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Quantifying the breadth of antibiotic exposure in 
sepsis and suspected infection using spectrum 
scores
Joshua T. Smith, PharmDa , Raj N. Manickam, MSb, Fernando Barreda, MHAb, John D. Greene, MAb, 
Meghana Bhimarao, MSb, Jason Pogue, PharmDc, Makoto Jones, MDd,e, Laura Myers, MD, MPHb,  
Hallie C. Prescott, MD, MScf,g, Vincent X. Liu, MD, MSb

Abstract 
A retrospective cohort study. Studies to quantify the breadth of antibiotic exposure across populations remain limited. Therefore, 
we applied a validated method to describe the breadth of antimicrobial coverage in a multicenter cohort of patients with suspected 
infection and sepsis. We conducted a retrospective cohort study across 21 hospitals within an integrated healthcare delivery 
system of patients admitted to the hospital through the ED with suspected infection or sepsis and receiving antibiotics during 
hospitalization from January 1, 2012, to December 31, 2017. We quantified the breadth of antimicrobial coverage using the 
Spectrum Score, a numerical score from 0 to 64, in patients with suspected infection and sepsis using electronic health record 
data. Of 364,506 hospital admissions through the emergency department, we identified 159,004 (43.6%) with suspected infection 
and 205,502 (56.4%) with sepsis. Inpatient mortality was higher among those with sepsis compared to those with suspected 
infection (8.4% vs 1.2%; P < .001). Patients with sepsis had higher median global Spectrum Scores (43.8 [interquartile range IQR 
32.0–49.5] vs 43.5 [IQR 26.8–47.2]; P < .001) and additive Spectrum Scores (114.0 [IQR 57.0–204.5] vs 87.5 [IQR 45.0–144.8]; 
P < .001) compared to those with suspected infection. Increased Spectrum Scores were associated with inpatient mortality, even 
after covariate adjustments (adjusted odds ratio per 10-point increase in Spectrum Score 1.31; 95%CI 1.29–1.33). Spectrum 
Scores quantify the variability in antibiotic breadth among individual patients, between suspected infection and sepsis populations, 
over the course of hospitalization, and across infection sources. They may play a key role in quantifying the variation in antibiotic 
prescribing in patients with suspected infection and sepsis.

Abbreviations: aOR = adjusted odds ratio, C. difficile = Clostridioides difficile, CI = confidence interval, COPS2 = Comorbidity 
Point Score, version 2, DNR = do not resuscitate, ED = emergency department, ICU = intensive care unit, IQR = interquartile 
range, KPNC = Kaiser Permanente Northern California, LAPS2 = Laboratory and Acute Physiology score, version 2, S3 = sepsis, 
SI = suspected infection, SOFA = Sequential/sepsis-related Organ Failure Assessment.
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1. Introduction
Sepsis has a staggering impact worldwide, contributing to up to 
20% of all global deaths.[1] In the US, sepsis is the single most 
common cause of hospital death playing a role in the deaths of 
up to 16% of patients annually.[2–4] The early identification of 
at-risk patients and initiation of appropriate antibiotics remain 
the cornerstone of treatment for patients with suspected sep-
sis.[5,6] As a result, the past decade has seen significant growth 
in performance improvement, quality reporting, and public 

education campaigns focused on accelerating antibiotic admin-
istration in sepsis.[7]

However, numerous concerns have been raised about the 
intense focus on the use of empiric, broad-spectrum, antibiotics. 
Indiscriminate antimicrobial use can lead to antimicrobial resis-
tance as well as adverse sequelae for individual patients including 
Clostridioides difficile (C. difficile) infection or kidney injury.[8–11] 
In both the inpatient and outpatient settings, recent studies high-
light significant concerns about overuse, suggesting that current 
practices might be increasing the cumulative population-level 
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exposure to inappropriate antibiotics.[12–15] Despite these con-
cerns, metrics to quantify the breadth of antibiotic exposure 
across populations remain limited, with variable definitions of 
broad-spectrum antibiotic regimens across studies.[15–17]

