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Abstract The microscopic structure and anisotropy of plant cell walls greatly influ-
ence the mechanical properties, morphogenesis, and growth of plant cells and tissues.
Themicroscopic structure and properties of cellwalls are determined by the orientation
and mechanical properties of the cellulose microfibrils and the mechanical properties
of the cell wall matrix. Viewing the shape of a plant cell as a square prism with the
axis aligning with the primary direction of expansion and growth, the orientation of
the microfibrils within the side walls, i.e. the parts of the cell walls on the sides of the
cells, is known. However, not much is known about their orientation at the upper and
lower ends of the cell. Here we investigate the impact of the orientation of cellulose
microfibrils within the upper and lower parts of the plant cell walls by solving the
equations of linear elasticity numerically. Three different scenarios for the orientation
of the microfibrils are considered. We also distinguish between the microstructure in
the side walls given by microfibrils perpendicular to the main direction of the expan-
sion and the situation where the microfibrils are rotated through the wall thickness.
The macroscopic elastic properties of the cell wall are obtained using homogeniza-
tion theory from the microscopic description of the elastic properties of the cell wall
microfibrils and wall matrix. It is found that the orientation of the microfibrils in the
upper and lower parts of the cell walls affects the expansion of the cell in the lateral
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directions and is particularly important in the case of forces acting on plant cell walls
and tissues.

Keywords Biomechanics · Plant modelling · Homogenization · Linear elasticity ·
Plant cell wall microfibrils

1 Introduction

To better understand plant development, it is important to analyse how themicroscopic
structure of plant tissues and organs impacts their mechanical properties. The elastic
properties of plant tissues are strongly determined by the mechanical properties of
the cell walls surrounding plant cells and by the cross-linked pectin network of the
middle lamella which joins individual cells together. Primary cell walls of plant cells
consist mainly of oriented cellulose microfibrils, pectin, hemicellulose, proteins, and
water. The orientation, length, and high tensile strength of the microfibrils strongly
influence the wall’s stiffness. Hemicelluloses form hydrogen bonds with the surface
of cellulose microfibrils, which may affect the mechanical strength of the cell wall by
creating a microfibril–hemicellulose network (Somerville et al. 2004). Pectin, once it
is de-esterified and cross-linked with calcium ions, forms a gel within the primary cell
wall and middle lamella and is hypothesized to be one of the main regulators of cell
wall elasticity (Wolf et al. 2012).

Since the turgor pressure acts isotropically, it is the microstructure of the cell walls,
e.g. the orientation of the cellulose microfibrils, which determines the anisotropic
deformation and expansion of plant cells. Many plant cells, especially cells in plant
roots and stem tissues, have a primary direction of expansion and less expansion
takes place in the directions orthogonal to it; see, e.g. Green (1965) and Probine and
Preston (1962). It is well known that cellulose microfibrils are parallel to the sides of
primary cell walls and, particularly in young cells, perpendicular to the main direction
of extension and growth (Green 1999; MacKinnon et al. 2006; Sugimato et al. 2000;
Szymanski and Cosgrove 2009). While the cells are elongating, the microfibrils may
reorientate in the main direction of growth (Anderson et al. 2010). For plant cells
whose shape can be approximated by a prism or cylinder with the axis aligned with
the primary direction of expansion, the microfibrils within the cell walls making up
the sides of the cell are parallel to the sides and perpendicular to the axis of the cell
or create a plywood-like microstructure of rotated layers of microfibrils. However,
the orientation of the microfibrils in the upper and lower parts of plant cells does not
appear to be known, possibly due to restrictions in imaging these parts of the cell
walls.

Due to the impact of cell wall anisotropy on plant tissue biomechanics and the
importance of multiscale modelling of plant biomechanics (Baskin 2005; Baskin and
Jensen 2013; Jensen and Fozard 2015), knowing the orientation of the microfibrils
in each part of the plant cell walls and the qualitative and quantitative impact of the
microfibrils orientation and distribution on the mechanical properties of cell walls and
tissues is essential.
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Different modelling approaches have been used to account for the impact of the
microstructure and anisotropy of plant cell walls on the mechanical properties and
growth of plant cells and tissues. InVeytsman andCosgrove (1998), themicrostructure
of cell walls was addressed by distinguishing between the free energies related to
the elasticity of macromolecules and hydrogen bonds, respectively. The theory of
anisotropic visco-plasticity and a thin shell model were used in Dumais et al. (2006) to
describe the anisotropic growth of a tip of a plant cell. The “decomposition approach”
(the splitting of the deformation tensor into an elastic and a growth part) has been
applied to model the growth of a part of a cell wall and its hardening due to changes
in the chemical properties of the cell wall matrix (Huang et al. 2012). Here the impact
of microfibrils aligned in the direction orthogonal to the main direction of expansion
was addressed phenomenologically in the free energy function. The impact of the
dynamics of hemicellulose cross-links on the growth of a plant cell wall was analysed
in Dyson et al. (2012). It was shown using a mathematical model for hemicellulose
cross-link dynamics that the strain-induced cross-link breakages influence the yield
stress, whereas enzymes soften the wall in its pre-yield state. In Dyson and Jensen
(2010), the influence ofmicrofibril orientation and the external torque on the expansion
processwas analysed by representing the primary cellwall as a thin axisymmetric fibre-
reinforced viscous sheet and assuming that fibres are stretched and reoriented by the
flow. A vertex-element model for plant tissue deformation and growth was considered
in Fozard et al. (2013). The impact of microfibrils on the mechanical properties of cell
walls was accounted for by introducing an anisotropic viscous stress which depends
on a pair of microfibril directions.

In previous works, the influence of the anisotropic microstructure and of the orien-
tation of microfibrils on the mechanical properties of plant cell walls was considered
by including the orientation of the microfibrils in the expression of the stress tensor
in a phenomenological way. In this work we consider the microscopic structure of
the cell walls explicitly and define a microscopic model for the elastic deformations
of plant cell walls and tissues on the scale of the microfibrils. In such a way we can
consider different orientations of microfibrils explicitly and distinguish between the
mechanical properties of the microfibrils and the cell wall matrix. Using multiscale
analysis techniques, we rigorously derivemacroscopic properties for the cell wall from
a microscopic description and analyse the impact of the microscopic structure on the
elastic deformations of cells in a more detailed way. Our model also accounts for the
distribution of forces between the cells.

In this paper we investigate the impact of the orientation of the cellulosemicrofibrils
in the upper and lower parts of cell walls and of a rotated (plywood-like) distribution
of microfibrils in the side walls on the elastic deformation of the plant cell walls and
tissues using multiscale modelling and numerical simulations. Modelling plant cells
as square prisms with rounded edges, we consider a part of a plant tissue represented
by a “central” cell surrounded by cells on all sides. The cell walls and middle lamella
are modelled as linearly elastic materials, and on the internal boundaries we specify
traction boundary conditions to represent the turgor pressure. Within the sides of the
cell walls, we consider the cases where the cellulose microfibrils are either arranged
periodically, see, e.g. Thomas et al. (2013), or are arranged so that their orienta-
tion changes through the thickness of the cell wall; see, e.g.Anderson et al. (2010).
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The length scale of the microfibrils (their diameter and separation distance between
microfibrils) is much smaller than the length scale associated with the thickness of the
cell wall. This smaller length scale will be referred to as themicroscale, while the scale
associated with the dimensions of the cell wall is called the macroscale. To obtain the
elastic properties of the primary cell wall, we follow (Ptashnyk and Seguin 2016a)
and use techniques of periodic homogenization to determine a macroscopic (effective)
elasticity tensor that depends on the orientation of the microfibrils on the microscale.
It was observed experimentally that calcium–pectin cross-links influence the mechan-
ical properties of the cell wall matrix and middle lamella, e.g.Wolf et al. (2012). The
impact of the density of the calcium–pectin cross-links on the elastic properties of the
cell walls is modelled through the Young’s modulus of the isotropic cell wall matrix.
Since it is known that the microfibrils are not isotropic (Diddens et al. 2008), they
are assumed to be transversely isotropic. The macroscopic (effective) elasticity tensor
for the cell walls is determined from the microscopic description of the mechanical
properties of the microfibrils and cell wall matrix by solving numerically the corre-
sponding problems defined on a Representative Volume Element (RVE), which reflect
the underlying microscopic structure of the cell walls. Then, using the macroscopic
elasticity tensor for different microfibril orientations, we solve numerically the equa-
tions of linear elasticity in a domain corresponding to a part of a plant tissue with
different traction boundary conditions. The effect of a shift in the position of neigh-
bouring cells relative to each other on the elastic deformations of a plant tissue is
analysed by considered two different configurations: one with cells shifted relative to
each other and another where the cells are distributed symmetrically without a shift
in their position relative to each other. The impact of the microfibrils reorientation,
observed experimentally in Anderson et al. (2010), is analysed by considering the
spatially dependent rotation of the effective elasticity tensor. In this article we con-
sider elastic deformations of plant cell walls and tissues. Using the “decomposition
approach” and splitting the deformation gradient into an elastic and growth part, it
is possible that these results can be extended to analyse the interactions between the
microstructure of plant cell walls and growth.

