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Abstract

Genetic sequence data on pathogens have great potential to inform inference of their trans-
mission dynamics ultimately leading to better disease control. Where genetic change and
disease transmission occur on comparable timescales additional information can be
inferred via the joint analysis of such genetic sequence data and epidemiological observa-
tions based on clinical symptoms and diagnostic tests. Although recently introduced
approaches represent substantial progress, for computational reasons they approximate
genuine joint inference of disease dynamics and genetic change in the pathogen popula-
tion, capturing partially the joint epidemiological-evolutionary dynamics. Improved methods
are needed to fully integrate such genetic data with epidemiological observations, for
achieving a more robust inference of the transmission tree and other key epidemiological
parameters such as latent periods. Here, building on current literature, a novel Bayesian
framework is proposed that infers simultaneously and explicitly the transmission tree and
unobserved transmitted pathogen sequences. Our framework facilitates the use of realistic
likelihood functions and enables systematic and genuine joint inference of the epidemiologi-
cal-evolutionary process from partially observed outbreaks. Using simulated data it is
shown that this approach is able to infer accurately joint epidemiological-evolutionary
dynamics, even when pathogen sequences and epidemiological data are incomplete, and
when sequences are available for only a fraction of exposures. These results also charac-
terise and quantify the value of incomplete and partial sequence data, which has important
implications for sampling design, and demonstrate the abilities of the introduced method to
identify multiple clusters within an outbreak. The framework is used to analyse an outbreak
of foot-and-mouth disease in the UK, enhancing current understanding of its transmission
dynamics and evolutionary process.

Author Summary

In the midst of increasingly available sequence data of pathogens, a key challenge is to bet-
ter integrate these data with traditional epidemiological data, with the proximate goal of
reliable prediction and the ultimate aim of effective management of disease outbreaks.
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Although substantial advances have been made for such an integration, and they have
improved our understandings of many disease dynamics which are not available other-
wise, current methods have relied on fast algorithms, rather than achieving a systematic
integration and accurate inference of the joint epidemiological-evolutionary process.
Building on methods in current literature, this paper describes a novel Bayesian approach
for systematically integrating these two streams of data. We propose a computationally
tractable Bayesian inferential algorithm which takes the full joint epidemiological-evolu-
tionary process into account. Using this algorithm, we study systematically the value of
genetic data, providing valuable insights into future sampling designs. The algorithm is
subsequently applied to real-world dataset describing the spread of animal foot-and-
mouth disease in the UK, demonstrating the importance of such a systematic integration
achieved with our methodology.

Introduction

Epidemiological data for infectious disease, defined here as clinical observation, diagnostic test
results and associated covariates such as location, only indirectly reflect underlying contact
structures, exposure times, and other aspects of disease dynamics. Developments in Bayesian
data-augmentation methodology for spatio-temporal processes over the last decade or so [1-4]
allow key epidemiological quantities, e.g. contact rates and latent periods, that are critical to
risk assessment and disease control, to be inferred from such data. These methods typically
employ stochastic integration techniques such as Markov Chain Monte Carlo (MCMC) to
infer the full history of the epidemic, including the transmission tree, from partial observations.
Unfortunately, epidemiological data available for an epidemic outbreak typically do not typi-
cally allow very precise inference of detailed aspects of disease transmission dynamics [5].
However, a parallel development is the increasing availability of genetic data on pathogens
collected, in particular, based on whole genome sequencing [6-8]. During an outbreak patho-
gen populations are subject to genetic change through mutation and selection. Genetic data on
pathogens, sampled from exposed hosts within an outbreak, therefore carry information on
relatedness of different infection events. When genetic change and disease transmission occur
on comparable time scales joint analysis of epidemiological and genetic data can lead to valu-
able insights concerning epidemic outbreaks. For example, it can help us to identify the trans-
mission network [9] which can be used to quantify superspreading events [10], to study the
evolutionary patterns of pathogens [11] and to design and evaluate of control measures [12].
Approaches that rely on reconstructing phylogenetic trees have been followed in several sce-
narios [13, 14]. A number of limitations of these approaches are highlighted in [15]. For exam-
ple, when the sampled sequences include donor-recipient pairs with respect to the infection
process, a situation commonly arising during the early stages of an epidemic, these approaches
may not capture adequately the direct ancestor-descendant relationship between them. This
paper presents novel methodology which advances the joint analysis of epidemiological and
genetic data, building on recent substantial progress of others [16-21]. These authors sought to
overcome the limitations noted above of using phylogenetic trees as a proxy for transmission
dynamics, developing approaches which explicitly construct transmission trees by combining
genetic and epidemiological data [16, 18-22]. These methods have proved to be very valuable
in unravelling transmission paths during an epidemic outbreak. However, they employ various
approximations/simplifications which either avoid explicit inference of the unobserved
sequences from pathogens Transmitted from donors to recipients upon infection (solid black
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Fig 1. A sequence of events in which individual i infects individuals j and then k (dashed arrows)
along with the sampling of sequences taken from these individuals. Solid circles represent the
sequences at respective time points. Among these events only the sampling times t7, t7, t; and the

i
corresponding sequence samples (coloured grey) are typically observed, while other unobserved quantities
are to be imputed (see later). Other events potentially occurring on the dotted lines are not shown. Note that
in our inference we do not demand that all exposures have an observed sequence. Also note that if individual
iis a primary infection, G4 ; is assumed to be a stochastic variant of the universal master sequence Gy, (see
Multiple and Single Primary Infection Model).

doi:10.1371/journal.pcbi.1004633.g001

circles in Fig 1) [16, 18-21] or use approximate Bayesian inference to account for these
sequences [22]. Thus they may not fully infer the entire epidemiological-evolutionary process
and may not utilise the most appropriate likelihood function (see section Complete-data Likeli-
hood). For example, [19] considers sequence combinations that exhibit the minimum amount
of mutation necessary to explain sub-trees of transmission connecting the observed pathogen
strains; [16, 20] consider a pseudo-likelihood computed for only observed sequences; and, as
opposed to a genuine joint approach, [17] considers a two-step inference procedure, whereby a
phylogeny is first constructed independently of the transmission network before conducting
inference of the transmission network. These approximate approaches greatly reduce the
computational challenges inherent in inferring the unobserved transmitted sequences, and
facilitate statistical inference, particularly when the transmission tree is of primary interest.
However, there is certainly scope for improving on their performance and better capturing the
joint epidemiological-evolutionary dynamics. For example, it is already recognised that recon-
struction of the transmission tree can be sensitive to the choice of prior for some epidemiologi-
cal parameters [16], suggesting that a more rigorous joint inference may yield improved
inference. In addition, the latent period of a disease may be overestimated by ignoring the
unobserved pathogen sequences transmitted upon infections [20]. Further research on the sys-
tematic integration of epidemiological and genetic data, in the context of inferring both the
transmission tree and the epidemiological-evolutionary process, is therefore warranted.