In this study, we applied a previously developed metric for 
quantifying antibiotic breadth, the Spectrum Score, to a contem-
porary, multicenter population of inpatients treated for infection 
and sepsis. We hypothesized that the Spectrum Score could be used 
to demonstrate variability in antibiotic prescribing across poten-
tially infected inpatients, facilitating a quantitative approach to 
measuring, comparing, and evaluating antibiotic practices in the 
research setting. The Spectrum Score could also be used as a tool 
for infectious disease specialists working in antibiotic stewardship 
to identify patients receiving inappropriately broad-spectrum anti-
biotics with the goal of limiting patients’ unnecessary exposure to 
broad-spectrum antibiotics and preventing resistance. As a means 
to demonstrate face validity of the tool, we also assessed whether 
the Spectrum Score was associated with inpatient mortality.

2. Methods
This retrospective cohort study was approved by the Kaiser 
Permanente Northern California (KPNC) Institutional Review 
Board (#1489470-1) with a waiver of informed consent.

2.1. Suspected infection and sepsis-3 cohorts

We used data extracted from the electronic health records of non-
surgical, nonobstetric patients admitted to 21 hospitals in the 
KPNC integrated healthcare delivery system, which serves 4.5 mil-
lion members. We identified all hospitalizations admitted through 
the emergency department (ED) among adult patients (aged ≥ 18 
years) with suspected infection (SI) or sepsis (S3) based on the 
Sepsis-3 criteria between 2012 and 2017.[18–21] We identified sus-
pected infection patients based on the timed dyad of antibiotics 
and microbiologic cultures and, thereafter, identified sepsis patients 
using a Sequential/Sepsis-related Organ Failure Assessment (SOFA) 
score of ≥ 2 based on the Sepsis-3 consensus definitions.[22]

We identified all hospitalizations admitted through the emer-
gency department (ED) among adult patients (aged ≥ 18 years) 
with suspected infection (SI) or sepsis (S3) based on the Sepsis-3 
criteria between 2012 and 2017.[18–21] We identified suspected infec-
tion patients based on the timed dyad of antibiotics and micro-
biologic cultures and, thereafter, identified sepsis patients using a 
Sequential/Sepsis-related Organ Failure Assessment (SOFA) score 
of ≥ 2 based on the Sepsis-3 consensus definitions.[22]

We identified all hospitalizations admitted through the emer-
gency department (ED) among adult patients (aged ≥ 18 years) 
with suspected infection (SI) or sepsis (S3) based on the Sepsis-3 
criteria between 2012 and 2017.[18–21] We identified suspected 
infection patients based on the timed dyad of antibiotics and 
microbiologic cultures and, thereafter, identified sepsis patients 
using a Sequential/Sepsis-related Organ Failure Assessment 
(SOFA) score of ≥ 2 based on the Sepsis-3 consensus definitions.[22]

2.2. Spectrum score

The Spectrum Score, originally described by Madaras-Kelly and 
others, was developed in a 3-stage Delphi process to quantify 
the spectrum of antimicrobial activity for antibiotic regimens 
using U.S. Veteran’s Affairs susceptibility data.[23] The Spectrum 
Score is a numeric value, ranging between 0 and 64, with higher 
scores indicating broader antibiotic coverage against 14 organ-
ism domains (e.g., Staphylococcus aureus, Escherichia coli, and 
Pseudomonas aeruginosa) from 27 antibacterial groups (e.g., 3rd 
generation cephalosporins, macrolides, antipseudomonal fluo-
roquinolones, nonpseudomonal fluoroquinolones).[24] Scores are 
assigned based on susceptibility data quintiles (e.g., 0 points for 
susceptibilities of < 20% and 4 points for susceptibilities ≥ 80%) 

with extra weight for intrinsically resistant organisms (e.g., 
Pseudomonas aeruginosa scores are multiplied by 1.75). Double 
coverage with combination antibiotic therapy was penalized 
using an assumption of independently distributed co-resistance. 
The validity of the Spectrum Score values were assessed and 
confirmed by Delphi participants in a series of clinical vignettes 
comparing Spectrum Score changes to expert review.

