that of 
oral and sublingual immunotherapy, indicating the poten-
tial application of cutaneous immunotherapy. EPIT is now 
undergoing phase 3 in clinical trials. In contrast, immuno-
therapy using whole antigen molecules requires a long 
period of treatment. Therefore, the use of T cell epitope 
peptides is being explored to increase the dose and 
reduce the treatment duration.

3     Nanocarriers for transcutaneous protein/
peptide delivery

Nanocarriers have been extensively investigated for con-
venient and noninvasive protein/peptide delivery across 
the skin [44]. Nanocarriers for transdermal drug delivery 
are divided in two categories: those that are dispersed in 
hydrophilic vehicles or in lipophilic vehicles. Hydrophilic 
lipid vesicles are pioneering nanocarriers that efficiently 
deliver proteins/peptides to the skin. Cevc et al. have 
developed Transfersomes, which are deformable and 
squeeze into the stratum corneum through the intercel-
lular and intracellular pathways, and demonstrated the 
clinical effectiveness of the carrier by the transdermal 
route [45]. Elastic liposomes and ethosomes have been 
applied to immunotherapy, and these carriers elicit high 
levels of antibodies comparable to those with injection 
[46–48]. Biodegradable and biocompatible polymers also 
serve as hydrophilic drug carriers. Poly(lactide-co-glycolic 
acid) nanoparticles are prepared and modified with ease 
[49]. Chitosan is a cationic polysaccharide; thus, the car-
rier itself has potential as a skin permeation enhancer that 
interacts with the negatively charged cell surface [50, 51]. 
Combinations of the above mentioned carriers and skin-
permeation-enhancing peptides or physical enhancing 
methods have been used in recent research for an 
enhanced transdermal drug delivery.

On the contrary, nanocarriers dispersed in lipophilic 
vehicles are supposed to penetrate the stratum corneum 
efficiently, because the stratum is hydrophobic. Oil-based 
nanocarriers include water-in-oil (W/O) microemulsions, 
also referred to as nanoemulsions, solid lipid nanoparti-
cles and S/O dispersions [52–55]. Typical mean particle 
sizes of W/O micro emulsions are < 500 nm. Compared 
with other emulsions, microemulsions are thermody-
namically more stable as a result of a decreased particle 
size and a smaller surface tension between the oil and 
water phases. S/O nanodispersions are also < 500 nm in 
size. They are oil-based dispersions of solid powders of 
hydrophilic molecules. S/O dispersions are prepared by 
removal of water and cyclohexane from W/O emulsions by 
lyophilization, and redispersion of the surfactant–drug 
complex in another oil vehicle. Preferably, the oil vehicle 
has a skin-penetration-enhancing property [24]. Advan-
tages of S/O nanodispersions over W/O microemulsions 
are drug loading capacity and stability. S/O particles are 
filled with drug compounds, while droplets of W/O micro-
emulsions contain large amounts of water molecules, 
which reduces the drug concentration in the final prod-
ucts. Encapsulation efficiency of the S/O particles is high. 
Okuma et al. reported that 80% of l-ascorbic acid phos-
phate magnesium (APM) was encapsulated inside the 
surfactant of S/O nanocarriers [56]. Similar high encapsu-
lation efficiencies were also reported when bovine serum 
albumin (66 kDa) and various molecular weights of hyalu-
ronic acids were enclosed into the S/O nanoparticles [57]. 
S/O dispersions are stable for more than three months, 
because of fewer opportunities of Ostwald ripening [58, 
59]. Particles tend to aggregate after several months of 
storage; however, they are easily redispersed by vortex 
agitation or ultrasonication. Removal of water molecules 
reduces the opportunities for hydrolysis of internal mole-
cules [60].