It is well-known, particularly within a Bayesian framework, that explicit imputation of
unobserved processes is a beneficial strategy for addressing such issues. This enables the use of
likelihood functions consistent with models that better represent the underlying processes e.g.
reducing bias when quantifying disease dynamics from epidemiological data [23-26]. In this
paper we therefore address the challenge of explicitly imputing transmitted sequences within
the framework of data-augmented Bayesian analysis whereby unobserved processes are treated
as supplementary unknown parameters. In the context of joint inference of epidemiological-
evolutionary processes, the unobserved data include not only standard aspects related to
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epidemiological data, such as exposure times, but also unobserved genetic sequences transmit-
ted during these events. Implementation of inference e.g. via MCMC, is accordingly more com-
putationally challenging than for epidemic data only, due to the complexity of the data-
augmented parameter space which comprises the model parameters and all potential transmis-
sion graphs and sequences consistent with the observed data.

Within the Bayesian framework the result of inference is described by the posterior distribu-
tion over data-augmented parameter space. MCMC algorithms draw correlated samples from
the posterior which are used to generate statistics of interest e.g. the marginal posterior distri-
bution of transmission trees. In this context Markov chains which produce highly correlated
samples are described as poorly mixing. Standard MCMC algorithms, such as the single-com-
ponent Metropolis-Hastings algorithm, make updates to a single model parameter at any time.
However, for the problem that we consider here, identifying well-designed proposal schemes
for jointly updating components is challenging, but necessary for obtaining a well-mixing Mar-
kov chain that can efficiently explore the joint posterior distribution of model parameters,
transmission graphs and transmitted pathogen sequences. Specifically, the challenge arises
when proposing updates to the source of a given infection. A naive algorithm may update the
source of infection leaving the corresponding transmitted sequence unchanged so that the
downstream pathogen sequences would still belong to the previous branch of the infection
tree. It is easy to see that this would lead to a very low acceptance probability for the proposed
change and inefficient exploration of the domain of transmission trees and sequences. A crucial
research challenge, and key aim of this paper is therefore, to devise a computationally tractable
algorithm for the joint proposal of unobserved sequences and the transmission tree to be
embeded within an MCMC algorithm.

We also consider the general case of epidemics with arbitrary numbers of clusters (where a
cluster is a set of infections arising from a single primary infection), of which the one-cluster
scenario considered in many practical applications (e.g. [19, 20]) is a special case. In contrast to
existing approaches [16, 18] to the multi-cluster scenario, we model explicitly the process of
generating sequences for background/primary infections (see Models and Methods). Note that,
when including multiple-cluster scenarios, a transmission tree, which is the term used routinely
in the literature where typically a single cluster is assumed [19, 20], should be referred to as a
transmission graph (or sometimes transmission forest). In summary the main outcomes
reported in the paper are as follows.

1. We devise a statistically sound and computationally tractable Bayesian framework that facil-
itates systermatic integration of epidemiological and genetic data. Specifically, we formulate
Bayesian tools for imputing unobserved data, particularly for the joint proposal of the trans-
mission graph and the sequences transmitted (at times of infection), facilitating a more
explicit representation and accurate recovery of the processes of epidemic transmission and
pathogen evolution, even when only data on a subset of the infected population are
available.

2. Having enabled systematic integration of epidemiological and evolutionary process, we
characterise and quantify systematically the importance of genetic data for the inference of
some important aspects of epidemic dynamics: the inference of the transmission graph, epi-
demiological parameters and the identification of clusters. Moreover we demonstrate that
genetic data may also facilitate model assessment using methods recently developed by the
authors [27].

3. We demonstrate the reliability of these novel methods using simulated data and their practi-
cal utility by analysing a foot-and-mouth outbreak in the UK.
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Models

Technical details of our methods are presented in the following order. First, the specific details
of the underlying epidemic process and a description of the representation of pathogen
sequences and their evolution are given in sections The Stochastic Epidemic Process and Sto-
chastic Process for Genetic Evolution respectively. Details of the primary infection model
required to allow imputation of multiple clusters are given in section Multiple and Single Pri-
mary Infection Model, and these details are combined in the Complete-data Likelihood. The
implementation of our novel inferential framework using partial observation of the processes
described by this model is outlined in the section A Systematic Bayesian Integration Frame-
work. In particular this section describes Bayesian data augmentation and the implementation
of joint sampling of unobserved sequences and the transmission graph.

The Stochastic Epidemic Process

We consider a broad class of spatio-temporal stochastic models exemplified by the SEIR epi-
demic model with susceptible (S), exposed (E), infectious (I) and removed (R) compartments.
Suppose that we have a spatially distributed population indexed by 1, 2, . . .. Denote by &s(#),
Ep(1), &i(t) and &x(t) the set of indices of individuals who are in class S, E, I and class R respec-
tively at time ¢ and let S(¢), E(f), I(t) and R(¢) be the respective numbers in these classes at time
t. An individual j € &g(f) becomes exposed via primary infection with stochastic rate o and
from an infection i € &,(t) with rate SK(d;j;x). The term K(d;;;x) characterises the dependence
of the infectious challenge from infective i to susceptible j as a function of distance between
them dj; and is known as the spatial kernel function[25, 27]. Here, we assume K(d;;x) = exp
(~xdj;;). Sources of infection are assumed to act independently of each other and combine so
that the overall probability of j becoming infected during [¢, t + dt) is given by

r(j.tdt) = o+ B Y K(dy)ldt + o(dt). (1)
)

ieé(t

We refer to o as the primary (background) transmission rate and f3 as the secondary transmis-
sion rate, and we note that the term & + B%; ¢ () K(dj;x) represents the total hazard of infec-
tion. Note that the magnitude of primary infection rate « is the determining factor for the
number of primary cases and hence the number of clusters in the transmission graph.