We identified antibiotic administration including medication 
name, route, and frequency of administration from the medica-
tion administration record, including only those given through 
intravenous and digestive tract routes. Antibiotics that were 
administered in the ED were included within the first daily score.

Using the Spectrum Score, we calculated the additive and 
global scores for each hospitalization starting at the time of 
hospital admission (Table  1). To calculate the global Spectrum 
Score, we identified the unique combination of antibiotic classes 
administered throughout each hospital encounter and computed 
a score (Table 1, Supplemental Digital Content, http://links.lww.
com/MD/H100). To calculate the additive Spectrum Score, we 
divided every hospitalization into 24-hour intervals based on time 
of hospital admission and summed together each 24-hour score. 
We grouped hospitalizations into quartiles based on their global 
Spectrum Scores and defined broad-spectrum antibiotic regimens 
as those whose global values were ≥ 75th percentile (Table 2, 
Supplemental Digital Content, http://links.lww.com/MD/H100).

2.3. Patient characteristics

We described patients by baseline hospital characteristics includ-
ing age, gender, race/ethnicity, COPS2 (a previously validated, 
scalar Comorbidity Point Score, version 2 ranging from 0-1014 
which evaluates all comorbid diagnoses from the prior year), 
admission care order status ranging from full code to comfort 
care, first inpatient unit, and admission category (medical vs 
surgical).[25] Admission care order status, or code status orders, 
reflect patient or proxy wishes for life support treatments (e.g., 
defibrillation, vasopressors, endotracheal intubation, dialysis, 
transvenous pacing, among others). At KPNC, partial code 
reflects patient preferences for only specific types of life support 
therapy. We also assessed acute severity of illness metrics with 
the LAPS2 (Laboratory and Acute Physiology score, version 2), 
a score ranging from 0 to 414 including vital signs, 16 labora-
tory results, and neurologic status in the 72 hours preceding 
hospitalizations.[25,26] Patients with any missing values were min-
imal (< 0.5%) and removed from analysis.

To evaluate Spectrum Scores across patient subgroups, we 
grouped patients by potential infection source using anatomical 
or pathophysiologic categories, including: (1) bone, skin, or soft 
tissue; (2) central nervous system, (3) gastrointestinal, (4) genito-
urinary, (5) respiratory, and (6) other using Healthcare Cost and 
Utilization Project Clinical Classification Software (CCS) sin-
gle-level groups based on primary and secondary International 
Classification of Disease diagnosis codes (Table 3, Supplemental 
Digital Content, http://links.lww.com/MD/H100).[27,28] We clas-
sified hospitalizations with only a single infection source diag-
nosis code in any position within that source, and those with 
multiple sources of infection as a distinct “mixed” group.

2.4. Statistical analysis

Data are presented as number (%), mean ± standard deviation, 
or median (interquartile range, IQR). We compared baseline 
characteristics between groups using Student t-tests, Kruskal-
Wallis tests, or chi-squared tests. To assess whether patients’ 
Spectrum Scores were a predictor of hospital mortality, we used 
multivariable logistic regression to estimate the adjusted odds 
ratios (aORs) and 95% confidence intervals (CI) adjusting for 
age, gender, race/ethnicity, COPS2, LAPS2, admission care order, 
and direct intensive care unit (ICU) admission. All analyses used 
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Python version 3.7.3 (Python Software Foundation, Beaverton, 
OR) and we considered P < .05 values statistically significant.

3. Results

3.1. Cohort characteristics

Among 364,506 hospital admissions occurring through the ED, 
we identified 159,004 (43.6%) with SI and 205,502 (56.4%) 
with S3 (Table 1). Among those with SI, 40.9% (n = 65,067) 
were males with a median age of 68 years (IQR 53–80). Patients 
with SI exhibited a median COPS2 of 27 (IQR 10–57), a LAPS2 
of 60 (IQR 40–83), and unadjusted inpatient mortality was 
1.2%. Patients with S3 were older and sicker with a median 
age of 73 years (IQR 62–83), COPS2 of 55 (IQR 26–90), and 
LAPS2 of 92 (IQR 67–120); hospital mortality was 8.4%. In the 
combined SI and S3 cohort, the most common infection source 
defined by primary and secondary admission diagnosis codes 
was of mixed type (44.7%), followed by respiratory (21.8%), 
bone, skin, or soft tissue (10.2%), and genitourinary (10.0%).