We find that different configurations of orientations of microfibrils in the upper
and lower parts of the cell walls do have an impact on the elastic deformation of the
plant cell walls and tissues in the directions parallel to the upper and lower parts of
the cell walls and have little effect on the expansion of the cells in the direction of
their axes. For a plant tissue with a staggered distribution of cells, the arrangement
of the microfibrils in the upper and lower parts of the cell walls has an impact on
the elastic deformation also in the absence of external forces, in contrast to a plant
tissue without a shift in the positions of cells relative to the neighbouring cells. In
the case where the microstructure in the side walls of the cells is defined by layers of
microfibrils rotated through the wall thickness, we obtain a much smaller expansion in
the direction of the cell’s axis and the orientation of the microfibrils in the upper and
lower parts impacts the deformation in the directions orthogonal to the cell’s axis. We
also observe that for a plant tissue without a shift in the positions of the cells relative
to the neighbouring cells, the maximal displacements in the directions orthogonal to
the cell’s axis are smaller than in the case of a staggered distribution of cells. We also
find that the expansion of the cell in the direction of its axis is smaller for shorter
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cells, which is in accord with Hooke’s law. The difference in the values of the turgor
pressure in the neighbouring cells causes larger deformations in the directions parallel
to the upper and lower parts of the cell walls.

The outline of the paper is as follows. InSect. 2,we specify ourmodel for plant tissue
biomechanics. We consider the elastic deformation of the primary cell walls joined by
middle lamella and the cell inside is modelled by prescribing a turgor pressure. Next,
in Sect. 3, the results of numerical simulations and a discussion of simulation results
are presented. Concluding discussions are presented in Sect. 4.

2 Statement of the Mathematical Model for Plant Tissue Biomechanics

We start by presenting our model for the elastic deformations of a part of a plant
tissue. This section is divided into three parts: a description of the geometry of the
domain, the presentation of the governing equations and boundary conditions, and the
specification of the elasticity tensor in the domains representing the different parts of
plant cell walls and middle lamella.

2.1 Geometry

Our geometry is motivated by the structure of cells and tissues in young plant roots.
Basedon representative values fromscanned images of plant root cells in the elongation
zone (private communication), we assume that the length of a cell is 37.2µm and the
width of a cell is 17.92µm. The range for a typical wall thickness is 0.1–2µm; see,
e.g.Dumais et al. (2006), Niklas (1992), and in our model we consider the cell wall
thickness to be equal to 1µm. We assume that the thickness of the middle lamella is
approximately 1/5 of the thickness of the cell wall, so that the thickness of the middle
lamella is taken to be 0.2µm.

We consider a domain composed of parts of eight cells connected by the middle
lamella, where the shape of a plant cell is approximated by a square prismwith rounded
edges. The (x1, x2, x3) coordinate system is chosen so that the origin is inside of a cell
with the axes parallel to the edges of the prism of this cell and the x3-axis is aligned
with the axis of the cell. We consider the domain �, the bounding box of which
is (0, x1,max) × (0, x2,max) × (0, x3,max), where x1,max = 20.12, x2,max = 20.12,
x3,max = 39.4. If a symmetric distribution of cells in a plant tissue is assumed, see
Fig. 1, we obtain that x1 = 0, x2 = 0, and x3 = 0 are planes of symmetry, and by
reflecting � over the planes x1 = 0, x2 = 0, and x3 = 0, we obtain a domain that
includes a central cell and parts of the 26 cells that surround it. This motivates us to
consider a domain� composed of parts of eight cells to represent a part of a plant tissue
also in the case of a staggered distribution of cells. We assume that neighbouring cells
are positioned shifted along the x3-axis relative to each other with a shift of 1/4 of the
cell wall length, i.e. a shift of 9.3µm; see Fig. 2. In this case, we only have symmetries
across the planes x1 = 0 and x2 = 0. A cross section of � at a constant value of x3
in (0, 8.5) ∪ (12.3, 17.8) ∪ (21.6, 27.1) ∪ (30.9, 39.4) is shown in Fig. 4. The cross
sections of � for a constant x3-value in (9.3, 11.5), (18.6, 20.4) and (27.9, 30.1) are
shown in Fig. 5. For other values of x3, the cross sections have different shapes due to
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Fig. 1 The domain � consisting of parts of eight cells without a shift in the position of neighbouring cells;
the cell length is 37.2µm and the cell width is 17.92µm; � j,u and � j,l denote the upper and lower parts
of the cell walls in subdomains � j , with j = 1, 2, 3, 4, respectively

x3
x2

x1

x3

x2 x1 x3
x1

x2

Ω1,lΩ1,u

Ω2,lΩ2,u

Ω3,u

Ω3,l

cell 7
cell 3

cell 5 cell 1

cell 6 cell 2 cell 8 cell 4

Fig. 2 The domain � consisting of parts of eight cells with two pairs of diagonally opposite cells having
the same position on the x3-axis and the four other cells are shifted by 9.3µm relative to the neighbouring
cells; the cell length is 37.2µm and the cell width is 17.92µm; � j,u and � j,l denote the upper and lower
parts of the cell walls in subdomains � j , with j = 1, 2, 3, 4, respectively. See also Fig. 5
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Fig. 3 The domain � consisting of parts of eight cells where the position on the x3-axis of each pair of
upper and lower cells is shifted relative to a neighbouring pair of cells, in contrast to the domain � depicted
in Fig. 2 where two diagonally opposite pairs of cells have the same positions on the x3-axis; the cell length
is 37.2µm, the cell width is 17.92µm, and the shift is 6.4µm; � j,u and � j,l denote the upper and lower
parts of the cell walls in subdomains � j , with j = 1, 2, 3, 4, respectively

the rounded edges of the domain; see Fig. 2. A cross section of � at a constant value
of x1 in (0, 8.16) is shown in Fig. 6. A representation of cross sections of � at other
values of x1 or x2 can be obtained by rotating or reflecting the geometry in Fig. 6
appropriately.

We will label the eight cells in the domain � in the following way: the four
upper cells we label from 1 to 4 by starting with the cell occupying the subdomain
(11.16, 20.12) × (11.16, 20.12) × (30.9, 39.4), see Fig. 2, and proceeding counter-
clockwise. The cells below the cells 1, 2, 3, and 4we label as 5, 6, 7, and 8, respectively;
see Fig. 2. Notice that the origin (0, 0, 0) is located in cell 7.
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Fig. 4 A cross section of � at a constant x3-value in (0, 8.5) ∪ (12.3, 17.8) ∪ (21.6, 27.1) ∪ (30.9, 39.4).
All rounded corners in this figure have a radius of 0.8µm. The region that is not marked is the middle
lamella, which has no microfibrils. The regions marked with 1 have cellulose microfibrils parallel to the
x1-axis or microfibrils rotated through the thickness of the cell wall and are parallel to the x1-axis at the
inner part of the cell wall and parallel to the x3-axis near the middle lamella. The regions marked with 2
have microfibrils parallel to the x2-axis or microfibrils rotated through the thickness of the cell wall and are
parallel to the x2-axis at the inner part of the cell wall and parallel to the x3-axis near the middle lamella.
This cross section is symmetric about the lines x1 = 10.06, x2 = 10.06, and x1 = x2

(c)(b)(a)

x2

x1

Ω1Ω2

Ω3 Ω4

Fig. 5 Cross sections of � for an x3-value a in (9.3, 11.5), b in (18.6, 20.4), or c in (27.9, 30.1). Each
of the square regions consists of an upper part of a cell wall � j,u (smaller x3-value) and a lower part of
a cell wall � j,l (larger x3-value) separated by middle lamella, where j = 1, 2, 3, 4. The upper and lower
parts of the cell walls are 1µm thick, and the middle lamella is 0.2µm thick. The regions with microfibrils,
corresponding to the parts of the cell walls, have a length of 9.96µm on each side. All of the rounded
corners have a radius of 0.8 µm

We also consider the symmetric eight cells geometry without a shift in the position
of cells, see Fig. 1, and the geometric configuration of the eight cells domain where
each pair of upper and lower cells is shifted relative to a neighbouring pair of cells
with a shift equal to 6.4µm; see Fig. 3.

In the description of the microscopic structure of the plant cell walls, we will
distinguish between side walls (parts of the cell walls parallel to the x3-axis) and the
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Fig. 6 A cross section of � at a constant x1-value in (0, 8.16). All of the rounded corners have a radius of
0.8 µm. The regions marked with 1 have cellulose microfibrils parallel to the x1-axis or microfibrils rotated
through the thickness of the cell wall and parallel to the x1-axis at the inner part of the cell wall and parallel
to the x3-axis near the middle lamella. The regions marked with c correspond to the upper and lower parts
of the cell walls, and different microfibril orientations will be considered in these regions. The region that
is not marked is the middle lamella, which has no microfibrils

upper and lower parts of the cell walls which are orthogonal to the x3-axis. In the side
walls, we will consider two microscopic structures. First we assume that in the side
walls the microfibrils are distributed periodically and are parallel to the cell walls and
orthogonal to the x3-axis. Next, motivated by the reorientation of microfibrils in the
side walls of the plant cells, observed experimentally in Anderson et al. (2010), we
assume that the microfibrils are rotated through the thickness of the side walls and
are parallel to the x1 and x2-axes, respectively, at the inner parts of the cell walls and
parallel to the x3-axis near the middle lamella.

The subdomains �1 = (10.16, 20.12) × (10.16, 20.12) × (27.9, 30.1), �2 =
(0, 9.96) × (10.16, 20.12) × (18.6, 20.8), �3 = (0, 9.96) × (0, 9.96) × (9.3, 11.5),
and �4 = (10.16, 20.12) × (0, 9.96) × (18.6, 20.8) contain the upper and lower
parts of cell walls; see Figs. 2, 3, or 5 for the cross sections. Each domain � j is
divided into a lower part� j,l and upper part� j,u , separated by middle lamella, where
j = 1, 2, 3, 4. The length in the x1 and x2-directions of these eight subdomains of
the cell walls are 9.96µm, and the thickness of each subdomain (the length in the
x3-direction) is 1.0µm. To analyse the impact of the orientation of the microfibrils in
the upper and lower parts of the plant cell walls on the elastic deformation of plant cell
walls and tissues, we will consider different microfibril orientations within the upper
and lower subdomains.