Following exposure, the random times spent by individuals in classes E and I are modelled
using an appropriate distribution such as a Gamma or a Weibull distribution [3, 4]. Specifi-
cally, we use a Gammal(a, b) parameterized by the shape a and scale b for the random time x
spent in class E with density function f;(x; a, b) = 57
class I we use a Weibull(y, n) parameterized by the shape y and scale 7 with density function
Filoesysm) = (nly) (x1y)™ e " All sojourn times are assumed independent of each other
given the model parameters. The various epidemic and ecological studies cited in the previous
section make use of models that conform to this general framework.

*~l¢7h. For the random time x spent in

X

Stochastic Process for Genetic Evolution

The evolutionary process of the pathogen is modelled at the level of nucleotide substitutions. It
is assumed that the nucleotide substitution process is independent over infected sites, condi-
tional on the transmission graph and infection times. We assume that there is a single dominat-
ing strain/lineage at each infectious site at any time point (e.g. [16, 19, 20]) so that, upon
exposure, the newly exposed individual is infected with this single dominant strain from the
source individual. The dominant strain at an infected site evolves according to the continuous-
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time evolutionary process described below. Nucleotide bases at different positions of a
sequence are assumed to evolve independently.

A nucleotide sequence is assembled from four nucleotide bases which can be classified into
purines (e.g., adenine (A) and guanine (G) in both DNA and RNA viruses) and pyrimidines
(i.e., thymine (T) and cytosine (C) in DNA viruses and uracil (U) and Cin RNA viruses). Sub-
stitution between bases in the same category is called transition (not to be confused with the
term transition in the context of a Markov process) and the substitution between bases from
different categories is called transversion. Generally speaking, transversion occurs less fre-
quently than transition. In keeping with common practice we model the mutation process by a
continuous-time Markov process. Specifically we adopt the two-parameter Kimura model [28]
(see also S1 Text :A Markov Process to Model the Evolutionary Process) which allows for differ-
ent rates of transition and transversion. Taking RNA viruses as an example, we let wy = {4, C,
G, U} be the set of nucleotide bases. Under the Kimura model, a nucleotide base x € wy mutates
to a nucleotide base y € wy within an interval of arbitrary length At with probability

P, . (7lx,At) = 0.25 + 0.25¢ "= + 0.5¢ 2 TN - for x = y, (2a)

P;Ll,uz (y|x5 At)
{ 0.25 + 0.25¢#41 — (0.5e 2mHm)  for x # y specifying a transition,
= (2b)
0.25 — 0.25¢ #241, for x # y specifying a transversion,

where y; and y, are the rates of transition and transversion respectively. Note that At is arbi-
trary and does not have to be small for the equations above to hold. Moreover, this process is
quite general and not restricted to modelling only RNA virus mutations.

Multiple and Single Primary Infection Model

The assumption of having only one single primary infection during an outbreak has been
shown to be applicable in many scenarios [19, 20]. This assumption has been more recently
relaxed to allow for multiple initial infections - for example, [18] uses an ad hoc algorithm to
detect genetic outliers and hence the imported cases, and [16] uses a sound post-processing
algorithm to identify imported cases. To include multiple primary infections explicitly into our
framework, we model the distribution of pathogen sequences from which the primary cases are
drawn so that primary and secondary infections can be included and distinguished using the
Bayesian computational procedures presented later.

Background/primary sequences (i.e. actual sequences passed to primary cases which initiated
the clusters) are stochastic variants of a population characterised by a universal master
sequence, Gy, with each nucleotide base of the background/primary sequences sequence having
a probability p (i.e. variation parameter) of differing from the base at the corresponding site in
Gy in which case the base is drawn uniformly from the three possible alternatives. For exam-
ple, if the j position of the universal master sequence Gy is base A, the corresponding base
passed to the background/primary sequence has probability £ of taking each of the values in the
set wx\A = {C, G, U} and has a probability 1 - p of being A. The completely drawn background/
primary sequence may then evolve in time along the transmission in the initiated cluster. Also,
deviations from G, are assumed to be independent over sites. The universal master sequence
(Gp), the background/primary sequences that initiated clusters and the variation parameter
(p) are all to be imputed (see later).

We note that, the background/primary sequences are largely constrained by the sampled
sequences — an assumption made implicitly in [18] where genetic outliers are classified as
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imported cases. The universal master sequence Gy, and the variation parameter p are consid-
ered as nuisance parameters, accommodating other scenarios concerning the process generat-
ing the background/primary sequences. For example, when two background/primary
sequences that initiate two different clusters are actually derived from two distinct master
sequences, the variation parameter p would be estimated to be large under the constraint of
having only one master sequence. One may, of course, consider the two master sequences
explicitly in the model. Nevertheless, we stress that the primary goal of having a primary infec-
tion model is to include more explicitly the primary sequences into our framework.

This multiple-cluster framework can be easily simplified to a single-cluster scenario consid-
ered in many practical problems (e.g. [19, 20]) by assuming that the initial exposure is drawn
uniformly from all possible sites, that the sequence of the (initial) infecting strain drawn uni-
formly from all possible sequences, and that all subsequent exposures arise through secondary
infection. Note that, in this case we are not required to represent explicitly the master sequence
and the process generating the background/primary sequences.

Complete-Data Likelihood

As the inferential procedures that we propose make extensive use of data augmentation we first
discuss the formulation of a complete-data likelihood for the integrated epidemic/genetic
model, bearing in mind that some of the quantities required to calculate the likelihood will be
observed directly while others will be imputed.

