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Purpose: Acetylcholinesterase (AChE) plays a critical role in the transmission of nerve

impulse at the cholinergic synapses. Design and synthesis of AChE inhibitors that increase

the cholinergic transmission by blocking the degradation of acetylcholine can serve as a

strategy for the treatment of AChE-associated disease. Herein, an operational targeted drug

delivery platform based on AChE-responsive system has been presented by combining the

unique properties of enzyme-controlled mesoporous silica nanoparticles (MSN) with clin-

ical-used AChE inhibitor.

Methods: Functionalized MSNs were synthesized by liquid phase method and characterized

by using different analytical methods. The biocompatibility and cytotoxicity of MSNs were

determined by hemolysis experiment and MTT assay, respectively. Comparison of AChE

activity between drug-loading system and inhibitor was developed with kits and by ELISA

method. The efficacy of drug-loaded nanocarriers was investigated in a mouse model.

Results: Compared with AChE inhibitor itself, the inhibition efficiency of this drug delivery

system was strongly dependent on the concentration of AChE. Only AChE with high

concentration could cause the opening of pores in the MSN, leading to the controlled release

of AChE inhibitor in disease condition. Critically, the drug delivery system can not only

exhibit long duration of drug action on AChE inhibition but also reduce the hepatotoxicity in

vivo.

Conclusion: In summary, AChE-responsive drug release systems have been far less

explored. Our results would shed lights on the design of enzyme controlled-release multi-

functional system for enzyme-associated disease treatment.

Keywords: acetylcholinesterase inhibitor, controlled drug release, mesoporous silica

nanoparticles, drug action, hepatotoxicity

Introduction
Enzymes with high catalytic capability are involved in numerous important biological

processes, including cellular processes and metabolic exchange.1–3 The aberrations in

levels of enzyme expression have been reported to be associated with many diseases.4–6

Acetylcholinesterase (AChE), which catalyzes the hydrolysis of acetylcholine (ACh),

plays a critical role in the transmission of nerve impulse at the cholinergic synapses.7,8

Design and synthesis of AChE inhibitors that increase the cholinergic transmission by

blocking the degradation of ACh can serve as a strategy for the treatment of Alzheimer’s

disease (AD), senile dementia, ataxia, myasthenia gravis and Parkinson’s disease.

Nowadays, small molecules such as tacrine (Tac),9,10 donepezil,11,12 and the natural

product-based rivastigmine13,14 have already been used to inhibit the activity of AChE
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and resulted in improved cognition in clinical trials. However,

these conventional small inhibitors have troubling drawbacks

in their limited ability to differentiate the target enzyme asso-

ciated with the disease from those normal enzymes, and exhi-

bit adverse side effects which limit their long-term clinical use.

To overcome these limitations, small-molecule drugs to cova-

lently inhibit AChE15,16 or selective dual binding site AChE

inhibitors17,18 were designed. Although promising, no clear-

cut clinical evidence for these novel inhibitors on disease

treatment has been demonstrated. Therefore, targeted delivery

strategies that exploit disease-related biomarkers to improve

treatment efficiency and reduce adverse off-target effects are

an urgent need to be developed.

Recently, design and synthesis of stimuli-responsive

nanocarriers have become promising approaches for targeted

drug delivery and controlled release. So far, a variety of

external stimuli such as temperature,19,20 pH,21,22 light23,24

and redox25,26 have been employed to realize controlled drug

release. However, compared with these external stimuli, uti-

lizing AChE as the stimuli is more suitable for AChE inhibi-

tors delivery since the inhibitors can only be programmed to

release when the enzyme is found at higher concentrations at

the pathological environment. Herein,we combine the advan-

tages of the controlled-release systems with supramolecular

host–guest interaction to create a newAChE-responsive drug

delivery platform (Figure 1). We adopt mesoporous silica

nanoparticles (MSNs) as the carrier vehicles due to their

distinctive characteristics such as thermal stability, tunable

pore sizes, large loading capacity and the ease of surface

functionalization.27–30 This novel system can be specific for

AChE-responsive release of AChE inhibitors to realize tar-

geted delivery and reduce side effects in disease treatment. To

the best of our knowledge, AChE-responsive drug release

systems have been far less explored.31 Our study will provide

a general strategy to construct enzyme-inhibitors-loaded

nanocarriers which are responsive to disease-associated

enzymes.