4    Development of the S/O nanodispersions

4.1    Selection and formulation of surfactants

The S/O nanodispersion system is composed of hydro-
philic drug particles dispersed in an oil vehicle by the 
assistance of hydrophobic surfactants (Fig. 1A). The drug 
delivery efficiency across the skin is influenced by its 
formulation (i.e. concentration and type of surfactants, oil 
vehicles, and surfactant–drug ratios). Isopropyl myristate 
(IPM) is the preferred oil vehicle for S/O nanodispersions 
[61–63], because it enhances drug permeation through 
the stratum corneum because of its ability to interact with 
lipids in the stratum corneum. Moreover, IPM is safe and 
widely used in cosmetic and pharmaceutical products. 
W/O emulsions, precursors of the S/O nanoparticles, are 
prepared by homogenizing bioactive molecules in water 
and lipophilic surfactants in a volatile oil. Cyclohexane is 
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suitable as the volatile oil because its freezing point of 
6.5°C is close to that of water, allowing the water and oil 
phases to be frozen simultaneously in liquid nitrogen. In 
addition, the high vapor pressure of cyclohexane permits 
immediate evanescence up only ophilization. Chloroform 
is also applicable for preparation of W/O emulsions prior 
to lyophilization [57, 59]. High pressure homogenization 
and an ultrasound method are also applicable for the for-
mation of stable W/O emulsion precursors [64, 65]. The 
role of these techniques is comprehensively reviewed 
elsewhere [65].

A series of sucrose fatty acid esters are often used as 
surfactants comprising S/O nanoparticles. In foods, cos-
metics and pharmaceuticals, sucrose fatty acid esters are 
widely used as an emulsifier. Their hydrophilic/lipophilic 
balance (HLB) varies from 1 to 18 depending on the car-
bon chain length and degrees of unsaturation in fatty 
acids and esterification. Surfactants with HLB 1–3 are 
preferable for preparation of S/O nanoparticles. In a previ-
ous report, a series of 25 mg/mL sucrose fatty acid esters 
(HLB 1–3) in a cyclohexane solution were examined to 
prepare S/O nanodispersions [66]. As a result, three sur-
factants, sucrose laurate, sucrose oleate and sucrose 
erucate formed stable S/O nanodispersions (Fig. 1B). 
Surfactants composed of saturated fatty acids of > 16 car-
bon chain length did not dissolve in cyclohexane at 25 °C. 
Consequently, they did not form nanosized dispersions. 
According to other reports, sucrose stearate in chloroform 
can be used for S/O nanodispersion [57, 59].

The particle size and drug release efficiency are influ-
enced by the drug to surfactant ratio. The surfactants 

composed of longer chains of fatty acids formed smaller 
and more stable nanoparticles [66]. Similar to emulsion 
systems, the particle size decreases along with an 
increase of the drug/surfactant ratio [66–68]. Larger parti-
cles are likely to disintegrate and release drugs more effi-
ciently. Therefore, the S/O nanodispersions composed of 
smaller drug-surfactant ratios induced higher antigen-
specific antibody responses [66]. Encapsulation of strong 
polyelectrolytes facilitates particle disintegration, while 
other polymers such as hyaluronic acid are used to rein-
force the particle stability [59, 69].

4.2     Drug delivery pathways with the S/O 
nanodispersion system

There are three pathways for organic nanoparticles to 
permeate the stratum corneum: lateral diffusion along the 
corneocytes; permeation across corneocytes; and routes 
through follicles and glands [44]. Besides, it is known that 
hydrophilic molecules do not permeate the stratum cor-
neum, while hydrophobic molecules remain in the stra-
tum corneum. How does the S/O nanodispersion system 
deliver hydrophilic compounds through the skin? Previ-
ous studies of S/O nanodispersions revealed that the 
hydrophobic surfactants are likely to be removed from the 
drugs in the stratum corneum, and only hydrophilic mol-
ecules infiltrate the viable epidermis and dermis (Fig. 2A). 
Computational dynamics simulation also indicated rapid 
dissociation of surfactants by contact of S/O particles 
with the lipid membrane [59, 71]. The components of par-
ticles were supposed to be integrated immediately into 