2.2 Model Equations and Boundary Conditions

The primary cell walls and themiddle lamella aremodelled as linearly elasticmaterials
with different elastic properties. Let E be the elasticity tensor for the cell walls and
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middle lamella. The value of E = E(x) at any given point x ∈ � depends on where in
the plant tissue that point lies, e.g. in the middle lamella or in the cell wall. Moreover,
in the different parts of the cell walls, we will consider different orientations of the
cellulose microfibrils, which influence the elasticity tensor. This dependence will be
specified in detail in the next subsection.

The boundary ∂� of the domain can be split into the union of three sets:

�0 = {x ∈ ∂� | x1 = 0 or x2 = 0 or x3 = 0}, (1)

�max = {x ∈ ∂� | x1 = x1,max or x2 = x2,max or x3 = x3,max}, (2)

�I = ∂� \ (�0 ∪ �max). (3)

The set �I is the part of ∂� in contact with the interior of the cells. A pressure
boundary condition corresponding to the turgor pressure will be imposed on �I . On
�max, a tensile traction boundary condition will be specified. Finally, �0 is the part
of the boundary of � that lies on the planes x1 = 0, x2 = 0, or x3 = 0 and we
assume the displacement in the normal direction on �0 to be zero. These boundary
conditions reflect the symmetry in the x1- and x2-directions and an assumption that
the displacement in the x3-direction is impeded at x3 = 0, motivated by the fact that
the upper part of a plant root system and the lower part of a stem are not moving in the
x3-direction and by the experimental set-up where one end of a plant tissue is fixed;
see, e.g.Hejnowicz and Sievers (1995). For the symmetric distribution of cells, these
boundary conditions also reflect the symmetry in the x1-, x2-, and x3-directions.

Neglecting inertia and external body forces, the elasticity equations with these
boundary conditions for the displacement u are given by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

div(E e(u)) = 0 in�,

u · ν = 0 on�0,

(E e(u))ν is parallel to ν on�0,

(E e(u))ν = f ν on�max,

(E e(u))ν = −pν on�I ,

(4)

where e(u) = 1
2 (∇u+∇uT ) is the symmetric part of the gradient of the displacement

and ν is the exterior unit normal to ∂�. A unique solution of (4) exists in H1(�,R3),
see e.g.Oleinik et al. (1992), provided that f ∈ L2(�max), p ∈ L2(�I), andE satisfies
the following conditions:

1. |E| is bounded in L∞(�).
2. There is a strictly positive α such that α|A|2 ≤ A · E(x)A for all symmetric

A ∈ R
3×3 and x ∈ �.

3. E possesses major and minor symmetries, i.e. Ei jkl = E j ikl = Ekli j = Ei jlk .
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2.3 The Elasticity Tensor

Next, we specify the elasticity tensor E on the domain �. To do so, we must specify
the elasticity tensor for the middle lamella and the cell walls for different microfibril
configurations. Themacroscopic elastic properties of the cell wall are derived from the
microscopic description of the elastic properties of the cell wallmatrix andmicrofibrils
using techniques of periodic homogenization. This requires the specification of the
elastic properties of the cell wall matrix and the cellulose microfibrils.

The cell wall matrix is isotropic (Zsivanovits et al. 2004), and so the elasticity tensor
of the matrix EM is of the form

EMA = 2μMA + λM (trA)1,

where the Lamé moduli μM and λM are related to the Young’s modulus EM and
Poisson’s ratio νM through

EM = μM (2μM + 3λM )

μM + λM
and νM = λM

2(μM + λM )
.

We take νM = 0.3, which is common for biological materials, see Baskin and Jensen
(2013), Hejnowicz and Sievers (1995), Huang et al. (2012), and Niklas (1992) for
more information about the Poisson’s ratio for plant cell walls, and EM = 5 MPa.
This value is lower than the Young’s modulus measured for highly de-methylesterified
pectin gels considered in Zsivanovits et al. (2004) since the pectin within the cell wall
matrix is not fully de-esterified.

The cellulose microfibrils are not isotropic (Diddens et al. 2008), so we assume that
they are transversely isotropic and, hence, the elasticity tensorEF for themicrofibrils is
determined by specifyingfive parameters: theYoung’smodulus EF associatedwith the
directions lying perpendicular to the microfibril, the Poisson’s ratio νF1 characterizing
the transverse reduction of the plane perpendicular to the microfibril for stress lying
in this plane, the ratio nF between EF and the Young’s modulus associated with the
direction of the axis of the microfibril, the Poisson’s ratio νF2 governing the reduction
in the plane perpendicular to themicrofibril for stress in the direction of themicrofibril,
and the shearmodulus ZF for planes parallel to themicrofibril. A transversely isotropic
elasticity tensor expressed in Voigt notation is of the form

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

α2 + α5 α2 − α5 α3 0 0 0
α2 − α5 α2 + α5 α3 0 0 0

α3 α3 α1 0 0 0
0 0 0 α4 0 0
0 0 0 0 α4 0
0 0 0 0 0 α5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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where αi , for i = 1, 2, 3, 4, 5, are related to the five parameters described above
through

α1 = EF (1 − νF1)

nF (1 − νF1) − 2ν2F2
, α2 = EFnF

2nF (1 − νF1) − 4ν2F2
,

α3 = EFνF2

nF (1 − νF1) − 2ν2F2
, α4 = ZF , α5 = EF

2(1 + νF1)
.

We assign these parameters the values

EF = 15,000MPa, νF1 = 0.3, nF = 0.068, νF2 = 0.06, ZF = 85,000MPa,

which are chosen based on experimental results (Diddens et al. 2008) and to ensure
that the elasticity tensor for the microfibrils is positive definite (Nakamura et al. 2004;
Padovani 2002).

We assume that the middle lamella is isotropic, with elasticity tensor EML , and has
a Young’s modulus of 15MPa and Poisson’s ratio of 0.3. It is known from experiments
that the density of calcium–pectin cross-links strongly influences the elastic properties
of the cell wall matrix and middle lamella (Wolf et al. 2012). Thus, since in the middle
lamella almost all pectin is de-esterified and the density of the pectin–calcium cross-
links is higher than in the cell wall matrix, where usually only 70% of the pectin
is de-esterified, we assume that the Young’s modulus for the middle lamella is three
times larger than the Young’s modulus for the cell wall matrix.

We first consider that the cellulose microfibrils are arranged periodically within the
cell wall matrix (Thomas et al. 2013) and so standard techniques in homogenization
theory, see e.g. Oleinik et al. (1992), yield a macroscopic elasticity tensor for a plant
cellwall from themicroscopic description of themechanical properties of a cellwall on
the level of a single microfibril. In addition to the elastic properties of the microfibrils
and cell wall matrix, the macroscopic elasticity tensor depends on the orientation of
the cellulose microfibrils. The components of this tensor are determined by solving
problems defined on a Representative Volume Element (RVE), in the homogenization
literature called the “unit cell” problem, which have the form of the equations of
linear elasticity and reflect the arrangement of the microfibrils in different parts of the
cell walls. Notice that the multiscale analysis of the microscopic model is preformed
for the nondimensionalized model equations and the dimensional quantities are then
recovered in the macroscopic equations, while the problem defined on the RVE is
dimensionless.

The microscopic structure in a plant cell wall is determined by the radius and
orientation of microfibrils and by the distance between the microfibrils. In the context
of homogenization theory, the microstructure of the cell wall is characterized by the
configuration of microfibrils in the corresponding RVE. Three types of configurations
of microfibrils are considered here:

(a) there is only one microfibril in the RVE Y = (0, 1)3 occupying the set

YF = {y ∈ Y | (y2 − 0.5)2 + (y3 − 0.5)2 < 0.252}, (5)
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Fig. 7 Adepiction of theRepresentativeVolumeElement (RVE)Y with three configurations ofmicrofibrils.
a A picture of the RVE with one microfibril occupying the set specified in (5). b A picture of the RVE
with two microfibrils occupying the set specified in (6). c A picture of the RVE with two microfibrils
occupying the set specified in (7), reflecting a lower density in the distribution of microfibrils in the y1- and
y2-directions than in the y3-direction

(b) there are two perpendicular microfibrils in the RVE Y = (0, 0.5)2 × (0, 1) occu-
pying the set

YF = {y ∈ Y | (y2 − 0.25)2 + (y3 − 0.75)2 < 0.1252 or

(y1 − 0.25)2 + (y3 − 0.25)2 < 0.1252}, (6)

(c) the RVE Y = (0, 1)3 with two perpendicular microfibrils occupying the domain

YF = {y ∈ Y | (y2 − 0.5)2 + (y3 − 0.75)2 < 0.1252 or

(y1 − 0.5)2 + (y3 − 0.25)2 < 0.1252}, (7)

see Fig. 7. Cases (b) and (c) are similar, except in case (c) the density of themicrofibrils
in the y3-direction is higher than in the y1- and y2-directions.

We have Y = Y M ∪ Y F , where YM and YF are disjoint and YM represents the part
of Y occupied by the cell wall matrix. Notice that for the simplicity of presentation
we use the same notations for domains Y , YM , and YF , defining different RVEs and
different microfibrils configurations.