As illustrated in Figure 1, our system consists of a meso-

porous nanoparticle functionalized with a derivative of ACh.

Biocompatible p-sulfonatocalix6arene (SC6A) and ACh are

employed as the macrocyclic host and enzyme-cleavable

guest, respectively.32,33 The opening protocol and delivery

of the entrapped guest depend on an enzyme-catalyzed reac-

tion in which the ACh derivative is expected to be hydro-

lyzed by AChE to generate choline, resulting in the breakage

of the complex of SC6A and choline from the surface of

MSN and the release of guest molecules after that. The

capping of SC6A lids on AChE-inhibitors-loaded MSNs

should therefore allow AChE-triggered drug release.

Materials and methods
Materials
Tetraethyl orthosilicate (TEOS, 99 wt.%), cetyltrimethy-

lammonium bromide (CTAB), N,N’-dicyclohexylcarbodi-

mide (DCC, >98%), 2-N-morpholino-ethanesulfonic acid

(MES), 4-dimethylaminopyridine (DMAP) and N-hydroxy-

succinimide (NHS, >98%) were purchased from Aladdin.

2-cyanoethyltriethoxysilane (CETES), 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide-HCl (EDC, >98%),

epsilon-aminocaproic acid (ACA), 2-hydroxyethyl tri-

methylammonium chloride (ChCl), Fluorescein isothiocya-

nate (Flu) and acetylcholine esterase (AChE) were

purchased from Sigma-Aldrich. p-Sulfonatocalix[6]arene

(p-SC6A) was obtained from TCI Development Co., Ltd.

(Shanghai, China). 1,2,3,4-Tetrahydro-5-aminoacridine

hydrochloride (Tacrine, Tac) was purchased from Heowns

Biochem. All these reagents were used as received without

further purification. Deionized water (18.2 MΩ cm) used

for all experiments was obtained from a Milli-Q system

(Millipore, Bedford, MA).

C57BL6/J mice were obtained from the Experimental

Animal Center of the Chinese Academy of Medical

Sciences. Bel7402 cells were obtained from American Type

Culture Collection. RPMI 1640 and fetal bovine serum

(FBS) were purchased from Gibco BRL. (3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

(MTT) was bought from Sigma-Aldrich.

Instruments
Transmission electron microscopic (TEM) experiments were

performed on a Philips Tacnai G2 20 S-TWIN microscope

MSN SC6A Acetylcholine Tacrine AChE

Figure 1 Schematic representation of AChE-fueled release of guest molecules Tac

from the pores of MSN capped with SC6A.

Abbreviations: Tac, tacrine; SC6A, p-sulfonatocalix[6]arene.
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operating at 200 kV to characterize the size and morpholo-

gies. Small angle X-ray diffraction (SAXRD) patterns were

recorded by a Rigaku SmartLab X-ray diffractometer with

Cu-Kα source (λ =1.5406 Å). Nitrogen adsorption-deso-

rption isotherms were measured using an ASAP2460 auto-

matic surface and porosity analyzer (Micromeritics

Instrument Corp., America). The BET (Brunauer-Emmett-

Teller) surface area, total pore volume and average pore size

were calculated from N2 adsorption-desorption isotherms.

Fourier-transform infrared (FTIR) spectra was collected on

a Rigaku 8400s FTIR spectrophotometer (Japan) using KBr

pellets. Zeta potential was measured by a Malvern Zetasizer

Nano ZS (UK). The ultraviolet-visible spectroscopy (UV-

vis) of Tac and Flu were recorded by a Jasco-V550 UV-vis

spectrophotometer.

Synthesis of carboxyl-functionalized MSN

(MSN-COOH)
The carboxyl-modified mesoporous silica nanoparticles

(MSN-COOH) were synthesized by co-condensation.34

Typically, 250 mg CTAB was dissolved in 240 mL of

water. Sodium hydroxide aqueous solution (1.75 mL, 2.0

M) was introduced to the CTAB solution and the tempera-

ture of the mixture was adjusted to 80°C. After stirring for

about 10 mins at 80°C, 2.5 mL of TEOS (11.2 mmol) was

added into the mixture dropwise under vigorous stirring.