Consider a population of N sites and assume that pathogen sequences comprise # bases.
Suppose that we observe the epidemic between time t = 0 and t = t,,,,,, during which period the
precise times and locations of all transitions between compartments are observed. Moreover,
assume that for any exposure, the source of infection is also recorded, this being either primary
infection or infection by a specific infectious host. Let y5 denote the set of individuals remain-
ing in class S at t,,,,, and let yr C y; C yr denote the sets of individuals who have entered class
E, class I and class R by t,,,,, respectively. Also,let E= (..., Ej, .. .) denote the exposure times
forjeyg,I=(.., I, ...) denote the times of becoming infectious for j € yyand R= (.. ., R;
...) denote the times of recovery or removal for j € . The cumulative distribution functions
corresponding to the sojourn times in class E and class I are denoted by Fr and F; respectively.
Note that we use the term exposure time to denote the time of any transition from S to E, pre-
ferring not to use infection time in order to avoid potential confusion with times of transition
fromEtoL

Furthermore, to formulate the model it is necessary to allow recording of the sequences
characterising the dominant pathogen strain at each exposed site j € yy at potentially multiple
times during the epidemic. Therefore, let G;= (G, . . ., G, ;) denote m; sequences that char-
acterise the dominant strain at site j € y at the corresponding (increasing) sequencing times t ;
=(tjp - o tm, 7)- Note that t,; includes the time of exposure for site j, ¢, ; = E; so that G, ; charac-
terises the strain transmitted to j. Also represented in t.; are any times at which j passes infec-
tion to a susceptible host, so that strains transmitted from j are captured in G.;. Finally ¢; also
includes the observed sampling time t; at which the dominant strain is sequenced at site j. We
denoteby G= (G, ..., G ..
graph is specified by a vector y which records the source of infection y; for each individual j €
X Some key notation is summarised in Table 1.

A sequence of events in which individual i infects individuals j and then k along with the
sampling of sequences taken from these individuals is shown in Fig 1 to clarify the notation
above. In practice, the observed data will only record the sampling times #;, £, f; and the corre-

.) the complete set of nucleotide data formed. The transmission

sponding sequence samples (coloured grey) with all other quantities needing to be imputed.
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Table 1. Key notation used in Models.

Notation Description
ti=(ty ... tm, ) The vector that contains m; relevant sequencing times on exposed site j € ye.
G;=(G1j, ..., Gm,;) The vector that contains corresponding sequences at times in the vector t,.
t The observed sampling time in the vector t,.
G ; The nucleotide base at k™ position in the sequence G; J
G and G, The master sequence and its k"-position nucleotide base.
(17 The source of infection for exposed site .
wy =1{A, C, G, U} The set of nucleotide bases.
wy={i € xlli<ty, i The set of candidates for a new source of infection for individual j with the current
# source of infection ;.

doi:10.1371/journal.pcbi.1004633.t001

We will also consider the more general sampling situation where some exposures may never be
sampled so that no sequence is recorded for them.

In the general multiple-cluster scenario, with complete data z = (E, I, R, G, y) and model
parameters 0 = (o, §, a, b, ¥, 11, &, 1,42, p), we can express the likelihood as

L(6;z) = HP(]', lﬁ]) X exp{_qj(Ej)} X Hexp{_qj(tmax)}

jexg! j€xs
XH](}E(I] - Ej; a, b) X Hﬁ(Rj - Ij; 7 ]7)
j€xr J€xR (3)
XH{l_FE(tmux_Ej;a7b)}x H{I_Fl(tmax_ljv’y?n)}
j€xB\ JEANR
XHg(GQ,ja Tt ij,jlt-ja lpj’ Gl.j) X Hh(Glgth)
JEIE JE1E

Here ;' denotes yj with the earliest exposure (which must be a primary infection) excluded.
The contribution to the likelihood arising from the infection of j by the particular source y; is
given by

o, if individual j is a primary case,

J BK(d,;;x), if ¥; €y at time E,.

We define

90 = [ Yot Y BR(dyK)a, (5)

i€y(t)

so that the terms exp{~g;(E;)} and exp{~g;(t,u..)} give the contribution to the likelihood arising
from the survival of each exposed individual until its respective exposure time or, in the case of
non-exposed individuals, until ¢,,,,. The second and third lines in Eq 3 represent the contribu-
tion to the likelihood of the sojourn times in class E and I respectively.

Terms in the last line in Eq 3 carry the contribution to the complete-data likelihood of the
sequence data. The term

n mj—l

8(Gyyro o G, It ¥, Gyy) = P, (G |Gy At =t — 1) (6)

i=1 k=1

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004633 November 23,2015 8/27
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gives the probability that, conditional on the infecting strain (i.e., G, ;) and the sampling times,
a given sequence of mutations (to be inferred) occurs in the exposed individual j. The term p,, |
42(+) is defined in Equation 2 (where G}, ; denotes the nucleotide base at position i of sequence k
on individual j).

The expression k(G j|y;) represents the contribution to the likelihood arising from the
infecting strain, and is given by

1.
(g) "(1—p)"™", if individual j is a primary case,
h(Gl,jNJj) =

L, it ¥, €,

(7)

where p (the variation parameter) is the probability that a base of G, ; is different from the base
at the corresponding position of the given master sequence Gy, and [; is the total number of dif-
fering bases. The term { reflects the assumption that a base is randomly chosen from a uniform
distribution on the set w,\ G}, where G/, is the nucleotide base on i” position of the master
sequence.

The likelihood for the single-cluster scenario is obtained simply by discarding the factor

ey, h(Gl,jo)-

A Systematic Bayesian Integration Framework

It is now standard practice to conduct Bayesian analyses of partially observed epidemics using
the process of data augmentation supported by computational techniques such as Markov
chain Monte Carlo methods [1, 3, 25, 29]. Given observed partial data y, such as times of symp-
tom onset or culling times, these approaches involve sampling from the joint posterior distri-
bution 71(6, z|y) < L(6;z)7(0), where z represents the complete data and 7(6) represents the
prior distribution of model quantities, such that the complete z is reconstructed, or ‘imputed’.
In our application, z involves both partially observed epidemic and sequence data.

As discussed in Introduction, a crucial research challenge for the joint inference of epidemic
and molecular evolution processes is to devise a statistically sound, and computationally effi-
cient algorithm for the joint imputation of the unobserved sequences, the transmission graph y
and the unobserved infection times E. In this section we describe how the unobserved y and
the unobserved sequences in G may be updated along with the unobserved exposure times E,
this being the key challenge in devising a suitable algorithm. The analysis takes about 2 to 17
hours to run on a single-core computer, depending on the amount of genomic data used (see
details in S1 Text :Computing Time and Other Benchmarks). Details of more standard elements
of the MCMC algorithm are also described in S1 Text :Supplementary Details of the MCMC
Algorithm. Beside using extensive simulations, our methods have also been tested and validated
by mathematical arguments and specifically-designed computer experiments (for details see S1
Text :Validation of the Methodology).