3.2. Antibiotic treatments

A total of 8792 unique combinations of antibiotics were admin-
istered across individual hospital encounters. In both SI and S3, 
the median duration of antibiotics was 3 days (IQR 2–5) with 
each patient receiving a median of 2 (IQR 1–3) Spectrum Score 
antibacterial groups. Overall, the most commonly administered 
antibiotic regimens were: 3rd generation cephalosporins (8.3%), 
antipseudomonal fluoroquinolones (7.4%), 3rd generation ceph-
alosporins with macrolides (5.4%), 1st generation cephalospo-
rins (4.8%), and piperacillin-tazobactams (3.7%; Table 2).

3.3. Spectrum scores

Although the median global Spectrum Scores in S3 (43.5, IQR 
26.8–47.2) were numerically similar to those with SI (43.8, 
IQR 32.0–49.5; P < .001; Table 1), S3 patients exhibited higher 
median additive Spectrum Scores (S3 114.0, IQR 57.0–204.5 
vs SI 87.5, IQR 45.0–144.8; P < .001) (Fig. 1A). Fig. 1B also 
demonstrates that S3 patients were more frequently exposed 

Table 1

Characteristics of patients hospitalized with suspected infection and sepsis.

Characteristic 

Both Suspected infection Sepsis P value 

(n = 364,506) (n = 159,004) (n = 205,502)

Unique patients 218,215 117,751 130,087  

Age, median (IQR), years 71.0 (58.0,82.0) 68.0 (53.0,80.0) 73.0 (62.0,83.0) <.001

Male, n (%) 170,871 (46.9) 65,067 (40.9) 105,804 (51.5) <.001

Race, n (%)    <.001

  White 212,506 (58.5) 95,825 (60.5) 116,681 (57.0)  

  Hispanic 54,539 (15.0) 24,167 (15.3) 30,372 (14.8)  

  Asian 36,853 (10.1) 14,408 (9.1) 22,445 (11.0)  

  Black 35,605 (9.8) 14,139 (8.9) 21,466 (10.5)  

  Other 23,613 (6.5) 9765 (6.2) 13,848 (6.8)  

COPS2, median (IQR) 42.0 (16.0,77.0) 27.0 (10.0,57.0) 55.0 (26.0,90.0) <.001

LAPS2, median (IQR) 77.0 (52.0,106.0) 60.0 (40.0,83.0) 92.0 (67.0,120.0) <.001

Length of stay, median (IQR), hours 78.0 (46.7137.4) 66.4 (42.1110.7) 91.3 (56.1160.9) <.001

Direct ICU admission, n (%) 49,630 (13.6) 7095 (4.5) 42,535 (20.7) <.001

Inpatient mortality, n (%) 19,173 (5.3) 1953 (1.2) 17,220 (8.4) <.001

Admission care order, n (%)    <.001

  Full code 285,354 (78.3) 131,279 (82.6) 154,075 (75.0)  

  DNR 71,610 (19.6) 25,358 (15.9) 46,252 (22.5)  

  Partial code 7443 (2.0) 2338 (1.5) 5105 (2.5)  

  Comfort care 99 (0.0) 29 (0.0) 70 (0.0)  

Infection source, n (%)    <.001

  Mixed 114,786 (44.7) 42,309 (40.3) 72,477 (47.8)  

  Respiratory 55,914 (21.8) 24,251 (23.1) 31,663 (20.9)  

  Bone, skin, or soft tissue 26,225 (10.2) 14,382 (13.7) 11,843 (7.8)  

  Genitourinary 25,764 (10.0) 10,095 (9.6) 15,669 (10.3)  

  Other 23,217 (9.0) 9751 (9.3) 13,466 (8.9)  

  Gastrointestinal 9613 (3.7) 3656 (3.5) 5957 (3.9)  

  Central Nervous System 1210 (0.5) 667 (0.6) 543 (0.4)  