The resulting mixture was stirred for another 2 hrs at 80°C

to give rise to a white precipitate. The solid crude products

were filtered, washed with water and methanol. Finally,

the products were dried under high vacuum. To remove the

surfactant template (CTAB), the as-synthesized MSN was

refluxed at 80°C for 10 hrs in an acetonitrile solution.

Then the samples were collected by centrifugation at

14,000 rpm for 5 mins, washed and re-dispersed with 50

mL toluene. 2.0 mL CETES was added to the mixture

dropwise at 80°C and reacted for 4 hrs. After that, the

dried product was treated with 9 mol·L−1 H2SO4 solution

at 95°C for 12 hrs to produce MSN-COOH. The MSN-

COOH nanoparticles were vacuum-dried for further use.

Synthesis of choline-functionalized MSN

(MSN-Ch)
The purified MSN-COOH (20 mg) was dispersed in 10

mL MES buffer (10 mM, pH 6.0), and then 80 mg EDC

was added to the suspension. After stirring at room tem-

perature for 10 mins, 120 mg NHS was added into the

above solution. The mixture was incubated at room

temperature for another 15 mins under stirring to allow

the MSN-COOH be efficiently activated. Then, 20 mL

phosphate buffer saline (PBS) (10 mM, pH7.4) containing

20 mg ACA was added into the mixture, following by

continuously stirring for 12 hrs at room temperature.

After washed with PBS and water for three times, the

ACA-functionalized MSN (MSN-COOR) was obtained.

To synthesis choline-modified MSN, the obtained MSN-

COOR was dispersed in 20 mL dichloromethane, and then

30 mg ChCl, 1.5 mg DMAP and 24 mg DCC were added

into the above solution under continuous stirring. After 72

hrs stirring, MSN-Ch nanoparticles were collected by cen-

trifugation, and washed with dichloromethane and water.

Synthesis of fluorescein-loaded MSN-SC6A
The obtained MSN-Ch (10.0 mg) was stirred in a solution

of fluorescein (Flu) (1 mM) in PBS for 24 hrs in dark.

Then, SC6A (10 mg) was added to the suspension. The

mixture was stirred in dark for another 6 hrs. After that,

the physisorbed Flu and uncapped SC6A were removed by

centrifugation and washing with PBS. The resulting pre-

cipitate was collected and dried under high vacuum.

Synthesis of Tac-loaded MSN-SC6A

(MSN-Tac-SC6A)
Similar to Flu-loaded MSN-SC6A, the purified MSN-Ch

(10.0 mg) was added to the solution of Tac (1 mM) in

PBS, and stirred for 24 hrs. Then, Tac-loaded MSN-Ch

was harvested by centrifugation and resuspended in PBS.

After SC6A (10 mg) was added, the mixture was stirred for

another 6 hrs, followed by centrifugation and washing

with water for three times to remove the physisorbed Tac

and uncapped SC6A. The resulting precipitate was col-

lected and dried under high vacuum.

Flu release experiments
Flu-loaded MSN-Ch (5 mg) material was dispersed in 10

mL of PBS buffer (10 mM, pH 8.0) containing different

concentration of AChE. Aliquots were taken from the

suspension and the delivery of Flu dye from the pore to

the buffer solution was monitored via the absorbance band

of the dye centered at 484 nm.

Detection of AChE activity assay
To detect the inhibition effects of Tac or MSN-Tac-SC6A

on the activity of AChE, different levels of AChE were

added to the PBS (10 mM, pH=7.4) composed of different
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concentrations of Tac or MSN-Tac-SC6A, followed by

incubation at room temperature for 30 mins to make the

reaction between AChE and inhibitors sufficiently. After

that, acetylthiocholine (ATC) (500 μM) and dithiobisnitro-

benzoic acid (DTNB) (250 μM) were added to the mixture

and incubated for another 20 mins. Then the absorption

value at 412 nm was monitored.