Sampling from the posterior: and overview of the MCMC algorithm. Given the com-
plexity of the model and data structure (and hence of the notation) being considered in this
paper, we first give an overview of the key elements of the algorithm before presenting their
precise mathematical descriptions. Part I of the algorithm allows us to sample jointly the expo-
sure time and the corresponding sequences transmitted from the donor to the recipient (with-
out changing the source of infection). The basic idea is to propose a new sequence somewhere
between two “known” sequences at either side of a newly proposed exposure time, where a
“known” sequence can either be an observed or imputed sequence. The source of infection is
sampled in Part II of the algorithm, jointly with the exposure time and the transmitted
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sequence — a new source of infection for an individual j is randomly chosen among all infec-
tious sites according to the infectious challenges presented to j; conditioning on the sampled
new source of infection, a new exposure time and transmitted sequence are proposed in a simi-
lar way to Part I. By sequentially applying this algorithm to all exposures, the complete set of
transmitted sequence in G, the transmission graph y and the exposure times E are updated. To
further facilitate reading of the current and following sections some key notation is summa-
rised in Table 1.

Part I: Joint sampling of the exposure time E and the unobserved sequences in G.
Assuming for now that the source of infection y; is unchanged, and given the current exposure
time E; for individual j and the corresponding sequence G, ;, we first propose a new exposure
time EJ’ using a standard approach (see S1 Text :Supplementary Details of the MCMC Algorithm

for details). Here we describe in detail how a suitable candidate for the corresponding sequence
G',,j can be simultaneously proposed.

The key idea is to propose a new sequence at EJ/ which has plausible proximity to a nearest
past sequence Gy, and a nearest future sequence Gg relative to E}/ Throughout past and future are
defined with respect to the direction of AE; = EJ’ — E,. Therefore, if EJ’ precedes E; then G, cor-
responds to a later (absolute) time than Gg. We choose G, and G¢ by taking account of the

sequences both from individual j and the source of infection y;, to which no change is proposed
in this operation. Denoting ¢, and t; as the sequencing times for G, and Gy respectively, we

have
t, = min{t € t,jUt,l,,j|sgn(t—E]/.) # sgn (AE,)} (8)
E)|
and
tp=min{t €t;U t_l/,j| sgn (t — EJ’) = sgn (AE)}, (9)

[t—E;|
i

where sgn is the signum function (see S1 Text).Gp, (or Gg) is taken to be the corresponding
sequence on individual j whenever £, (or ) is represented in both ¢, and Ly, This is illustrated
in Fig 2 where a new exposure time EJ’ for individual j from Fig 1 is proposed. Here ¢, and ¢ are
taken to be the current exposure time E;j and t3 ; respectively. Then, by definition, the corre-
sponding sequences at ¢, and tfare G, = Gy ;and G¢ = Gs ; respectively. Note that G, ;and t, ;
are also simultaneously updated.

Given the nucleotide base G and G at the k™ position and A tp = |tg— tp|, by conditioning
on at most one change occurring at each position in the sequence during the period A t,, and
assuming a linear relationship between the probability of change and the time duration, we have

/

Gk, with probability P, = |jA;p|,
Gk = e (10)

Lj

GL, with probability 1 — P;.

As Aty is generally small, we allow only one change during the time interval for a particular
nucleotide base, which is not entirely consistent with the assumption of a continuous-time Mar-
kov process. In order to explore thoroughly the domain of G, G is also updated independently
of the exposure times (see S1 Text :Supplementary Details of the MCMC Algorithm).

It is noted that f, and G,, are always well-defined as the corresponding set in Eq 8 is always
non-empty and contains E;. On the other hand #; and G¢ may be undefined as the
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Fig 2. lllustration of the selection t, (and the corresponding past sequence G,) and t; (and the
corresponding past sequence Gg) (see also main text).

doi:10.1371/journal.pchi.1004633.g002

corresponding set in Eq 9 can be empty. If G¢is not well-defined, we propose G, ; according to
the mechanism defined in Equation 2 such that, for each k independently, a move from G’; to

G/llfj = y is proposed with probability

P(GY = y|GY, At = ‘Eji —t ). (11)

) = Py (G = yIGE, At = ‘EJ —t,

When y; ¢ y; (i.e., j is a primary infection), and when G, ; is not available, the newly pro-
posed sequence is not constrained to match any other sequence. In this situation the proposal
distribution simply reflects the assumptions regarding the background sequence. Specifically,
G’l’fj has a probability 1 - p of matching the corresponding site G, in the master sequence Gy,
Otherwise the base is randomly drawn from the set @, \G%,.

Lastly, the proposed update of the current data z to 2’ is accepted with a M-H acceptance
probability (see S1 Text Supplementary Details of the MCMC Algorithm). By sequentially
applying this algorithm to all exposures j € x5, E and G can be jointly updated.

Part II: Joint sampling of the transmission graph vy, the exposure time E and the unob-
served sequences in G. Denote t,, as the upper limit of EJ’ (see S1 Text :Supplementary Details
of the MCMC Algorithm) and w,, = {i € y|I; < t,,, i # y;} as the set of candidates for a new

source of infection lﬁ]/ We propose a new infecting source i € w,, to be zp]/ with probability

s; o BK(dy;xc). (12)

Note that, for the multiple-cluster scenario, the primary infection can be accommodated by
adding a permanent infectious source presenting an additional challenge of strength « to indi-

vidual j. Having proposed lp]'., E]' can subsequently be proposed (see S1 Text :Supplementary
Details of the MCMC Algorithm) with consequent proposed changes to t_']. and t_’l//,.
j
The proposal of the new sequence G, ; differs from last section as E; and G, ; become irrele-

vant when the source of infection also changes. In the case of a new source t//J, € y; we define

_— ‘rtljil/i‘{tet.w;|t<Ej}, (13)

p
E,
J

where t./w, indicates the updated sequencing times on x//; (which is simultaneously updated after
j
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the updates of E; and y;) and then we can identify the respective sequence Gy, Also, we define

t.=min{t et Uf, |t >E}, 14
¢ Hﬂ{ i ~wj| 8 (14)

where t_']. indicates the updated sequencing times on j. Note that ¢ > t,, always holds in the defi-
nitions in this case. Ggis taken to be the corresponding sequence on individual j whenever t¢is
inboth 7, and t_w;. G, is then sampled according to Eq 10. Similarly, G, ; is sampled according

to Eq 11 when Ggis not well-defined.