Number of Antibiotic Classes, median (IQR) 2.0 (1.0,3.0) 2.0 (1.0,2.0) 2.0 (1.0,3.0) <.001

Days on antibiotics, median (IQR) 3.0 (2.0,5.0) 3.0 (2.0,4.0) 3.0 (2.0,5.0) <.001

Global spectrum score, mean (SD) 40.1 (13.2) 38.4 (13.1) 41.4 (13.1) <.001

Global spectrum score, median (IQR) 43.8 (29.2,49.0) 43.5 (26.8,47.2) 43.8 (32.0,49.5) <.001

Additive spectrum score, mean (SD) 146.5 (176.5) 120.6 (136.0) 166.5 (200.00) <.001

Additive spectrum score, median (IQR) 96.0 (51.0,178.5) 87.5 (45.0,144.8) 114.0 (57.0,204.5) <.001

COPS2 = Comorbidity Point Score = version 2, DNR = do not resuscitate, ED = emergency department, ICU = intensive care unit, IQR = interquartile range, LAPS2 = Laboratory Acute Physiology Score = 
version 2.
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to broad-spectrum antibiotics (defined empirically as a global 
Spectrum Score > 75th percentile; Table 2, Supplemental Digital 
Content, http://links.lww.com/MD/H100) than those with SI 
(28.6% vs 19.6%; P < .001). Overall, median global Spectrum 
Scores were highest for respiratory (45.8, IQR 34.8–52.5) and 
mixed (45.8, IQR 34.0–51.5) infection sources, followed by 
other (43.5, IQR 30.3–48.0), gastrointestinal (43.5, IQR 25.5–
47.0), genitourinary (38.5, IQR 25.5–45.8), bone, skin, and 
soft tissue (38.0, IQR 25.5–45.8), and central nervous system 
(34.5, IQR 32.0–45.8) infection categories. However, antibiotic 
breadth exhibited significant variability across infection sources 
as evidenced by multimodal peaks by hospital encounter (Fig. 2).

3.4. Changes in spectrum scores during hospitalization

Figure 3 displays Spectrum Score value changes over the first 
7 days of hospitalization by categories. The denominator for 
each column is the total number of patients in the hospital on 
that day and the numerator is the number of patients in each 
category. In the first 24 hours of hospitalization, nearly a third 
(34%) of patients were on broad-spectrum antibiotics which 
decreased to 22% by hospital day 7 regardless of SI or S3 
(Fig. 3B). Overall, there was a trend towards decreasing breadth 
of antibiotic use; however, a substantial proportion of patients 
continued to exhibit significant antibiotic use at day 7, with only 
16% of patient receiving no or narrow spectrum antibiotics 
(defined empirically as a global Spectrum Score ≤ 25th percen-
tile). Similar trends in Spectrum Scores were seen among SI or 
S3 cohorts (Figure 1, Supplemental Digital Content, http://links.
lww.com/MD/H101).

3.5. Association between Spectrum Score and inpatient 
mortality

Higher antibiotic global Spectrum Scores were associated with 
an increased risk for hospital mortality (unadjusted OR per 
10-point increase in Spectrum Score 1.59; 95% CI 1.57–1.61) 
(Table 4, Supplemental Digital Content, http://links.lww.com/
MD/H100). This association remained even after adjusting for 
severity of illness metrics and patient demographics (1.34, 95% 
CI 1.32–1.36) as well as for source of infection (1.31, 95% CI 
1.29–1.33).