The elasticity tensor EY in Y is given by

EY (y) =
{
EM if y ∈ YM ,

EF if y ∈ YF ,

and can be extended Y -periodically to all of R3. Consider a subdomain U of � in
which the cellulose microfibrils are arranged periodically with the distribution and
orientation specified by the RVE Y and YF defined in (5), (6), or (7). Let ε be a
small parameter associated with the ratio between the distance between the cellulose
microfibrils and the size of U . The microfibrils of a plant cell wall are about 3 nm
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in diameter and are separated by a distance of about 6 nm, see e.g. Colvin (1963),
Jennedy et al. (2007), and Thomas et al. (2013), whereas the thickness of a plant cell
wall is of the order of a few micrometres. To obtain the elasticity tensor for the part of
the cell wall U with a periodic microstructure on the length scale of ε defined by the
structure of εY , the periodic extension of EY must be scaled appropriately. Namely,
the elasticity tensor in U is given by

E
ε(x) = EY

( x

ε

)
for all x ∈ U.

Then homogenization theory yields amacroscopic elasticity tensorEhom that describes
a material whose behaviour approximates the behaviour of the cell wall with elasticity
tensor Eε when ε is very small (Oleinik et al. 1992). In our situation ε ≈ 10−3.
Moreover, Ehom is given by

Ehom,i jkl = −
∫

Y

[
EY,i jkl(y) + EY,i j pq(y)ey(wkl)pq(y)

]
dy, (8)

where wkl ∈ H1(Y,R3) is the unique solution of

{
divy

(
EY (ey(wkl) + bkl)

) = 0 in Y,
∫

Y wkl dy = 0, wkl is Y -periodic,
(9)

with bkl = 1
2 (b

k ⊗ bl +bl ⊗ bk) and k, l = 1, 2, 3, where (b1,b2,b3) is the standard
basis in R3.

When YF is given by (6) and (7), the elasticity tensor given in (8) will be denoted by
E
12
hom,1 and E

12
hom,2, respectively, as there are microfibrils in the x1- and x2-directions,

while when YF is given by (5) the elasticity tensor defined in (8) will be denoted by
E
1
hom since the microfibrils are pointing in the x1-direction.
Moreover, when YF is given by (5), then the microscopic elasticity tensor Eε

depends only on the two variables x2 and x3. Hence for this configuration of the
microstructure, the elasticity tensorEY depends only on y2 and y3 and the solutions of
the elliptic problems (9) depend only on ŷ = (y2, y3). Thus, sincewkl are independent
of y1, the problems (9) can be reduced to two-dimensional problems (Ptashnyk and
Seguin 2016a). To formulate the reduced problems, we consider Ŷ = (0, 1)2 and

ŶF = {(ŷ2, ŷ3) ∈ Ŷ | (ŷ2 − 0.5)2 + (ŷ3 − 0.5)2 < 0.252},

so that Y = (0, 1) × Ŷ and YF = (0, 1) × ŶF . It can be shown that

E
1
hom,i jkl = −

∫

Ŷ

[
EY,i jkl(0, ŷ) + EY,i j pq(0, ŷ)êŷ(ŵ

kl)pq(ŷ)
]
d ŷ, (10)
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with ŵkl ∈ H1(Ŷ ,R3) being the unique solution of

{ ˆdivŷ
(
EY (0, ŷ)(êŷ(ŵkl) + bkl)

) = 0 in Ŷ ,
∫

Ŷ ŵkl d ŷ = 0, ŵkl is Ŷ -periodic,
(11)

where for a function ŵ ∈ H1(Ŷ ,R3), the differential operators êŷ and ˆdivŷ are defined
by

êŷ(ŵ) =
⎛

⎜
⎝

0 1
2 ∂y2 ŵ1

1
2 ∂y3 ŵ1

1
2 ∂y2 ŵ1 ∂y2 ŵ2

1
2 (∂y2 ŵ3 + ∂y3 ŵ2)

1
2 ∂y3 ŵ1

1
2 (∂y2 ŵ3 + ∂y3 ŵ2) ∂y3 ŵ3

⎞

⎟
⎠ and ˆdivŷŵ = ∂y2 ŵ2 + ∂y3 ŵ3,

see e.g. Ptashnyk and Seguin (2016a). Reducing the dimension of the problem defined
on the RVE to two allows for the consideration of a higher-resolution mesh when
solving the problem (11) numerically.

Besides considering themacroscopic elasticity tensor for themicrostructure defined
by microfibrils parallel to the x1-axis, we will also consider the macroscopic elastic-
ity tensor for the microstructure generated by microfibrils that are arranged in other
directions in the x1x2-plane. Given θ ∈ [−π/2, π/2], letRθ denote the rotation about
the x3-axis through the angle θ , so that

Rθ =
⎛

⎝
cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎞

⎠ .

The macroscopic elasticity tensor E1,θ
hom for a microstructure consisting of microfibrils

aligned in the direction Rθb1 is given by

E
1,θ
hom,i jkl = Rθ

i pR
θ
jqR

θ
krR

θ
lsE

1
hom,pqrs . (12)

So, for example, themacroscopic elasticity tensor for amicrostructurewithmicrofibrils
parallel to the x2-axis is given by E

1,π/2
hom .

To summarize, the elasticity tensor E in the domain � is different in different
regions within the cell wall. In Figs. 4 and 6, we specify the regions of the cell walls
where the microfibrils are parallel to the x1-axis, i.e.E = E

1
hom, and the regions of the

primary cell wall where the microfibrils are parallel to the x2-axis, i.e.E = E
1,π/2
hom .

Within subregion �i , for i = 1, . . . , 4, corresponding to the upper and lower parts
of the cell walls, see Figs. 1, 2, 3 and 5, the elasticity tensor E will be set equal to
E
i,l
end and E

i,u
end, for the lower and upper parts respectively, where different choices of

E
i,l
end and E

i,u
end associated with different microfibril configurations will be considered.

Within the middle lamella, there are no microfibrils and E = EML . To specify the
macroscopic elasticity tensor for the side walls consisting of layers of microfibrils
rotated through the thickness of the cell wall, we use a formula similar to (12) with
the rotation being about the x1 or x2-axes, respectively, and the angle θ depending on
the spatial position in the cell walls, so that θ = 0 at the inner side of the cell wall and
θ = π/2 near the middle lamella.
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It follows from the properties of EM , EF , and EML that the macroscopic elasticity
tensor E for the plant cell wall and middle lamella satisfies the conditions 1–3 men-
tioned at the end of Sect. 2.2. Hence problem (4) describing the macroscopic elastic
properties of the plant cell walls connected by middle lamella is well posed.

3 Results of Numerical Simulations

This section presents the results of the numerical simulations of the problems (9)
and (11) necessary to calculate the macroscopic elasticity tensors E1

hom, E
12
hom,1, and

E
12
hom,2 and the simulations of the system (4) for different configurations of cellulose

microfibrils in the cell walls. For the numerical simulations of the system (4), we
nondimensionalize the model equations by considering 1 spatial unit to be equal to
2µm and 1 unit for stress to be equal to 1 MPa.

The numerical simulations were performed using FEniCS (Logg et al. 2012; Logg
and Wells 2010; Ølgaard and Wells 2010). This involved discretizing the domain
using a nonuniform mesh and applying the continuous Galerkin method to solve
the equations of linear elasticity. The resulting linear system was solved using the
iterative Krylov solver, i.e. the general minimal residual method (GMRES), with an
algebraic multigrid preconditioner. The convergence and the stopping criteria for the
iterative Krylov solver are characterized by the norm of the residual of the nth iteration
rn = Axn − b for the corresponding linear system Ax = b, obtained by applying
the Galerkin method to the system of linear elasticity, which must be smaller than the
absolute tolerance parameter, chosen to be 10−15, and the relative tolerance parameter,
chosen to be 10−6, times the initial residual.

3.1 Numerical Simulations for the Problems Defined on the Representative
Volume Element (RVE) that Determine the Macroscopic (Effective)
Elasticity Tensor

It was observed experimentally that the calcium–pectin chemistry influences the
mechanical properties of the cell wall matrix and middle lamella (Wolf et al. 2012).
Hence in general, the elastic properties of the cell wall matrix depend on the density
of the calcium–pectin cross-links n and the microscopic elasticity tensor Eε of the
plant cell wall is a function of n. It was shown in Ptashnyk and Seguin (2016a) that
under the assumption of an isotropic cell wall matrix, the macroscopic elasticity ten-
sor Ehom corresponding to any microfibril configuration is an affine function of the
Young’s modulus of the cell wall matrix. From experiments (Zsivanovits et al. 2004),
it is known that the Young’s modulus EM of the cell wall matrix is a function of the
density of the calcium–pectin cross-links n through the formula

EM = 0.775n + 8.08, (13)

where EM has the units of MPa and n has the units of µM. Thus, knowing the macro-
scopic elasticity tensor Ehom for two different values of EM , we can determine the
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Table 1 The macroscopic (effective) elasticity tensor E1
hom expressed in Voigt notation to two decimal

places when the Young’s modulus of the cell wall matrix is 10 and 20 MPa, respectively

C1(10) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

43333.24 12.51 12.51 0 0 0
12.51 19.27 7.59 0 0 0
12.50 7.59 19.27 0 0 0
0 0 0 5.34 0 0
0 0 0 0 9.30 0
0 0 0 0 0 9.32

⎞

⎟
⎟
⎟
⎟
⎟
⎠

C1(20) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

43352.40 24.07 24.07 0 0 0
24.07 37.75 14.89 0 0 0
24.07 14.89 37.75 0 0 0
0 0 0 10.44 0 0
0 0 0 0 15.04 0
0 0 0 0 0 15.05

⎞

⎟
⎟
⎟
⎟
⎟
⎠

tensor for any value of EM . Then, using (13), we obtain the macroscopic elasticity
tensor for the cell wall for any calcium–pectin cross-links density n. This approach
enables us to analyse the changes in the mechanical properties of plant cell walls
and tissues in response to the dynamics of calcium–pectin chemistry and changes in
calcium–pectin cross-link density, which will be the subject of future research.