In the case of x//]/gé %> we let G, = G, ;and sample G/L]. according to Eq 11; if G, ; is not avail-
able, G'l’:j is drawn from the distribution of the background sequences described in last section.
Once the new source, sequence and exposure time are proposed, the proposed update from z
to Z’ is accepted with a M-H acceptance probability (see S1 Text :Supplementary Details of the

MCMC Algorithm). Similar to the last section, updates are sequentially applied to all exposures
j € xEso that y and E and G can be jointly updated.

Results
Simulation Studies

Valuation of genetic data. In this section we perform inference of transmission dynamics
based on epidemics simulated under conditions that reflect real-world scenarios, with the pri-
mary aim of assessing the performance of our inference framework in a range of circumstances.
We also characterise and quantify systematically the importance of genetic data for inference
of a few important aspects of epidemic dynamics: the transmission graph, epidemiological
parameters and the assignment of infections to the clusters. Moreover we demonstrate that
genetic data may also facilitate model assessment using methods recently developed by the
authors [27].

Specifically, we investigate the effect of having partial genetic data in two different ways that
bring insights for the design of future studies:

1. Similar to [16], we investigate the effect of sub-sampling of exposures which allows that
sequence samples may be available for only a subset of exposures.

2. Motivated by economic and computational (time) considerations, we investigate the effect
of partial genome sequencing wherebya reduced number of bases are recorded in the
sequences collected.

Note that as the transmitted sequences are imputed in our algorithm, unsampled exposures
(i.e. infected hosts without observed sequence samples) can be naturally accommodated and
their effect can be therefore studied.

In studying the effect of sub-sampling of exposures, we consider scenarios where a sequence
sample and the corresponding sampling time may have a fixed exclusion probability from the
observed data. To facilitate comparison, any scenario with a higher sampling percentage
includes observed samples from all scenarios with lower sampling percentages. Also note that
when no genetic data are available (i.e., 0% of the exposures are sampled) only the epidemic
model described in section Model and Methods is fitted.

Simulated epidemics with multiple clusters. To test our algorithm we first apply it to
analyse spatio-temporal, multiple-cluster epidemics simulated in a population of size N = 150
(comparable to those found in practical applications [16, 18, 20]). Their locations are generated
independently from a uniform distribution over a square region, between times t = 0 and t =
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tmax = 60 (days). We choose model parameters for simulated scenarios using values arising
from practical considerations [12, 19, 20, 27]. We assume that the epidemic begins at time 0
and evolves according to Eq (1). We initially set & = 0.0004, 3 = 8.0, K(djj, k) = exp(-0.02d;),
and assume that the sojourn times in classes E and I follow Gamma(10, 0.5) and Weibull(2, 2)
distributions respectively. Pathogen sequences of length #n = 8000 are transmitted upon infec-
tion and evolve according to Equation (2) with y; = 0.002 (bases per day) and g, = 0.0005
(bases per day). Each base of the master sequence Gy, is drawn uniformly from the set wy = {A,
C, G, U} and we let p = 0.01. We also perform simulations with a higher primary transmission
rate (with a correspondingly larger expected number of clusters) and using higher mutation
rates. For this second scenario, we have o = 0.002, 3 = 8.0, y; = 0.003, y, = 0.001 with other
model parameters the same as those used above.

Exemplar simulations with these two sets of parameters give rise to a 3-cluster epidemic
(147 out of 150 farms are infected) and a 6-cluster epidemic (all 150 farms are infected) respec-
tively. The observations y consist only of the observed sequences sampled from exposed indi-
viduals and the corresponding known sampling times, a bounded range of the times and the
precise locations of transitions from E to I (see also S1 Text :Supplementary Details of the
MCMC Algorithm), and the precise times and locations of transitions from I to R that occur
during the observation period.

We demonstrate the feasibility of imputing the distribution of background sequences and
hence allow inference of multiple-cluster transmission graphs. Specifically, we impute the mas-
ter sequence Gy (see S1 Text :Supplementary Details of the MCMC Algorithm) and the model
parameter p along with the imputations of other model parameters and unobserved data.

Estimating the transmission graph and other epidemiological-evolutionary dynamics.
The (overall) coverage rate of an imputed transmission graph is defined as the proportion of
infections for which the correct source is identified in the network. The posterior distribution
of the coverage rate is therefore a useful indicator of how well the imputed networks match the
true network. From Fig 3 we first notice that in the case with full sampling the transmission
graph is typically recovered with near-complete accuracy. It is clear that the mean of the poste-
rior distribution of the coverage rate increases with the proportion of exposed individuals
being sampled.

Note that we have considered scenarios with relatively rich epidemiological data. In particu-
lar, we have considered data scenarios where the times of becoming infectious are known
within a range or window and where the recovery times are observed (see also S1 Text :Supple-
mentary Details of the MCMC Algorithm). In practice, particularly for animal disease out-
breaks, they may be typically inferred from symptoms onset data and culling times [12, 20].
Although in the scenarios considered here the transmission graph may still be estimated with
certain accuracy without genetic data, we observe a significantly larger variance in the absence
of genetic data, and the added accuracy (both in terms of mean and variance) gained from
genetic information is clear. Note that our estimation of the benefit of genetic data is likely to
be conservative; in scenarios where the epidemiological data is less rich the value of genetic
information is likely to be even greater that than that shown in this paper.

Figs 4 and 5 show the posterior distributions of the model parameters corresponding to
three- and 6-cluster epidemics respectively. Figs 4(a) and 5(a) show that in general the credible
intervals of the epidemiological parameters become narrower as more genetic data become
available. This trend appears to be most prominent for § and &, which is not surprising given
their roles in determining the transmission graph and the fact that, as shown in Fig 3, the trans-
mission graph is more accurately estimated when genetic data are more readily available. Figs 4
(b) and 5(b) show similar but much less prominent trends for the genetic model parameters.
Note that, as the times of transitions from E to I are known within a bounded range (see also
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Fig 3. Posterior distributions of the overall coverage rate for the two multiple-cluster epidemics. (a)
3-cluster. (b) 6-cluster.

doi:10.1371/journal.pcbi.1004633.9g003

S1 Text :Supplementary Details of the MCMC Algorithm), we do not observe significant differ-
ences among the scenarios for parameters y and 7. When the proportion of sampling further
reduces, the estimates of model parameters, especially for the mutation rates and model param-
eters of latent period distributions, become less robust and we are not able to obtain reliable
estimates systematically (i.e. the Markov chains often do not converge).