4. Discussion
While there has been an intense focus on the early treatment of 
sepsis patients with antibiotics, corresponding tools to quantify 
and compare the breadth of these antibiotics has been lacking. 
In this study, we applied a previously developed metric of anti-
biotic breadth, the Spectrum Score, to a large, contemporary 
cohort of suspected infection and sepsis patients hospitalized 
through the ED. By using routinely available antibiotic adminis-
tration data in the electronic health record, the Spectrum Score 
allowed us to compare the breadth of antibiotic exposure among 
individual patients, between suspected infection and sepsis pop-
ulations, over the course of hospitalization, and across infection 
sources. In each of these comparisons, we found that there was 
considerable individual and temporal variability in antibiotic 
exposure which could be valuable to measure population-level 
antibiotic exposures and conduct research on the association 
between broad-spectrum antibiotic use and emerging resistance. 
The Spectrum Score could be used not only in the research set-
ting but also in the clinical setting. Infectious disease specialists 
tasked with evaluating the appropriate use of broad-spectrum 
antibiotics could use the Spectrum Score as a rounding tool if it 
were embedded into their electronic medical record. Instead of 
searching for patients with sepsis diagnosis codes or rounding in 
the intensive care unit where patients may appropriately be on 
broad-spectrum antibiotics, the Spectrum Score could flag any T
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patient in the hospital exposed to broad-spectrum antibiotics 
and prompt proactive consultation.

Existing literature suggests that as many as 50% of patients 
admitted to the hospital are exposed to antibiotics and nearly 
13% of outpatient visits result in antibiotic prescriptions.[12,13] 
In the outpatient setting, estimates suggest that over 30% of 
these outpatient prescriptions were inappropriate.[13] In the 
inpatient setting, Magill and others recently suggested that 
antibiotic practices in community-acquired pneumonia or 
urinary tract infection diverged from guidelines in 55.9% of 
patients, raising the risk of substantial inappropriate use.[14] 
At a patient level, even short courses of antibiotics can 
increase the risk of C. difficile.[29] Patients exposed to antibi-
otics are also prone to microbiome perturbation or dysbiosis, 
potentially contributing to a higher risk of subsequent hos-
pitalization for sepsis due to translocation or aspiration.[30,31] 
The inappropriate use and overuse of antibiotics have also 
been identified as a tremendous global threat contributing to 

antimicrobial resistance and promotion of multi-drug resis-
tant organisms.[32]

While limiting the breadth and duration of antibiotic expo-
sure is a common principal of antibiotic stewardship programs, 
the lack of quantitative metrics contributes to challenges in 
comparing patients and populations treated with diverse and 
dynamic antibiotic regimens. Indeed, in our sample alone, we 
found that there were > 8000 unique combinations of anti-
biotics administered over the course of hospitalization. The 
Spectrum Score was designed to help standardize antibiotic 
exposures and could inform the impact of stewardship pro-
grams on antibiotic de-escalation and resistance patterns. 
Similarly, stewardship programs could incorporate scores to 
assess antimicrobial prescribing quality or appropriateness of 
antimicrobial use in healthcare systems.[14,33] The scores may 
also have a role in improving outcomes when used in conjunc-
tion with procalcitonin-guided early discontinuation of antibi-
otics.[34] Further, given the concerns about the intense focus on 

Figure 1. Histograms of global spectrum score and global spectrum score quartiles for hospital encounters in patients with suspected infection and sepsis. 
These figures show the proportion of hospitalized patients with suspected infection (left) and sepsis (right) grouped by Global Spectrum Score. Global Spectrum 
Scores were calculated from the combination of administered antibiotics within each hospital encounter (A). Global Spectrum Score quartiles were based on 
25% cutoffs using Spectrum Scores from the entire cohort (B).

Figure 2. Ridge plots of global spectrum score by infection source. In these kernel density estimations, each horizontal plot represents a different infection 
source based on primary and secondary diagnosis codes (Table 1, Supplemental Digital Content, http://links.lww.com/MD/H100). The shape of each plot 
depicts the variability in antimicrobial breadth of exposure by global Spectrum Scores such as a tall peak at 25.5 for genitourinary infection sources or twin peaks 
at 43.8 and 47.3 for respiratory infection sources. While the genitourinary peak is driven by third generation cephalosporin usage and the respiratory peaks are 
driven by third generation cephalosporin with macrolide or antipseudomonal fluoroquinolone exposure, respectively.
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earlier antibiotics for sepsis, these tools can be used to assess 
whether sepsis programs drive the use of broader spectrum 
antibiotics unnecessarily.[7]