To obtain the macroscopic elasticity tensor, we first calculate numerically
Ehom(EM ) for two Young’s moduli EM = 10 and EM = 20. Then using the fact
that Ehom = Ehom(EM ) is an affine function, we can determine Ehom for any value of
EM , in particular for EM = 5.

To determineE1
hom, the RVE Ŷ was discretized by a mesh with 18,645,460 vertices

with a higher density of vertices near the boundary between the cell wall matrix and
the microfibrils. Using Voigt notation, the resulting macroscopic (effective) elastic-
ity tensors E1

hom(EM ) for EM = 10 and 20 are shown in Table 1, to two decimal
places. Using the symmetry of the microstructure, it can be shown analytically that
the macroscopic elasticity tensors have tetragonal symmetry (Ptashnyk and Seguin
2016b), meaning that the entries of the matrices C1(10) and C1(20) that are zero
are exact and that some of the coefficients of the matrices C1(10) and C1(20) are
equal. Specifically, for EM = 10 or 20, C1(EM )22 and C1(EM )33 should be equal,
C1(EM )12 and C1(EM )13 should be equal, and C1(EM )55 and C1(EM )66 should be
equal. The largest scale involved in the numerical computations of the macroscopic
elasticity tensors is determined by theYoung’smodulus of themicrofibrils in the direc-
tion of the microfibrils and is equal to 2.2 × 105 MPa. Using this scale, the relative
error (the difference divided by 2.2 × 105) associated with C1(EM )55 and C1(E)66
not being equal is on the order of 10−8.

For the numerical calculations of the effective elasticity tensors for the microscopic
structures given by the RVE Y and the domain occupied by microfibrils YF defined
in (6) and (7), respectively, we discretize Y by a mesh with 9,177,795 vertices in the
case of (6) and 11,750,289 vertices in the case of (7), with a higher density of vertices
near the boundary between the cell wall matrix and the microfibrils. The calculated
macroscopic elasticity tensors E12

hom,1(EM ) for microfibrils configuration given by (6)

andE12
hom,2(EM ) for microfibrils configuration as in (7), where EM = 10 or EM = 20,

are shown in Tables 2 and 3 using Voigt notation. Similar to the results in the previous
paragraph, the macroscopic elasticity tensors should have tetragonal symmetry. The
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Table 2 Themacroscopic (effective) elasticity tensorE12
hom,1 for a part of the cell wall with themicroscopic

structure defined by the REV in which YF is specified by (6), expressed in Voigt notation to two decimal
places when the Young’s modulus of the cell wall matrix is 10 and 20 MPa, respectively

C12
1 (10) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

21715.44 68.14 45.82 0 0 0
68.14 21715.43 46.73 0 0 0
45.82 46.73 64.85 0 0 0
0 0 0 122.43 0 0
0 0.02 0 0 117.82 0
0 0 0 0 0 220.50

⎞

⎟
⎟
⎟
⎟
⎟
⎠

C12
1 (20) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

21733.92 79.87 55.22 0 0 0
79.87 21733.92 56.13 0 0 0
55.22 56.13 83.12 0 0 0
0 0 0 127.83 0 0
0 0 0 0 123.15 0
0 0 0 0 0 226.23

⎞

⎟
⎟
⎟
⎟
⎟
⎠

Table 3 Themacroscopic (effective) elasticity tensorE12
hom,2 for a part of the cell wall with themicroscopic

structure defined by the REV in which YF is specified by (7), expressed in Voigt notation to two decimal
places when the Young’s modulus of the cell wall matrix is 10 and 20 MPa, respectively

C12
2 (10) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

10927.86 99.60 67.85 0 0 0
99.60 10927.69 66.46 0 0 0
67.85 66.46 91.00 0 0 0
0 0 0 186.83 0 0
0 0 0 0 193.97 0
0 0 0 0 0 352.58

⎞

⎟
⎟
⎟
⎟
⎟
⎠

C12
2 (20) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

10943.35 107.84 75.25 0 0 0
107.84 10943.18 73.87 0 0 0
75.25 73.87 106.55 0 0 0
0 0 0 191.43 0 0
0 0 0 0 198.56 0
0 0 0 0 0 357.20

⎞

⎟
⎟
⎟
⎟
⎟
⎠

largest relative error associated with the components expected to be equal is on the
order of 10−5.

The results of this section allow us to compute the elasticity tensor for any Young’s
modulus of the cell wall matrix; however, in the following analysis, we only consider
the case where EM = 5 MPa.

3.2 Numerical Simulations of Problem (4) for Different Boundary Conditions
and Microfibril Orientations in the Upper and Lower Parts of Cell Walls
and in the Side Walls

Using the numerical results for the effective elasticity tensor for different microfibril
orientations, in this section we consider different microfibril orientations in the eight
subregions corresponding to the upper and lower parts of the cell walls and different
specifications of the turgor pressure p and tensile force f in problem (4). We also con-
sider two scenarios for the microfibril orientation in the side walls: (a) the microfibrils
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are parallel to the cell walls and orthogonal to the x3-axis and (b) the layers of the
microfibrils are rotated through the cell wall thickness.

We consider two different choices for p in the boundary conditions in (4). For
the pressure inside the cells, we set p = p◦, j , j = 1, 2, with p◦,1 = 0.209 MPa
or p◦,2 = 0.3 MPa, which are common values for the turgor pressure in plant cells
(Benkert et al. 1997; Dyson et al. 2014). For the tensile traction condition in (4),
following the experimental results in Hejnowicz and Sievers (1995), we consider the
force fex = 0.049 N acting on 1 mm of circumference plant tissue surface. This
corresponds to f = 0.614 = 2.938p◦,1 MPa and f = 2.047p◦,2 MPa, respectively.
A similar value for a force acting on the ends of a part of a cell wall was used in Huang
et al. (2012) by assuming that f = (r/2δ)p◦,1, where r denotes the inner radius of
the cell and δ the thickness of the cell wall. For our geometry, this formula gives
f = 4.48p◦,1.
For the boundary conditions, we considered the following four cases:

(BC1) Base case: p = p◦,1 = 0.209 MPa and f = 2.938p◦,1 MPa.
(BC1′) Different turgor pressure: p = p◦,2 = 0.3 MPa and f = 2.047p◦,2 MPa.
(BC2) No tensile tractions: p = p◦,1 and f = 0.
(BC3) Different turgor pressures in neighbouring cells and no tensile tractions: p1 =

p4 = p5 = p8 = p◦,1 and p2 = p3 = p6 = p7 = 1.3p◦,1, where pi , for
i = 1, . . . , 8, is the pressure in cell i , and f = 0.

For each of these boundary conditions, we consider five different configurations of
the microfibrils in the eight subregions corresponding to the lower and upper parts of
the cell walls; see Fig. 8.

(C1) In subregions �1,l , �1,u , �3,l and �3,u the microfibrils are parallel to Rπ/4b1

and in subregions �2,l , �2,u , �4,l and �4,u the microfibrils are parallel to
R−π/4b1. Thus, Ei,l

end = E
i,u
end = E

1,π/4
hom for i = 1, 3, and E

i,l
end = E

i,u
end =

E
1,−π/4
hom for i = 2, 4, see Fig. 8a.

(C2) In subregions �2,l , �4,l , �1,u and �3,u the microfibrils are parallel to Rπ/4b1

and in subregions �1,l , �3,l , �2,u and �4,u the microfibrils are parallel to
R−π/4b1. Thus E2,l

end = E
4,l
end = E

1,u
end = E

3,u
end = E

1,π/4
hom and E

1,l
end = E

3,l
end =

E
2,u
end = E

4,u
end = E

1,−π/4
hom , see Fig. 8b.

(C3) In all of the eight subregions, the orientations of the microfibrils on the
microscale are generated by the RVE depicted in Fig. 7b. Thus,Ei,l

end = E
i,u
end =

E
12
hom,1 for i = 1, . . . , 4.

(C3′) In all of the eight subregions, the orientations of the microfibrils on the
microscale are generated by the RVE depicted in Fig. 7c. Thus,Ei,l

end = E
i,u
end =

E
12
hom,2 for i = 1, . . . , 4.

(C4) There are no microfibrils in the upper and lower parts of the cell walls. Instead,
the upper and lower parts of the cell walls consist of middle lamella and, hence,
E
i,l
end = E

i,u
end = EML for i = 1, . . . , 4.