Figure 1.  Preparation and application 
methods (A) and physical appearances 
and size distribution curves (B) of S/O 
dispersions. W/O emulsions prepared 
by ultrasound, rotor-stator or high pres-
sure homogenization are subjected to 
lyophilization, and then the surfactant/
drug complex is redispersed in oilvehi-
cles to form S/O nanodispersions. The 
nanodispersions are applied to the intact 
skin using patches. Sucrose laurate 
(L-195), sucrose palmitate (P-170), 
sucrose stearate with HLB 1 and 2 
(S-170 and S-270, respectively), sucrose 
oleate (O-170), and sucrose erucate (ER-
290) were examined to prepare S/O nan-
odispersions containing OVA, and L-195, 
O-170 and ER-290 formed stable nano-
sized dispersions, while naked OVA was 
insoluble in IPM. Particle size distribu-
tion was measured by dynamic light 
scattering using Zetasizer NanoZS 
 (Malvern). Reproduced with permission 
[66]. Coypright 2014, Royal Society of 
Chemistry.
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the lipid bilayers. Confocal microscopic images clarified 
that the S/O nanoparticles were delivered by intercellular 
routes (Fig. 2B). These results indicate that the S/O nano-
dispersion system is highly recommended for delivery of 
hydrophilic molecules such as proteins and peptides.

5     Application of S/O nanodispersion 
systems

5.1    Transdermal drug delivery

Piao et al. first adapted the S/O nanodispersion system to 
transdermal drug delivery [72]. They prepared small S/O 
particles (average particle size ≈15 nm) containing 
diclofenac sodium (DFNa; Mw 296), an anti-inflammatory 

drug. DFNa in S/O nanoparticles showed enhanced skin 
permeability compared with that of the aqueous naked 
DFNa solution. Subsequently, the S/O nanodispersion 
system was applied to the topical delivery of cosmetic 
ingredients of small to large molecular weight, such as 
APM [58], hyaluronic acids and protease inhibitor peptide 
[71]. Accumulating amounts of APM and hyaluronic acid 
in the skin increased by three- and four-fold, respectively, 
by encapsulating in the S/O particles.

The S/O nanodispersion system is also applicable to 
the transcutaneous deliveries of protein drugs and 
enzymes, without losing their conformations or enzymatic 
activities. Tahara et al. demonstrated the delivery of fluo-
rescein-isothiocyanate-labeled insulin (6 kDa) using the 
Yucatan micropig skin [70]. The fluorescence images of 
skin sections revealed that insulin permeated the skin as 
incubation time increased. On the contrary, insulin in 
phosphate-buffered saline (PBS) hardly permeated the 
skin. The effects of the S/O system on enzymatic activities 
in and out of nanoparticles were also assessed using 
horseradish peroxidase (HRP; 40 kDa). The skin subjected 
to HRP-containing S/O nanodispersion was sectioned and 
incubated with HRP substrate, metal-enhanced diamin-
obenzidine, and H2O2, and then the substrate-specific 
brown color developed in the epidermis. Besides, HRP and 
lysozyme maintained > 90% of enzymatic activities in the 
S/O particles for 24 h, showing a high potency of the S/O 
nanodispersion as a protein carrier for the transdermal 
drug delivery [68]. The transdermal delivery of insulin was 
improved by co-encapsulation of oligoarginines [73]. 
Recent research has revealed that there are tight junctions 
between epithelial cells that act as the second physical 
barrier to protect from infiltration of pathogens and endo-
toxins [74, 75]. Denaturation of the membrane proteins 
comprising the tight junctions by cation-rich peptides 
increases protein penetration into the skin.

5.2    Preventive vaccination

Vaccines nowadays are used to prevent infectious dis-
eases and to cure antigen-related diseases. Preventive 
inoculation has reduced the prevalence of serious dis-
eases caused by viruses and other pathogens. Classical 
vaccination uses injection to administer vaccines directly 
into subcutaneous fat or muscle. However, recent studies 
have revealed that vaccination by the intradermal route is 
more effective, because numerous populations of immune 
cells are found more in the epidermis and dermis than in 
the subcutaneous tissue [76, 77]. The immune-related 
cells in the skin include LCs, dendritic epidermal gd T cells 
and CD8+ tissue-resident memory T cells in the epider-
mis, as well as dDC subsets, dermal gd T cells, mast cells 
and CD4+ tissue-resident memory T cells in the dermis 
[78, 79]. Regulatory T cells are also found in the mouse 
dermis [80, 81]. LCs are representative antigen-present-
ing cells (APCs) in the epidermis that were discovered by 