Animal treatment
Eight-week-old male C57BL6/J mice with body weights

between 20 and 25 g were used to test the efficacy of drug-

loading system in vivo. All the protocols and procedures for

animal handling were carried out following the guidelines of

the Hebei committee for care and use of laboratory animals,

and were approved by the Animal Experimentation Ethics

Committee of the Hebei Medical University. The mice were

maintained in a germ-free environment and allowed free

access to food and water. The mice were randomized divided

into 3 groups: (1) PBS, (2) Tac, (3) MSN-Tac-SC6A. The

mice, 6 per group, were treated subcutaneously with Tac (2.5

mg/kg body weight (B.W.)) or MSN-Tac-SC6A (the amount

of Tac loaded in MSN-Tac-SC6A was 2.5 mg/kg B.W.).

Subcutaneous (s.c.) application was chosen due to the avail-

ability of toxicity data and widespread use in pharmacology

research. For AChE inhibition experiment, blood was col-

lected at different time points after s.c. injection and centri-

fuged to obtain plasma for the detection of AChE activity. To

access the hepatotoxicity, blood was collected at 24 hrs after

s.c. injection and the plasma was separated for liver functions

(alkaline phosphatase, ALP and aspartate aminotransferase,

AST) test. For the in vivo toxicity experiment, the mice, 6 per

group, were treated subcutaneously with MSN-COOH (40

mg/kg B.W.) or MSN-SC6A (40 mg/kg B.W.). After injec-

tion, the body weight of these treated mice was recorded.

Collection of red blood cells
The red blood cells (RBCs) were collected by centrifuga-

tion of heparin-stabilized rat blood samples at 3500 rpm

for 10 mins to remove the plasma and buffy coat. The

remaining packed RBCs were washed with PBS for three

times until no traces of plasma were seen.

Hemolysis
In hemolysis experiment, 400 μL of packed RBCs was

diluted to 4 mL with PBS (10% hematocrit) and the diluted

RBC suspension (200 μL) was mixed with 600 μL of MSN-

based nanomaterial suspensions in PBS at different concen-

trations. PBS and water (600 μL) which incubated with

200 μL diluted RBC suspension were served as negative

and positive controls, respectively. All the mixtures were

gently vortexed and incubated at room temperature for

2 hrs. The mixtures were centrifuged at 3500 rpm for

10 mins. The absorbance of the supernatant was measured.

Cell toxicity assays
Bel7402 cells were cultured in RPMI 1640 medium supple-

mented with 10% FBS, a 5%CO2 humidified environment at

37°C. Bel7402 cells were seeded at a density of 5000 cells/

cm2 for MTT assay. After 24 hrs, different concentrations of

MSN-SC6A were added. 24 hrs later, the cells were treated

with 10 μL MTT (5 mg·mL−1 in PBS) for 4 hrs at 37°C and

thenwere lysed in DMSO for 10mins at room temperature in

the dark. Absorbance values of formazan were determined at

570 nmwith 630 nm as the reference using a Bio-Radmodel-

680 microplate reader.

Statistical analysis
All the experimental data were analyzed by calculating the ±

standard error of mean of three independent experiments and

compared by one-way analysis of variance (ANOVA) test

(using a statistical package, Origin 8.5, MA, USA) with

multiple comparison and paired-samples t-tests, P<0.05 as

a limit of significance.

Results and discussion
Synthesis and characterization of MSN-

SC6A
To validate our design, the MSN-COOH was first synthe-

sized by co-condensation.34 TEM images indicated that the

resulting spherical MSN had a diameter of about 100 nm and

an MCM-41-type channel-like mesoporous structure (BJH

pore diameter =2.8 nm) (Figure 2A). The hexagonally

arranged pores were further characterized by SAXRD and

N2 adsorption (Figure 2C and D). Then, ACAwas introduced

toMSN-COOH to yieldMSN-COOR. The ACA acted as not

only the linker to conjugate choline on the surface of MSN,

but also a spacer to avoid possible AChE activity blocking by

MSN. MSN-Ch was obtained through a direct esterification

process between hydroxyl groups and carboxyl groups. After

that, the negatively charged SC6A macrocycles were intro-

duced to encircle the choline stalks on the surfaces of MCM-

41 nanoparticles via host–guest complexation (MSN-SC6A),

leading to the pores of MSN blocked (Figure S1). Herein, we

also examined the hydrodynamic radius of MSN-COOH and

MSN-SC6A using dynamic light scattering (DLS) in PBS to
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obtain more insights into the nanoparticles. As shown in