As a base case for the geometry, we consider the domain � depicted in Fig. 2.
For the numerical simulations, we discretize the domain � with a mesh comprising
12,143,330 vertices with a higher density of vertices within the subdomains corre-

123



The Impact of Microfibril Orientations on the Biomechanics... 2153

Ω1,lΩ2,l

Ω3,l Ω4,l

Ω1,uΩ2,u

Ω3,u Ω4,u

Ω1,uΩ2,u

Ω3,u Ω4,u

Ω1,lΩ2,l

Ω3,l Ω4,l

(b)(a)

Fig. 8 a A depiction of the orientation of the cellulose microfibrils in (C1). bA depiction of the orientation
of the cellulose microfibrils in (C2)

Table 4 The maximum and minimum values of the diagonal components of the strain tensor, divergence
of the displacement, and the maximal displacement in the positive and negative x1-, x2-, and x3-directions,
to four significant figures, for boundary condition (BC1), configurations (C1)–(C4), for the base case of the
domain �, as in Fig. 2, and the microfibrils (MF) in the side walls are orthogonal to the x3-axis

(BC1), parallel MF e11 e22 e33 divu

f = 2.938p◦,1,

p◦,1 = 0.209
Negative Positive Negative Positive Negative Positive Negative Positive

(C1) −0.1977 0.1902 −0.1736 0.2051 −0.0625 0.2060 −0.1816 0.2473

(C2) −0.1899 0.2284 −0.1543 0.1990 −0.1787 0.2281 −0.1317 0.3050

(C3) −0.1500 0.2797 −0.2486 0.2087 −0.0513 0.2122 −0.1742 0.3057

(C3′) −0.1433 0.2812 −0.2602 0.2095 −0.0515 0.2110 −0.1795 0.3099

(C4) −0.2197 0.2308 −0.1918 0.1794 −0.0471 0.2750 −0.2285 0.2870

(BC1), parallel MF x1-direction x2-direction x3-direction

f = 2.938p◦,1,

p◦,1 = 0.209
Negative Positive Negative Positive Negative Positive

(C1) −0.1329 0.2500 −0.1326 0.2488 −2.752 × 10−10 2.560

(C2) −0.1263 0.2764 −0.1260 0.2686 −3.888 × 10−9 2.542

(C3) −0.1153 0.1715 −0.1152 0.1780 −1.425 × 10−8 2.456

(C3′) −0.1162 0.1709 −0.1161 0.1754 −1.681 × 10−8 2.448

(C4) −0.1326 0.6602 −0.1323 0.6592 −1.039 × 10−8 2.526

sponding to the lower and upper parts of the cell walls and near the round edges of the
cell walls.

The results of the numerical simulations of the system (4) with the boundary condi-
tions (BC1)–(BC3) for the base case of the geometry for the configurations (C1)–(C4)
in the upper and lower parts of the cell walls and the microfibrils in the side walls ori-
ented orthogonal to the x3-axis are shown in Tables 4, 6, 7, and 8 and Figs. 9 and 12.
For the boundary condition (BC1) and the configurations (C1)–(C4), we also consider
the microscopic structure in the side walls defined by the layers of microfibrils rotated
through the wall thickness; see Table 5 and Fig. 10.
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Table 5 The maximum and minimum values of the diagonal components of the strain tensor, divergence
of the displacement, and the maximal displacement in the positive and negative x1, x2, and x3-directions,
to four significant figures, for boundary condition (BC1), configurations (C1)–(C4), for the base case of the
domain �, as in Fig. 2, and the microstructure in the side walls is given by the rotated layers of microfibrils
(MF)

(BC1), rotated MF e11 e22 e33 divu

f = 2.938p◦,1,
p◦,1 = 0.209

Negative Positive Negative Positive Negative Positive Negative Positive

(C1) −0.1804 0.2290 −0.2261 0.3571 −0.7740 0.7468 −0.4285 0.7588

(C2) −0.1642 0.2102 −0.1968 0.3765 −0.8081 0.6684 −0.4385 0.6808

(C3) −0.3234 0.3068 −0.2971 0.3451 −0.7470 0.7112 −0.4182 0.7255

(C4) −0.1949 0.2269 −0.2198 0.3454 −0.7354 0.6655 −0.3807 0.6784

(BC1), rotated MF x1-direction x2-direction x3-direction

f = 2.938p◦,1,
p◦,1 = 0.209

Negative Positive Negative Positive Negative Positive

(C1) −0.0887 0.3046 −0.0539 0.2818 −0.0942 0.1798

(C2) −0.0663 0.3372 −0.0560 0.3310 −0.5814 0.1819

(C3) −0.0326 0.1686 −0.0308 0.1509 −0.0340 0.1492

(C4) −0.0734 0.7368 −0.0434 0.7014 −0.0692 0.1959

Table 6 The maximum and minimum values of the diagonal components of the strain tensor, divergence
of the displacement, and the maximal displacement in the positive and negative x1-, x2-, and x3-directions,
to four significant figures, for boundary condition (BC2), for configurations (C1)–(C4), for the base case
of the geometry �, as in Fig. 2, and the microfibrils in the side walls are orthogonal to the x3-axis

(BC2) e11 e22 e33 divu

Negative Positive Negative Positive Negative Positive Negative Positive

(C1) −0.0620 0.0300 −0.0663 0.0468 −0.0292 0.0648 −0.0752 0.0298

(C2) −0.0452 0.0287 −0.0437 0.0290 −0.0719 0.0630 −0.0519 0.0279

(C3) −0.0433 0.0251 −0.0436 0.0255 −0.0159 0.0469 −0.0462 0.0304

(C3′) −0.0425 0.0238 −0.0428 0.0257 −0.0169 0.0460 −0.0461 0.0284

(C4) −0.0516 0.0249 −0.0493 0.0262 −0.0208 0.0660 −0.0630 0.0313

(BC2) x1-direction x2-direction x3-direction

Negative Positive Negative Positive Negative Positive

(C1) −0.0796 0.0893 −0.0797 0.0915 −5.880 × 10−11 0.2690

(C2) −0.0669 0.0670 −0.0664 0.0680 −5.020 × 10−11 0.2644

(C3) −0.0435 0.0507 −0.0436 0.0522 −6.814 × 10−10 0.2648

(C3′) −0.0432 0.0495 −0.0433 0.0509 −4.456 × 10−10 0.2658

(C4) −0.0697 0.1096 −0.0700 0.1104 −4.948 × 10−10 0.2744
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Table 7 The maximum and minimum values for the diagonal components of the strain tensor, divergence
of the displacement, and the maximal displacement in the positive and negative x1-, x2-, and x3-directions,
to four significant figures, for boundary condition (BC3), for configurations (C1)–(C4), for the base case
of the geometry �, as in Fig. 2, and the microfibrils in the side walls are orthogonal to the x3-axis

(BC3) e11 e22 e33 divu

Negative Positive Negative Positive Negative Positive Negative Positive

(C1) −0.2835 0.2090 −0.2645 0.1373 −0.0479 0.1218 −0.3255 0.1369

(C2) −0.2821 0.2015 −0.1615 0.1343 −0.0720 0.1232 −0.1541 0.1315

(C3) −0.2821 0.1825 −0.1596 0.1289 −0.0539 0.1518 −0.1556 0.1482

(C4) −0.2840 0.1440 −0.1553 0.1303 −0.0441 0.1231 −0.1550 0.1283

(BC3) x1-direction x2-direction x3-direction

Negative Positive Negative Positive Negative Positive

(C1) −0.0356 1.1518 −0.5758 0.1572 −6.442 × 10−11 0.3208

(C2) −0.0390 1.1484 −0.5602 0.1575 −0.0259 0.3242

(C3) −0.0352 1.1264 −0.5116 0.1038 −1.434 × 10−9 0.3274

(C4) −0.0355 1.1590 −0.5214 0.2244 −1.920 × 10−9 0.3194

Table 8 The maximal positive and negative values of the diagonal components of the strain tensor, diver-
gence of the displacement, and the maximal displacement in the positive and negative x1-, x2-, and
x3-directions, to four significant figures, for boundary condition (BC1′), configurations (C1)–(C4), the
domain � as in Fig. 2, and the microfibrils in the side walls are orthogonal to the x3-axis

(BC1′) e11 e22 e33 divu

f = 2.047p◦,2,
p◦,2 = 0.3

Negative Positive Negative Positive Negative Positive Negative Positive

(C1) −0.2152 0.3343 −0.2132 0.2362 −0.0740 0.2425 −0.1988 0.3304

(C2) −0.2040 0.2338 −0.1691 0.2066 −0.1954 0.2473 −0.1477 0.3166

(C3) −0.1739 0.2942 −0.2733 0.2183 −0.0580 0.2260 −0.1955 0.3186

(C4) −0.2401 0.2341 −0.2103 0.1857 −0.0524 0.2967 −0.2482 0.2938

(BC1′) x1-direction x2-direction x3-direction

f = 2.047p◦,2,
p◦,2 = 0.3

Negative Positive Negative Positive Negative Positive

(C1) −0.1651 0.2628 −0.1647 0.2610 −1.006 × 10−8 2.678

(C2) −0.1518 0.2904 −0.1513 0.2828 −5.986 × 10−9 2.658

(C3) −0.1335 0.1935 −0.1334 0.2000 −1.018 × 10−8 2.572

(C4) −0.1610 0.7082 −0.1606 0.7074 −1.960 × 10−8 2.646

We also performed numerical simulations of themodel equations (4) for the domain
� without a shift in the positions of neighbouring cells, see Fig. 1, and for the domain
� where the positions of all pairs of the upper and lower cells are shifted relative to
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Fig. 9 A depiction of the displacements in the x2-direction for (BC1) with two different microfibril con-
figurations: a configuration (C1) and b configuration (C3). Here the base case for the geometry, as depicted
in Fig. 2, is used and the microfibrils in the side walls are orthogonal to the x3-axis

Fig. 10 A depiction of the displacement a in the x1-direction and b in the x3-direction, for boundary
conditions (BC1) and configuration (C1), in the case where the geometry is as shown in Fig. 2 (base case)
and the microfibrils are rotated through the thickness of the side walls

each other; see Fig. 3. The results of the numerical simulations for these two cases are
presented in Tables 9 and 10 and Fig. 11.

In the base case for the geometry � and if the microfibrils in the side walls are
orthogonal to the x3-axis, for the configurations (C1), (C2), and (C4) and boundary
conditions (BC1) and (BC2), the maximal displacements in the x1 and x2-directions
occur in the upper and lower parts of the cell walls, while for configuration (C3) and all
boundary conditions, the maximal displacements in these directions occur in the side
walls near the upper and lower parts of the cell walls, see Fig. 9. For boundary condition
(BC3) and configurations (C1), (C2), and (C4), the maximal positive values for the
displacement in the x1-direction occur on the side walls, while for the x2-direction
the maximal positive values occur on the side walls and the upper and lower parts
of the cell walls. For the x3-direction, the maximal displacement occurs on the plane
x3 = x3,max, i.e. x3 = 39.4. For boundary condition (BC3) and configuration (C2),
we observe that the nonzero values of the displacement in the negative x3-direction
occur in the upper and lower parts of the cell walls.