Figure 2.  Fluorescence microscopic images of Yucatan micropig skin sec-
tions (A), and mouse ear epidermal sheet (B), adapted with permission 
[66]. Coypright 2014, Royal Society of Chemistry and adapted with permis-
sion [70]. Coypright 2008, Elsevier, respectively. The Yucatan micropig 
skin was treated with S/O nanodispersions composed of fluorescein iso-
thiocyanate (FITC)-labeled insulin and rhodamine-labeled 1,2-dioleoyl-sn-
glycero-3-phosphoethanolamine (rhodamine-) for 48 h, and sectioned for 
observation by fluorescence microscopy. Another S/O nanodispersion 
consisting of FITC-labeled OVA and rhodamine-DOPE was applied to 
mouse ear for 24 h, and then the epidermal sheet was isolated from the 
ear and observed by confocal laser scanning fluorescence microscopy. 
Rhodamine-DOPE mostly remained in the stratum corneum, whereas, 
FITC-protein permeated the viable epidermis and dermis. The lipid and 
proteins penetrated the intercellular pathways.
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Langerhans in 1868 [82]. Silberberg et al. reported the 
antigen-presenting ability of LCs [83], and the concept of 
transcutaneous immunization using LCs was proposed 
by Glenn et al. [84]. LCs can migrate to the skin-draining 
lymph nodes where they present antigens to CD4+ and 
CD8+ T cells, or pass antigens to other DCs [85–87]. Migra-
tory DCs and circulating T effector memory cells are 
recruited into the dermis from blood vessels, and exit from 
lymphatic vessels in response to cytokine signals. There-
fore, utilizing the immune cells, the skin is potent to 
induce strong systemic adaptive immune responses [77].

Using the S/O nanodispersion system, an antigen 
model protein, ovalbumin (OVA; 45 kDa) strongly induced 
antigen-specific antibody responses in murine sera, even 
though patches loaded with S/O nanodispersions were 
simply applied to intact skin [66, 88]. In addition, the per-
centage of Langerin+ cells that captured OVA in the skin-
draining lymph nodes doubled following encapsulation of 
OVA in the S/O nanodispersions [66]. This indicates that 
OVA arrived in the Langerin+ cells, and then the cells 
migrated to the lymph nodes after capture of OVA (Fig. 3). 
Importantly, the OVA-specific IgG titer correlated with 
the in vitro OVA release efficiency from the nanoparticles. 
The inner layers in the skin are hydrophilic; therefore, 
hydrophilic proteins leaving the nanoparticles are more 
likely to interact with LCs and dDC since they bypassed 
the stratum corneum. 

OVA was more efficiently delivered to APCs when one 
of the skin-penetrating peptides, hexa-arginine, was co-
encapsulated in the S/O nanoparticles [69]. However, how 
to repair the reduced barrier function of the skin and pro-
tect the body from infections is still controversial, espe-
cially after repeated drug administration.

 Additional use of adjuvants is a promising 
approach for enhanced transcutaneous vaccination 
through activation of APCs [90, 91]. Some conserved moi-
eties in pathogens or damaged cells are recognized by 
pattern recognition receptors (PRRs) in an innate immune 
system, and activate APCs [92, 93]. Under inflammatory 
conditions (existence of adjuvants), the activated APCs 
exhibit increased antigen presentation and cytokine pro-
duction, although the signaling pathways vary by differ-
ent PRRs and DCs [93, 94]. It is also known that type 1 
helper T (Th1) cells are activated by the activated B cells. 
Toll-like receptors (TLRs), a family member of PRRs, and 
their ligands are particularly well-studied systems 
because similar TLRs are expressed in humans and ani-
mal models. In a previous study using the S/O nanodis-
persion system, coadministration of CpG oligodeoxynu-
cleotides (ODNs), known as ligands of TLR9 [95], increased 
antigen-specific antibody titer in mouse sera by nine 
times, and enhanced the Th1-biased immune response 
[96]. The CpG ODNs were supposed to be delivered to the 
skin-draining lymph nodes efficiently enough to activate 
B cells [97]. The results mentioned above indicate that the 
S/O nanodispersion system has a potential use in trans-
cutaneous preventive vaccination.