Figure S2, the MSN-SC6A was 266 nm in diameter, which

was obviously smaller than MSN-COOH, indicating the

possibility of MSN-SC6A used in vivo. The surface functio-

nalization of MSN was monitored by FTIR spectroscopy

(Figure S3). The emerging absorption band at around 1700

cm−1 in the MSN-COOH sample can be assigned to C=O

stretching of the carboxyl groups. The successful grafting of

choline onto the surface of mesoporous silica was validated

by the appearance of the typical vibration peaks at 1080 cm−1

and a specific group of quaternary ammonium compounds in

the range of 900–980 cm−1. After capping, the peaks

appeared from 1650 cm−1 to 1446 cm−1 representing the

characteristic absorption of aromatic ring and peaks at

2934 cm−1 and 2859 cm−1 correspond to the stretching

band of C–H, indicating the efficient binding of SC6A onto

the surface of MSN. TEM showed that after capping with

SC6A, there was no clear difference in shape and average

diameter of the MSN, but a layer of soft materials surround-

ing theMSNwas observed (Figure 2B). The pore blocking or

sealing effect was also indicated by the change of BET

analysis (Figure 2D and Table 1) and ζ potential measure-

ment (Table S1). Quantification of the density of SC6A

anchored on MSN-Ch was accomplished by thermogravi-

metric analysis (TGA) (Figure S4), which corresponded to

about 122.9 μg/mg MSN-Ch.

To demonstrate the AChE-controlled actuation of the

nanovalves, Flu was added as a guest molecule by soaking

MSN-Ch in PBS solution. The pore was then capped via

incubating with SC6A for 6 hrs in PBS. The excess amount

of molecule was removed by centrifugation and repeated

washing with PBS. The amount of encapsulated guest

molecules in the resulting particles was spectroscopically

quantitated to be 28.47 μg Flu/mg MSNs (Figure S5).
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Abbreviations: TEM, transmission electron microscopy; MSN, mesoporous silica nanoparticles; SC6A, p-sulfonatocalix[6]arene; MSN-COOH, MSN modified by carboxyl;

MSN-SC6A, MSN conjugated with p-sulfonatocalix[6]arene; MSN-Ch, MSN conjugated with choline; Flu, fluorescein; MCM-41, Mobil composition of matter No.41.
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Release experiments were performed in PBS with different

concentrations of AChE. As shown in Figure 3, the release

of Flu was almost unobvious in the absence of AChE,

indicating that SC6A can act as an efficient cap for reten-

tion of guest molecules with negligible leakage. On the

other hand, the amount of Flu released reached about

44.05% after incubation with 250 mU·mL−1 AChE for

60 mins, whereas about 22.09% release was obtained in

the same amount of time with 50 mU·mL−1 AChE, indi-

cating that the guest molecules' release increased as the

AChE concentration increased within a certain range.

The inhibition effect of MSN-Tac-SC6A on

the activity of AChE in vitro
To investigate the feasibility of this drug delivery system for

inhibiting the activity of AChE, Tac, a commonly used AChE

inhibitor, was employed as the guest molecule. The amount

of encapsulated Tac in the resulting particles was quantitated

to be 27.02 μg Tac/mg MSNs. After incubation with AChE,

Tac would be released from the pore of MSN, leading to the

reduced activity of AChE. As shown in Figure 4A, upon

treated with high concentration of AChE (250 mU·mL−1),

both Tac and MSN-Tac-SC6A can inhibit the activity of

AChE. The inhibitory capacity increased with increasing

Tac concentration, which demonstrated that MSN could not

change the activity of encapsulated Tac. However, compared

with Tac, the inhibition efficiency of this drug delivery sys-

tem strongly depended on the concentration of AChE. Only

Table 1 BET-specific surface values, pore volumes and pore sizes calculated from N2 adsorption-desorption isotherms

SBET [m2g−1] Pore volume [cm3g−1] Pore diameter [nm]