If the microfibrils in the side walls are rotated through the thickness of the wall,
for the (C1) and (C2) configurations and the boundary condition (BC1) the maximal
displacements in the positive and negative x1- and x2-directions occur in the upper and
lower parts of the cell walls, whereas the maximal displacement in the x3-direction
occurs on the side walls and the maximal displacement in the negative x3-direction
occurs in the lower parts of the cell walls; see Fig. 10. For configuration (C3) the
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Table 9 The maximal positive and negative values of the diagonal components of the strain tensor, diver-
gence of the displacement, and the maximal values of the displacement in the positive and negative x1-, x2-,
and x3-directions, to four significant figures, for the boundary condition (BC1), configurations (C1)–(C4),
for the geometry shown in Fig. 3, and the microfibrils in the side walls are orthogonal to the x3-axis

(BC1), 4 shifts e11 e22 e33 divu

f = 2.938p◦,1,

p◦,1 = 0.209
Negative Positive Negative Positive Negative Positive Negative Positive

(C1) −0.3251 0.5635 −0.3851 0.3458 −0.1541 0.3549 −0.3574 0.3809

(C3) −0.1639 0.2154 −0.2875 0.2211 −0.1077 0.2309 −0.2942 0.3345

(C4) −0.2180 0.2144 −0.2525 0.2785 −0.1257 0.4717 −0.2185 0.3167

(BC1), 4 shifts x1-direction x2-direction x3-direction

f = 2.938p◦,1,

p◦,1 = 0.209
Negative Positive Negative Positive Negative Positive

(C1) −0.3122 0.2670 −0.3154 0.2676 −4.700 × 10−9 2.752

(C3) −0.1500 0.1601 −0.1494 0.2314 −1.838 × 10−8 2.632

(C4) −0.4762 0.6878 −0.5080 0.6778 −1.313 × 10−8 4.304

Table 10 The maximal negative and positive values of the diagonal components of the strain tensor and
the divergence and the maximal displacement in the positive and negative x1-, x2-, and x3-directions, to
four significant figures, for the boundary condition (BC1), with f = 2.938p◦,1 and p◦,1 = 0.209 MPa,
for the microfibril configurations (C1)–(C4) in the lower and upper parts of cell walls, for the eight-cell
geometry without a shift in the position of the neighbouring cells, see Fig. 1, and the microfibrils in the side
walls are orthogonal to the x3-axis

(BC1), no shift e11 e22 e33 divu

f = 2.938p◦,1,

p◦,1 = 0.209
Negative Positive Negative Positive Negative Positive Negative Positive

(C1) −0.1806 0.2824 −0.1880 0.2665 −0.1718 0.1751 −0.2339 0.3686

(C2) −0.1110 0.2684 −0.1368 0.2590 −0.1980 0.1613 −0.1759 0.2651

(C3) −0.0786 0.1075 −0.0806 0.1002 −0.0488 0.1438 −0.0605 0.1028

(C4) −0.1480 0.1511 −0.1418 0.1577 −0.0736 0.1898 −0.2365 0.2472

(BC1), no shift x1-direction x2-direction x3-direction

f = 2.938p◦,1,

p◦,1 = 0.209
Negative Positive Negative Positive Negative Positive

(C1) −0.0716 0.2152 −0.0732 0.2152 −3.184 × 10−9 2.520

(C2) −0.0653 0.2502 −0.0646 0.2520 −2.546 × 10−10 2.518

(C3) −0.0617 0.0595 −0.0622 0.0590 −1.057 × 10−9 2.480

(C4) −0.0616 0.4788 −0.0629 0.4788 −6.596 × 10−9 2.490
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Fig. 11 A depiction of the displacements a in the x1-direction and b in the x3-direction, for the boundary
conditions (BC1) and configuration (C4), in the case where the geometry is as shown in Fig. 3 and the
microfibrils in the side walls are orthogonal to the x3-axis

maximal displacements in the positive and negative x1-, x2-, and x3-directions occur
in the side walls. For configuration (C4) the maximal displacements in the positive
x1-, x2-, and x3-directions occur in the upper and lower parts of the cell walls and the
maximal displacements in the negative x1- and x2-directions occur in the side walls.

In the case where all four pairs of cells are shifted relative to each other, for con-
figurations (C1), (C2), and (C3) and boundary condition (BC1) the locations where
the maximal values of the displacement occur are similar to the base case, but for
configuration (C4) the maximal values of the displacement in the x3-direction occur
in the lower and upper parts of the cell walls; see Fig. 11.

For the geometry without a shift in the positions of the cells and boundary condition
(BC1), the distribution of the maximal displacements is similar to the base case, in
that for the configurations (C1), (C2), and (C4) the maximal displacements in the x1-
and x2-directions occur in the upper and lower parts of the cell walls, and the maximal
displacements in these directions for configuration (C3) occur on the side walls, and
the maximal displacement in the x3-direction occurs on the plane x3 = x3,max.

3.3 Discussion of Results of Numerical Simulations

The data in Tables 4, 5, 6, 7, 8, 9 and 10 tell us several things about the impact of
the presence and orientation of the cellulose microfibrils in the upper and lower parts
and in the sides of the cell walls on the elastic deformation of the plant cell walls
and tissues. Here a few main results are highlighted by emphazising certain data: (i)
italic values contain results representing the main impact of the orientation of the
microfibrils in the upper and lower parts of the cell wall; (ii) data in bold highlight the
impact of applied forces and of the microstructure in the side walls on the elongation
of the cells; (iii) data in bold italic indicate the effect of the microscopic structure
(orientation of microfibrils in the side walls of the plant cell walls and distribution
of cells in the tissue) on the strain; and (iv) with underline, we mark results that are
unique to specific microfibril orientations, boundary conditions and the distribution
of cells in the plant tissue.

In the case where the microfibrils in the side walls are oriented perpendicular to
the cell axis, the presence and orientation of the cellulose microfibrils in the upper
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and lower parts of the cell wall have little effect on the expansion of the cells in
the x3-direction, as can be seen from looking at the columns corresponding to the
maximal positive values of the displacement in the x3-direction in Tables 4 and 8. The
cell walls are able to expand more in the directions perpendicular to the direction of
the microfibrils since the microfibrils are much stiffer than the cell wall matrix and
middle lamella, and changing themicrofibril orientationwithin the x1x2-plane has little
impact on the displacement in the x3-direction. However, the expansion in the x1 and
x2-directions is affected. In particular, for (BC1) when the microfibrils are arranged in
the configuration (C3) or (C3′), the displacements in the positive x1 and x2-directions
are approximately 2/3 of those for the configurations (C1) and (C2) and less than 1/3
of those for configuration (C4). In configurations (C3) and (C3′), the microfibrils are
oriented in both the x1- and x2-directions within the upper and lower parts of the cell
walls and it is expected that for this configuration there would be less expansion in both
directions. Notice that the difference between the maximal displacements of the plant
cell walls for the configurations (C3) and (C3′), respectively, is small. For boundary
condition (BC2) a moderate difference in the maximal displacements between the
configurations (C1), (C2), (C4) and (C3), (C3′) is observed; see Table 6. In the case of
boundary condition (BC3), only a noticeable difference in the maximal displacement
in the positive x2-direction for configurations (C1)–(C4) is observed; see Table 7. Also
for boundary condition (BC3) and configuration (C2), we have a nonzero displacement
in the negative x3-direction in the lower parts of the cell walls (marked with underline
in Table 7). This is related to the difference in the microfibril orientation in the upper
and lower parts in configuration (C2) and to the difference in the turgor pressure in
the neighbouring cells in boundary condition (B3). The difference in the maximal
displacements for different microfibril configurations in the upper and lower parts of
the cell walls for the boundary conditions (BC2) and (BC3) was less noticeable in the
case of a symmetric distribution of cells without a shift in the position of the cells
along the x3-axis relative to each other (data not shown).

In the case where all four pairs of cells are shifted relative to each other, the notice-
able difference to the base case is that for configuration (C4) the maximal values of
the displacement in the x3-direction occur in the lower and upper parts of the cell wall;
see Fig. 11 and Table 9 (marked with underline). The fact that the maximal values
for the displacement in the x3-direction occur on the upper and lower parts of the cell
walls is related to the large size of the corresponding upper cell and is not related to
the fact that a zero normal displacement at x1 = 0 and x2 = 0 is prescribed (the same
effect was observed when a zero normal displacement at x1 = x1,max and x2 = x2,max
was imposed instead, date not shown). Also, for the domain with all four pairs of cells
shifted, we have higher maximal values for the strain and the displacement (especially
in the negative x1- and x2-directions) than in the base case; see Tables 4 and 9. This
can be explained by the fact that the upper and lower parts of the cell walls are not
equilibrated by the upper and lower parts from the neighbouring cells and larger defor-
mations and localized displacements of the side walls near the upper and lower parts
of the cell walls are possible.