Since the continuous phase of the S/O nanodisper-
sions is IPM, additional use of lipophilic adjuvants, such 
as, TLR4 agonists monophosphory lipid A [98–100], treha-
lose-6,6’-dibehenate [101, 102], and lipophilic derivatives 
of muramyl dipeptide [103], would improve the stabiliza-
tion of the S/O nanodispersions, instead of merely induc-
tion of the enhanced antibody responses. Above men-
tioned adjuvants are also known to induce Th1-type 
immunity, which is a prerequisite for protection against 
tuberculosis, malaria and HIV infections.

5.3    Pollinosis immunotherapy

Allergen immunotherapy is the only curative therapeutic 
method for allergic diseases [104, 105]. However, all the 
licensed allergen immunotherapies use whole allergen 
molecules that have a risk of IgE-mediated serious adverse 
events. Recently, short peptides derived from allergen 
molecules that are recognized by T cells, known as T-cell 
epitopes, were exploited to reduce adverse events during 
therapy [106–108]. Cautiously chosen T-cell epitopes lack 
the ability to bind to IgE on mast cells; therefore, use of 
T-cell epitopes as vaccines is a safer strategy than the use 
of whole allergen molecules. Mast cells migrate into the 
dermis; thus, T-cell epitope vaccines are also suitable for 
immunotherapy using the transcutaneous route.

Figure 3.  Concept of transcutaneous immunotherapy using S/O nanodis-
persions. Antigens are released in the stratum corneum and permeate the 
epidermis and dermis. LCs and dDCs capture antigen and migrate to lym-
phatic vessels and skin-draining lymph nodes. They present antigens to 
nearby CD4+ and CD8+ T cells, or pass them to other DCs. LCs may acti-
vate T regulatory cells under steady-state conditions by the existence of 
antigen, thereby inducing alleviation of allergic responses. Dendritic epi-
dermal gd T cells may promote Th2 cell induction, and dermal gd T cells 
may induce CD4+ T cells under inflammatory conditions.
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Previously, seven different T-cell epitope determi-
nants were picked up for immunotherapy of Japanese 
cedar (Cryptomeria japonica) pollinosis that were esti-
mated to be recognized by the T cells from 90% of the 
patients [109]. The long polypeptides that comprised 
seven different peptides were expressed in rice seeds 
[110], or eggs [111], and the edible vaccines successfully 
reduced allergic symptoms in mouse models of Japanese 
cedar pollinosis. Edible vaccines are easy to take; how-
ever, issues arise when patients are under dietary restric-
tion or have gastrointestinal disorders. For transcutane-
ous administration, a polypeptide comprised of seven 
T-cell epitopes, namely 7CrpR, was produced by an 
Escherichia coli system, and encapsulated in S/O nano-
dispersions. Patches loaded with S/O nanodispersions 
containing 7CrpR were applied to a pollinosis model in 
mice [112]. The antigen-specific IgE level declined in sera, 
indicating that the peptide administered using the S/O 
nanodispersion system elicited a change in the immune 
milieu. On the contrary, 7CrpR in a PBS solution did not 
reduce the antigen-specific IgE level. The skin sections 
that were subjected to the S/O nanodispersion containing 
fluorescence-labeled 7CrpR showed that the peptide 
mostly remained in the stratum corneum. However, thick-
ening of the stratum corneum was observed, indicating 
that the stratum corneum acted as a repository of the S/O 
nanoparticles. In this context, the peptide was assumed 
to be discharged slightly but constantly even after remov-
al of the patches. 

Recent research has revealed that the skin contains a 
variety of cells that are involved in the immune system. 
LCs are known for presentation of major histocompatibil-
ity complex (MHC) class II, activation of CD4+ T and T 
regulatory cells [113, 114], LCs in the epidermis are sup-
posed to play an important role in cutaneous immuno-
therapy of pollinosis, similarly to EPIT using whole aller-
gen molecules [43].