MSN-COOH 689.773 0.579 2.769

MSN-Ch 664.962 0.539 2.389

MSN-SC6A 132.41 0.163 –

Abbreviations: BET, Brunauer-Emmett-Teller.
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AChE with high level could cause the breakage of the com-

plex of SC6A and choline from the surface of MSN, leading

to the release of Tac and inhibition of AChE activity (Figure

4B). Then, the remaining AChE with reduced activity could

not further break the complex of SC6A and choline on the

surface of MSN. Although AChE inhibition occurs at all

peripheral cholinergic synapses with the use of the inhibitors,

AChE could be maintained at a certain level via the con-

trolled release of Tac in the drug delivery system, which

would significantly lower the cholinergic side effects of

Tac. In addition, MSN-SC6Awithout Tac showed no effects

on the activity of AChE, indicating that the inhibition effect

of MSN-Tac-SC6Awas raised from the released Tac.

The inhibition effect of MSN-Tac-SC6A on

the activity of AChE in vivo
Having successfully established the excellent performance of

MSN-Tac-SC6A in inhibiting the activity of AChE in vitro, we

next investigated the feasibility of our drug delivery system on

in vivo inhibition of AChE. We collected the blood from the

mice which have been injected with different types of inhibi-

tors within 24 hrs to determine the level of AChE. As demon-

strated in Figure 5, both Tac and MSN-Tac-SC6A loaded with

the same concentration of Tac showed strong inhibition effects

on the activity of AChE in blood serum. It was clear that Tac

itself exhibited higher inhibition effects onAChEactivity at the

first 2 hrs after treatment. However, the MSN-Tac-SC6A

tended to stay much longer in the blood. Compared with Tac,

the MSN-Tac-SC6A exhibited long duration of drug action

even up to 24 hrs, while the activity of Tac became unobvious

after 4 hrs. Notably, under these conditions of short-term treat-

ment, no apparent enzyme up-regulation occurred after the

administration of this drug.35 The long-acting effects of

MSN-Tac-SC6Awere attribute to the sustained release of Tac

from the drug delivery system and the relative long blood

retention time of MSN, which would decrease the dosage of

AChE inhibitors used in patients and reduce the side effects of

these inhibitors.

The hepatotoxicity of MSN-Tac-SC6A in

vivo
Although Tac is effective in the treatment of AChE-asso-

ciated disease, a major adverse effect of this drug is hepa-

totoxicity, which affects almost one-half of the treated

patients.36–38 Based on this, we also monitored the hepato-

toxicity induced by our drug delivery system. After treating

mice with highest tolerated dose of Tac or MSN-Tac-SC6A

loaded with the equal dose of Tac for 24 hrs, the activities of

ALP and AST in serum were measured. As illustrated in
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Figure 6, Tac caused significant hepatotoxicity with the

increased activities of both ALP and AST. Compared with

the control group, the activities of ALP and AST increased

up to 1.49 times and 1.57 times, respectively, while MSN-

Tac-SC6A only slightly altered these parameters at 24 hrs.

These results strongly demonstrated that introduction of the

controlled-release system could reduce the hepatotoxicity

of Tac. Due to the controlled release of Tac only in disease

condition and lowered toxicity of the drugs, our strategy can

be used in AChE-associated diseases, such as AD, senile

dementia, ataxia, myasthenia gravis, Parkinson’s disease in

elder adults.

The toxicity of MSN-SC6A materials
As AChE inhibitor carriers, these MSN-based materials must