If the side walls comprise layers of the microfibrils rotated through the thickness
of the cell wall, the maximal displacement in the x3-direction is reduced by a factor
of 14 compared to the case where the microfibrils are orthogonal to the x3-axis, while
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Fig. 12 A depiction of a the e11 component of the strain tensor for boundary condition (BC1′) and config-
uration (C4) and b the e33 component of the strain tensor for boundary condition (BC1′) and configuration
(C1), in the casewhere the geometry is as shown in Fig. 2 and themicrofibrils in the sidewalls are orthogonal
to the x3-axis

a slight increase of the values of the displacements in the x1- and x2-directions for
configuration (C1), (C2), and (C4) and a slight decrease for configuration (C3) are
observed; see Tables 4 and 5. The orientation of microfibrils in the upper and lower
parts of the cell walls has a similar impact as in the case where the microfibrils in
the side walls are orthogonal to the x3-axis. Comparing Tables 4 and 5, we notice
that while the displacements in the x3-direction in the rotated case are smaller than
the displacements in the parallel microfibril case, the strain e33 is much higher in the
rotated case. This indicates that the displacements are more concentrated in particular
locations in the rotated case.

Different configurations of microfibrils in the upper and lower parts of the cell walls
do not induce large variations in the maximal and minimal values of the divergence
of the displacement or the diagonal components of the strain tensor, see Tables 4, 5,
6, 7 and 8 and Fig. 12, apart from the minimal values for e33 which are much larger
for the configuration (C2), possibly due to the orientation of microfibrils that permit
larger deformations in the negative x3-direction in the lower parts than in the upper
parts of the cells. (Notice that for configurations (C1), (C3), (C3′), and (C4), we have a
symmetry in the microfibril distribution in the upper and lower parts.) Also in the case
of a tissuewith a symmetric distribution of cells for configuration (C3)we have smaller
maximal values for e11 and e22 and larger minimal values for e11, e22 and e33 than for
the configurations (C1), (C2), and (C4); see Table 10. This difference is smaller in the
cases of the geometries with a shifted distribution of cells. We also observe that for
all three geometrical configurations considered here, for configurations (C1) and (C2)
the strains e11 and e22 are larger than the strain e33, while for (C3) and (C4) the strain
e33 is larger than the strains e11 and e22.

Comparing the results for boundary conditions (BC2) and (BC3) in Tables 6 and 7,
we can see the effect of increasing pressures in some of the cells. First, notice that the
displacements in the positive directions are larger in the case (BC3) than in the case
(BC2). This is because in (BC3) the pressure in cells 2, 3, 6, and 7 is greater than in
the (BC2) case. Also notice that in the case (BC3) the displacement in the positive x1-
direction is greater than the displacement in the positive x2- and x3-directions, which is
caused by the position of the cells with the larger pressure. Namely, there is a pressure
difference between the cells that are aligned in the x1-direction. Even though there
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are no tensile tractions on the sides of the domain for boundary conditions (BC2), due
to the microscopic structure of the side walls, defined by the microfibrils orthogonal
to the x3-axis, e33 is larger than e11 and e22; see Table 6. Also, the difference in the
pressure in the neighbouring cells in boundary condition (BC3) induces extra strains;
compare Tables 6 and 7.

For a larger tensile traction, i.e. f = 3.426p◦,1 with p◦,1 = 0.209MPa, we observe
the same impact of the orientation of the microfibrils in the upper and lower parts of
the cell walls as in the base case. We find that a 16.5% increase in the tensile traction
results in an approximately 13–16% increase in the maximal and minimal values of
the divergence of the displacement and the diagonal components of the strain tensor
and in the maximal values of the displacements in the positive and negative x1-,
x2-, and x3-directions (data not shown). The increase in the turgor pressure from
p◦,1 = 0.209 MPa to p◦,2 = 0.3 MPa with the same value for the tensile traction
boundary condition, i.e. f = 2.047p◦,2, also results in a slight (∼5–10%) increase in
the corresponding values for the displacements, the diagonal components of the strain
tensor and the divergence of the displacement; compare Tables 4 and 8. The impact
of the orientation of the microfibrils in the upper and lower parts of the cell walls is
similar to the base case.

For a geometry with shorter cells (i.e. 1/2 of the length) and without a shift in the
position of cells, the only significant difference is that the displacement in the x3-
direction for the larger cells is twice the displacement for the smaller cells (data not
showed). This is in accord with Hooke’s law, which tells us that the elongation of an
elastic bar under an applied load is a linear function of the length of the bar.

4 Discussion and Conclusion

Our results indicate that in the case of (i) directed tensile forces applied to plant cells
and tissues, (ii) tissue tension created by different values of turgor pressure in the
neighbouring cells, and/or (iii) the staggered distribution of cells in plant tissues, the
orientation of the microfibrils in the lower and upper parts of the cell walls plays a role
andmay be important for the expansion and development of plant tissues; see the italic
values in Tables 4, 5, 7, 8, 9 and 10. The orientation of the microfibrils in the upper
and lower parts of plant cell walls has a very small effect on the elongation of the cells,
but it influences their radial expansion. Also, the qualitative impact of the orientation
of microfibrils in the upper and lower parts of cell walls on the deformation of plant
tissues does not depend on the actual values for the tensile forces and turgor pressure,
and the increase in tensile traction or turgor pressure results only in the corresponding
increase in the maximal values for the displacements.

The staggered distribution of cells in a plant tissue induces a different tissue tension
than in the case of a tissue without a shift in the positions of neighbouring cells. Also,
the staggered distribution of cells allows for larger deformations and larger values of
the diagonal components of the strain tensor. This can be explained by the fact that
the upper and lower parts of the cell walls are not equilibrated by the upper and lower
parts from the neighbouring cells. The higher maximal values of the displacements in
the negative x1- and x2-directions for the geometries with the staggered distribution
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Table 11 The relative displacement (RD) is defined as the maximal deformed length in the x3-direction
divided by the initial length in the x3-direction

RD (BC1) parallel MF (BC1) no shift (BC1) 4 shifts (BC1) rotated MF (BC2) (BC3)

(C1) 1.06497 1.06396 1.06984 1.00456 1.00683 1.00816

(C2) 1.06452 1.06391 1.00462 1.00671 1.00823

(C3) 1.06234 1.06294 1.06680 1.00379 1.00672 1.00831

(C4) 1.06411 1.06320 1.00497 1.00696 1.00811

of cells, compared to the geometry without a shift in the positions of the neighbouring
cells, constitute a noticeable difference between three geometries considered here.
Also, for the geometry without a shift in the positions of neighbouring cells along the
x3-axis, we have a uniform deformation of the side walls, whereas in the two other
cases we observe nonuniform patterns in the displacement and larger values of the
displacement occur near the lower and upper parts of the cell walls. The ability of
larger and nonuniform deformations can be favourable for plants and may be one of
the explanations for the staggered distribution of cells in plant tissues.

The orientation of microfibrils in the side walls has a strong impact on the defor-
mation of the plant cell walls and tissues. If the microscopic structure of the side walls
is given by the layers of the microfibrils rotated through the thickness of the cell wall,
the maximal displacement in the x3-direction is reduced by a factor of 14 compared to
the case where the microfibrils are orthogonal to the x3-axis. The higher values for the
strain e33 in the case of rotated microfibrils, compared to the case where the microfib-
rils are orthogonal to the x3-axis, constitute a nonintuitive result; see Tables 4, 5 and 9
(the corresponding values are in bold italic). These large values for the strain e33 may
be important for some stress-related signalling processes, e.g. related to the reorien-
tation of microtubules (Hamant et al. 2008). Comparing Tables 4 and 7, we also see
that the presence of the tensile traction boundary condition causes the displacements
in the positive directions to increase by an order of magnitude.

We also obtain that the different pressures in neighbouring cells, which can be
observed during the growth process, influence the direction of the maximal displace-
ment; see Table 7 (here themaximal displacement in the x1-direction is due to pressure
distributions).

Using the fact that for most cases considered here (besides the case (BC1), (C4)
for the geometry where all four pairs of cells are shifted relative to each other) the
maximal values for the displacement in the positive x3-direction occur on the plane
x3 = x3,max, we can calculate the relative displacement (RD) in the x3-direction,
defined by themaximal deformed length in the x3-direction divided by the initial length
in the x3-direction. This quantity can be related to the measurements of the changes in
the length (extension or compression) of strips or cylinders of an outer or inner tissue,
respectively, due to the elimination of tissue tension by separating them from the plant
hypocotyl (Hejnowicz and Sievers 1995). In our numerical simulations, we used the
same tension at the boundary of the plant tissue as in the experiments. The relative
changes in the length obtained from our mathematical model range between 0.38
and 6.98%, see Table 11, and are in relatively good agreement with the experimental

123



The Impact of Microfibril Orientations on the Biomechanics... 2163

results ranging between 0.3 and 4.99%; see Table 1 in Hejnowicz and Sievers (1995).
The small relative changes in the length correspond to the case where no tensile
forces were applied and to the case where the microstructure of the side cell walls
was given by layers of rotated microfibrils. Notice that the comparison between the
results obtained from our mathematical model and the experimental results must be
taken with the caveat that the mathematical model is defined on the scale of a few
cells, whereas the experiments are performed on the tissue level. However the good
agreement between the model and experiments provides a basis for further analysis of
the mechanical properties of plant tissues using our multiscale mathematical model.
For a more accurate comparison to the tissue level experiments, our model can also
be generalized to the tissue level, which will be the subject of future research.

Also, in our model we assumed that the microfibrils on the sides of the cell walls
are arranged in fixed rings around the cells without considering possible sliding of the
microfibrils during the expansion. The effect of the sliding of the microfibrils on the
deformation of plant cells and tissues in combination with different arrangements of
microfibrils in the upper and lower parts of the cell walls will be analysed in future
studies. Moreover, we will consider the relation between the rotated macroscopic
elasticity tensor, considered here to define the macroscopic elastic properties of the
sidewalls comprisingmicrofibrils rotated across the thickness of the cell walls, and the
macroscopic elasticity tensor for a plywood-like microstructure obtained by applying
the locally periodic homogenization (Ptashnyk 2015).
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