Estimating the number of clusters. Table 2 shows that the number of clusters, N,, is well-
recovered by the posterior samples with a slight tendency towards over-estimation when the
proportion of sampling reduces. Note that, also, the variances of N, in the scenarios without
genetic data are significantly larger. We also present the posterior distributions of the imputed
master sequences in Table S4 to S6 in S1 Text.

Identifying the sources of clusters. The (overall) coverage rate gives a broad measure of
the recovery of the transmission graph. Here we examine the posterior distribution of the
source of infection of a particular exposure. Define the posterior individual coverage rate for a
particular infection to be the proportion under the posterior distribution of the transmission
graph with which the true source of infection is correctly identified. Fig 6 shows the posterior
individual coverage rate of all exposures at scenarios with different sampling percentages. We
note that the individual coverage rate in general increases with the sampling percentage. It is
also apparent that the primary infections (indicated by the symbol +) are frequently correctly
identified (evidenced by high individual coverage rates), particularly in the scenarios with
sequence samples.

Another natural question to ask is whether identification of the clusters of transmission,
which helps identification of risk factors and yields useful insights into devising effective con-
trol strategies [30, 31], can be achieved accurately by our analysis. In order to investigate this
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doi:10.1371/journal.pcbi.1004633.9004

we consider two measures that can be calculated over posterior samples of the transmission
graph and whose posterior expectations quantify the accuracy with which clusters arising from
a given primary infection are identified in the inference. These are as follows.

1.

For each infection we estimate the cluster identification rate, this being the proportion
under the posterior distribution of the transmission graph with which the true primary
infection leading to the given infection is correctly identified (i.e., the correct primary infec-
tion appears as the root of the sub-graph containing the given infection).

For each infection we estimate the (primary) ancestor identification rate, namely the propor-
tion under the posterior distribution of transmission graph with which the true primary

infection leading to the given infection appears on the path from the infection to the root of
the sub-graph.

Clearly, measure (1) will be lower than (2) since the conditions for ‘success’ are stronger. By esti-

mating these quantities, we are able to quantify the extent to which the link between primary
and secondary infections, and hence the clusters of transmission, is accurately identified in the
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Fig 5. Posterior distributions of the model parameters (with the 6-cluster epidemic). (a)
Epidemiological parameters. (b) Evolutionary model parameters.

doi:10.1371/journal.pcbi.1004633.9g005

inferential procedure. For a given transmission graph, we can identify the total number of infec-
tions that are linked to the correct primary infection according to the criteria used in the defini-
tion of (1) and (2) above to provide two alternative summary statistics of the graph that capture
the extent to which attribution to primary infection has been inferred in the graph.

Here we focus on the analysis of the 6-cluster epidemic. From Figs 7 and 8 we first notice
that the primary-to-secondary infection links, and hence the clusters, can be reasonably
inferred in the scenarios with sequence samples. Also, the difference between high and low
sampling levels is insignificant compared to the difference of individual coverage rates
observed in Fig 6(b) and to the difference of overall coverage rates observed in Fig 3. These

Table 2. Summaries of the posterior distribution of the number of cluster N.. The mean of number of
clusters is followed by the standard deviation in brackets.

Sampling% 100% 80% 50% 0%
N, (3-cluster) 3.04 (0.21) 3.08 (0.27) 3.13 (0.39) 3.73 (2.84)
N, (6-cluster) 6.0 (0.0) 6.50 (0.70) 6.91 (1.02) 6.75 (5.06)

doi:10.1371/journal.pcbi.1004633.1002
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Fig 6. Posterior individual coverage of sources of infection (see main text) in scenarios with sampling
100%, 80%, 50% and 0%. The size of bubbles represent the coverage rate for a particular case at the
corresponding position. The black + indicate the actual primary cases. (a) 3-cluster. (b) 6-cluster. Note that
epidemics are simulated within a continuous 2000x2000 square region.

doi:10.1371/journal.pcbi.1004633.9006

results indicate that the clusters may be accurately identified even in scenarios with a relatively
small percentage of sampling while the transmission graph may be less accurately inferred.
Note that in the scenario with no sequence data the cluster identification rate for cluster 5 is
low (see Fig 7), which indicates that the root of the cluster is not frequently identified as a pri-
mary infection (see also Fig 6(b)); nevertheless, the ancestors of the cases in this cluster can be
accurately estimated (see Fig 8).

Contribution of genetic data to model assessment. It is well known that the predicted
dynamics of spatio-temporal systems can be extremely sensitive to the choice of model, with
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Fig 7. Posterior cluster identification rate of the infections (see main text), within each actual cluster
of the 6-cluster epidemic, in scenarios with sampling 100%, 80%, 50% and 0%.

doi:10.1371/journal.pchi.1004633.g007

100 % 80 %
2000 —
.'.Q o S0 ..‘.Q o &o Ancestor
® 0.%" @ 0.%" Identification
1500 = o0 Q e© Q, Rate
() ' 4 ® &
(@] O 0.25
1000 —
0.50
) ) P )
o Y
04 a0 @% L o @% 075
\_ .\ . - .\ .
oe B oe e
0-0P & © oe%p e & o900
50 % 0% Cluster
2000 oo © 80 oo © 00 ;
3 o
a S e 9] - P )
¢ %", ¢ %", 2
1500 —
® & B 4
O o 3
1000 — 4
) ) 2 )
() () e 5
500 4 @, © o o 0,0, @ o 0
> cee b cee
: oy ‘ o’ il
o0 = T o eve S S oo

T T I T T T T T I T
0 500 1000 1500 20000 500 1000 1500 2000

Fig 8. Posterior (primary) ancestor identification rate of the infections (see main text), within each
actual cluster of the 6-cluster epidemic, in scenarios with sampling 100%, 80%, 50% and 0%.
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consequent implications for the design of control strategies on the epidemic outbreaks [12, 26].
For example, studies of foot-and-mouth disease have cited the importance of selecting between
a long-tailed spatial kernel against a localized spatial kernel [12, 32]. Other model-choice prob-
lems arise in relation to the parametric form of the distributions of incubation and infectious
periods in models of measles [33, 34], and in relation to diseases such as smallpox [3, 35]. We
show that increased availability of genetic data may increase the sensitivity over the mis-specifi-
cation of the model, based on a latent-residual test recently developed [27]. For details see also
S1 Text :Contribution Genetic Data to Model Assessment and Table S7 in S1 Text.