Unexpectedly, we found that patients with SI had similar 
median values for their global Spectrum Scores as those with 
S3. However, S3 patients did diverge in their additive Spectrum 
Scores which may have been primarily driven by longer over-
all duration of inpatient antibiotic use or some increase in the 
proportion of patients receiving broad-spectrum antibiotics. 
Because we remain uncertain about which of these factors—the 
single maximum breadth or the cumulative breadth of expo-
sure—drives the adverse sequelae of antibiotic use, these tools 
offer a path towards defining which types of antibiotic de-es-
calation programs will offer the greatest benefits to patients. 
Several recent studies suggest that shorter courses of antibiotics 
are associated with improved patient outcomes, suggesting that 
reducing the duration of exposure alone may portend significant 
clinical benefits.[35,36]

While we report that global Spectrum Scores were associated 
inpatient mortality, even after adjusting for severity of illness 
and demographics, these results should be interpreted with 
caution due to residual confounding. Patients who are sicker 
or deteriorating are often exposed to broad-spectrum antibiot-
ics, which is likely not accounted for in our adjusted analysis. 
However, these scores could be used to help understand thresh-
olds for broadness of empiric coverage that maximize survival 
of sepsis and minimize adverse effects like C. difficile.[15,29] More 
work needs to be done to understand the value or clinical use of 
Spectrum Scores.

Our study builds on previous studies in the field that eval-
uate antibiotic breadth by applying a validated method to a 
large cohort of patient with suspected infections and sepsis and 
is novel because we show variation using a numerical score of 
antibiotic exposure across suspected infection, sepsis, and infec-
tion source using the intrinsic antibacterial properties of each 
antibiotic agent. However, it is important to note that spectrum 
score tools are unlikely to be adequate when used as the only 
tool to evaluate antibiotic practice, because some agents like 
vancomycin have a spectrum score in the lowest quartile (e.g., 
<25th) yet may still have adverse effects similar to those from 
broad-spectrum agents.[15] Thus, Spectrum Scores could be used 
within larger programs including those following Infectious 
Disease Society of American and Centers for Disease Control 
and Prevention guidelines.[37,38]

Our study also has several important limitations. While 
the Spectrum Score can account for various descriptions of 

antimicrobial coverage, it should be used in concert with other 
targeted approaches (e.g., prospective audit and feedback or 
antibiotic timeout[39]) to capture all aspects important to anti-
biotic use. Second, while we classified patients by infection 
source, patients were frequently diagnosed as having potential 
infections in multiple sites making it difficult to definitively 
establish a single source. Third, important factors such as recent 
antibiotic exposure, patient-specific organism sensitivities, and 
recent hospitalizations or use of nursing home were not cap-
tured in this study. Fourth, antibiotics can be used for other 
benefits outside of antimicrobial action (e.g., azithromycin for 
antiinflammatory effects in chronic obstructive pulmonary dis-
ease management[40]). We also did not account for the use of 
antibiotics beyond the hospitalization which are important con-
siderations for population-level antibiotic management. Lastly, 
we did not evaluate the impact of antibiotic breadth on adverse 
patient outcomes or antimicrobial resistance patterns.

Our study has several strengths. The major strength is that it 
was done in a large, multi-center integrated healthcare system 
with a contemporary sample of patients using granular EHR 
data to quantitatively assess Spectrum Scores and outcomes. We 
were able to calculate longitudinal Spectrum Scores throughout 
hospitalization to determine cumulative and dynamic values. 
Another strength of this study was the capability to compare 
both SI and S3 across infection source to reveal underlying het-
erogeneity in antibiotic prescribing.

5. Conclusions
In a large and diverse sample of patients with sepsis and sus-
pected infection, the use of Spectrum Scores quantifying anti-
biotic breadth revealed several sources of heterogeneity in 
antibiotic exposure among individual patients, between the sus-
pected infection and sepsis populations, over the course of hos-
pitalization, and across infection sources. This tool may offer an 
important quantitative metric for informing clinical prescribing 
patterns, guiding antibiotic stewardship programs, and evaluat-
ing the longer-term impacts of antibiotic practice.
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Figure 3. Stacked histograms of daily global spectrum score quartile in the first 7 days of hospitalization. In these stacked bar plots, each shaded bar (y-axis) 
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