5.4    Cancer immunotherapy

Carcinogenesis is related to the immune system and 
therefore immunotherapy for cancer has been studied for 
over a century. In particular, cancer vaccines that activate 
the adaptive immune system against cancer are useful in 
that they are less likely to cause side effects such as auto-
immune disorders [115]. Recent development in the 
SEREX technology has identified several tumor-associat-
ed antigens (TAAs) that can be used in cancer vaccines 
for clinical application [116, 117]. Therapeutic immune 
response is initiated by the capture of these TAAs by 
DCs, followed by presentation as MHC/TAA conjugates. 
The presentation of antigens on MHC class I molecules 
called cross-presentation is an important step for induc-
tion of cancer immunity, because once the MHC class 
I-antigen conjugate is recognized by CD8+ T cells, the 
CD8+ T cells differentiate into cytotoxic T lymphocytes 

that play a major role in antitumor activity [118, 119]. Epi-
dermal LCs and Langerin+ dDCs are known to have high 
ability of cross-presentation [120–122]. Therefore, utiliz-
ing the skin immune system for cancer vaccine seems a 
promising approach. As with other transcutaneous 
immunization systems, the delivery of TAAs to DCs in the 
skin is the key to efficient cancer immunotherapy. Seo et 
al. reported the first percutaneous cancer vaccine by 
topical application of TAAs on the stratum corneum in the 
barrier-disrupted skin using a tape-stripping method 
[123]. Besides this tape-stripping method [124–126], other 
skin-permeation-enhancing systems, such as electropo-
ration [127], microneedles [128, 129], and nanocarriers 
[130] have been demonstrated to activate the tumor-spe-
cific immune system.

The S/O nanodispersion system was applied to induce 
cancer immunity using OVA as a model cancer antigen 
[131]. The growth inhibition of E.G7-OVA cells, OVA 
expressing lymphoma, was observed in the mice vacci-
nated with topical application of the OVA-loaded S/O 
nanodispersion (Fig. 4). It was noted that the tumor sup-
pression level was equal to or higher than in mice immu-
nized by subcutaneous (s.c.) injection. In cancer vac-
cines, CD4+ T-cell-derived Th1 cells are also important 
because they help to activate cytotoxic T lymphocytes by 

Figure 4.  Time schedule of immunization and tumor cell inoculation (A), 
and antitumor effect of OVA administered by topical patch or s.c. injec-
tion (B). OVA in the S/O nanodispersion system induced antigen-specific 
cancer immunity comparable to that in a PBS solution administered by 
s.c. injection. Adapted with permission [131]. Coypright 2015, Royal Socie-
ty of Chemistry.



www.biotechnology-journal.com www.biotecvisions.com

Biotechnology
Journal

Biotechnol. J. 2016, 11, 1375–1385

1382 © 2016 The Authors. Biotechnology Journal published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

cytokine production [132]. Th1 cytokine interferon-g is 
produced more from splenocytes of S/O-treated mice than 
those subjected to s.c. injection, and Th2 cytokine inter-
leukin-4 was detected only from the splenocytes of s.c. 
injected mice. These results suggest that S/O nanodisper-
sion is an efficient nanocarrier for cancer vaccine, with 
the ability to induce Th1-biased immunity.

6    Conclusions

The transdermal drug delivery system is a promising 
alternative to conventional drug administration methods. 
Chemical skin permeation enhancers have a benefit of 
simple and easy delivery of proteins and peptides across 
the skin barrier. Moreover, vaccine administration by the 
cutaneous route may allow efficient immunization with a 
small dose, by utilizing the immune system in the skin. 
The S/O nanodispersion system has a potency for both 
transdermal drug delivery and transcutaneous immuno-
therapy. For enhanced drug delivery across the skin, the 
drug release efficiency from the S/O nanodispersion of the 
particles had a strong effect, and the propensity to parti-
cle disintegration may be affected by the particle size and 
excipients. Co-administration of ligands that bind to 
acceptors inside and outside the APCs may improve the 
antibody response using the S/O system. The S/O system 
is composed of biocompatible materials, and has the 
potential to attain the advantages of transdermal drug 
delivery.
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