be highly biocompatible. To demonstrate this, the toxicity of

these materials was detected. As shown in Figure S6, both

the carboxyl-group-modified MSN and MSN-SC6A exhib-

ited no obvious influence on the body weight change of the

mice, compared with the control group. As is known to all,

the hemoglobin can be released from the damaged RBCs,

leading to a red solution and an enhanced absorbance of the

supernatant at 570 nm.39,40 Therefore, the hemolytic effect

can be a suitable model to study the cell damage effect of

these AChE inhibitor carriers. For the hemolysis experiment,

a wide range of concentrations of these MSN-based materials

in PBS solution were incubated with RBCs. As shown in

Figure 7, both MSN-COOH and MSN-SC6A revealed no

significant hemolysis effects on RBCs with the concentration

varyingd from 10 μg·mL−1 to 1000 μg·mL−1, which were

quite similar with the negative sample. Furthermore, MSN-

SC6A showed no obvious cytotoxicity on Bel7402 cell even

with the concentration up to 1000 μg·mL−1 (Figure 8). All

these results illustrated that modification with SC6A on the

surface of the MSN could not induce significant toxicity. As

a widely used drug carrier, the toxicity of MSN has been

comprehensively investigated both in vitro and in vivo.41–43

It has been reported that the spherical MSNs were distributed

in the liver, spleen, brain, kidney and bladder, and excreted

through urine.44 The MSNs were not toxic to tissues even

after 1 month in vivo.45 Together with our results, the MSNs

can be suitable to construct AChE-responsive drug release

systems.

Conclusion
In summary, an operational targeted drug delivery plat-

form based on AChE-responsive system has been con-

structed for AChE-associated disease treatment. Our

design combines the unique properties of enzyme-con-

trolled MSN with clinical-used AChE inhibitors. By taking

the advantage of host–guest chemistry, the drug can be

controlled-released by the action of the elevated enzymes.
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Figure 7 Hemolytic assays for MSN-COOH and MSN-SC6A. The RBCs were collected by centrifugation of heparin-stabilized rat blood samples. The concentration of

MSN-COOH or MSN-SC6A varied from 10 μg·mL−1 to 1000 μg·mL−1. PBS and water which incubated with the diluted RBC suspension were served as negative and positive

controls, respectively (mean ± SD, n=3 for each sample).

Abbreviations: MSN-COOH, MSN modified by carboxyl; MSN-SC6A, MSN conjugated with p-sulfonatocalix[6]arene; RBCs, red blood cells; PBS, phosphate buffer saline.
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The zero premature release characteristic is of importance

for delivery of toxic inhibitors in AChE-associated disease

therapy. Compared with AChE inhibitors themselves, the

drug delivery system can not only exhibit long duration of

drug action on AChE inhibition but also reduce the hepa-

totoxicity. Our results would shed lights on the design of

enzyme-controlled-release multifunctional system for

enzyme-associated disease treatment.
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Figure S1 The chemistry for the preparation of MSN-SC6A.

Abbreviations: DCC, N,N’-Dicyclohexylcarbodimide; ChCl, 2-Hydroxyethyl trimethylammonium chloride; 4-SC6A, p-sulfonatocalix[6]arene.
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Figure S2 The hydrodynamic radius of (A) MSN-COOH and (B) MSN-SC6A.

Abbreviations: MSN, mesoporous silica nanoparticles; MSN-COOH, MSN modified by carboxyl; MSN-SC6A, MSN conjugated with p-sulfonatocalix[6]arene.
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Figure S3 FTIR spectra of MSN-CN (A), MSN-COOH (B), MSN-COOR (C), MSN-Ch (D) and MSN-SC6A (E).
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Figure S4 Thermogravimetric analysis of the samples: MSN-COOH, MSN-Ch, MSN-SC6A.

Abbreviations: MSN, mesoporous silica nanoparticles; MSN-COOH, MSN modified by carboxyl; MSN-Ch, MSN conjugated with choline; MSN-SC6A, MSN conjugated

with p-sulfonatocalix[6]arene.
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Figure S5 The UV-Vis absorbance of Flu before or after loaded into the MSN.

Abbreviations: UV-Vis, Ultraviolet-Visible; Flu, fluorescein; MSN, mesoporous silica nanoparticles.
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Figure S6 The effects of MSN-COOH and MSN-SC6A on body weight change of the mice.
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arene (mean ± SD, n=6 for each group).

Table S1 The surface charges of MSN-COOH, MSN-Ch and MSN-SC6A

Materials MSN-COOH MSN-Ch MSN-SC6A

Surface charge −29±2.38 −15.8±2.51 −23.7±2.42

Abbreviations: MSN, mesoporous silica nanoparticles; MSN-COOH, MSN modified by carboxyl; MSN-Ch, MSN conjugated with choline; MSN-SC6A, MSN conjugated

with p-sulfonatocalix[6]arene.
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