Testing the tolerance level of sub-sampling. In previous sections we have chosen the
model parameters for simulated scenarios using values arising from practical considerations
[12, 19, 20, 27]. In particular, the number of nucleotide bases and the mutation rates are chosen
to lie within the respective ranges of these quantities for common animal viruses [19, 20, 36].
In this section we explore how the values/assumptions of some key model parameters may
affect the level of sub-sampling for achieving a robust inference. As the duration and the rate of
mutation are influential for the joint inference considered in this paper, we focus on exploring
the effect of these two model quantities.

We consider pathogens with much smaller mutations rates (e.g. foot-and-mouth disease
virus) than those we have considered in previous sections. Notably, results show that the esti-
mations of the full set of model parameters and other dynamics are still feasible under the sce-
nario with only 10% of sub-sampling (see S2 to S6 Figs), in contrast to 50% in previous
sections. This could indicate that when mutation rates are higher, and transmitted sequences
on exposures may be more diverse, higher rates of sampling the exposures may be required for
robust inference. Also, we demonstrate that, in S7 and S8 Figs, a relatively small sub-sampling
level (e.g. 20%) may be tolerated if the model parameters of the latent period distribution are
assumed to be known.

Single-cluster epidemic and partial genome sequencing. We also consider the single-
cluster scenario considered in many practical applications (e.g. [19, 20]). We compare the case
of partial genome sequencing with the case where full genome sequencing is considered. Specifi-
cally we consider a (random) subset of the original set of 8000 sites of length n = 1000. The
transmission graph and the model parameters can be accurately estimated and the effect of sub-
sampling of exposures is similar to that observed in multiple-cluster scenarios (see S9 to S11
Figs). Comparison between S10 and S11 Figs demonstrates that a higher degree of sequencing
of the genome gives rise to narrower credible intervals for y; and y, compared to the case with
partial genome sequencing. It reveals that partial genome sequencing may be sufficient if the
transmission graph and epidemiological model parameters are of primary interest as the quality
of the estimation appears robust to reduction of the amount of sequencing of the genome.

To show that the increasing genetic data systematically provide extra information on the
transmission dynamics, extensive simulation studies that consider alternative scenarios are
conducted (see S1 Text : Further Simulated Epidemics, and Table S1 to S6 in S1 Text).

Case Study: Spread of Foot-and-Mouth Disease Virus in UK (Darlington,
Durham County, 2001)

In this section we apply our algorithm to a localized FMDV outbreak that occurred in the UK
(Darlington, Durham County) in 2001, in which 12 infected premises (indexed here by the let-
ters C-P), forming the so-called “Darlington cluster”, were observed and sampled to obtain one
virus sequence for each premises with sequence length n = 8176 [9, 20]. The geographical loca-
tions, the sampling times and removal (i.e. culling) times of the infected premises were
reported. Estimated onset dates of lesions were also provided by experts at the times of
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sampling. These data were previously analysed by [20] in one of the first important attempts,
using a pseudo-likelihood approach, to jointly consider epidemiological and genetic data in an
integrated framework. Note that, 3 additional premises were not included in previous analysis
as these premises were believed not to be epidemiologically linked to the rest of the premises in
the “Darlington cluster”. Here, for a more valid comparison, we analyse the same dataset using
our methodology.

As in the section Simulation Studies, where we have tested our methodology with a much
larger number of sites N = 150, we fit a spatial SEIR model to the data. In particular, we assume
that sojourn times in classes E and I follow Gamma(a, b) characterized by the shape a and scale
b and Exp(u,) characterized by the mean y, respectively. The spatial kernel is assumed to be an
exponentially-bounded kernel exp(—«d;;) (Refs [20]). The model is fitted to the data using the
methods as described in A Systematic Bayesian Integration Framework. A single-cluster sce-
nario has been assumed in [20]. To validate this assumption and demonstrate the generality of
our framework, we allow multiple clusters in our analysis.

We consider whole genome sequencing in this section. The estimated onset dates of lesions
provide important information on the starting dates of infectiousness for infected premises as
these two dates were suggested to be close to each other [37]. To incorporate uncertainty in the
estimated lesion onset dates, for each infected premises we allow the onset of infectiousness to
vary within a 14-day interval centered at the estimated lesion onset date provided. It is noted
that, given that the maximum of the estimated duration between lesion onset times and sampling
times is 7 days, 14 days may represent a conservative upper bound of the estimation uncertainty.

Validating previous findings. Fig 9 shows the transmission graphs with the highest and
second highest posterior probability. We first notice that, although we fit a multiple-cluster
model, our results validate the single-cluster assumption made by [20]. Similar to their analysis,
premises K was also identified as the index case of the transmission with high posterior proba-
bility. The longest sequence of transmissions (i.e., K — F — G — I — ]) coincides with their
estimate. The most probable infection sources for premises O and L are the same in both analy-
ses. The infecting sources of the remaining premises identified in [20] are not entirely consis-
tent with our estimates. For example, the sources for premises C and P were only identical to
ours in our second most probable transmission graph and the source for premises M was iden-
tified to be premises O instead of premises D. Nevertheless, the posterior distribution of the
transmission graph which we obtain is broadly consistent with the earlier analysis, also rein-
forcing the argument made in [20] that the pseudo-likelihood approach may be sufficiently
effective if the transmission network is of primary interest.

<a)®@ ®©(b)®@ @@

® O)
® ©® @\ ®

® @CD@ ® @@@

® ®

Fig 9. (a) The transmission graph with highest posterior probability, 0.89. (b) The transmission graph with the
second highest posterior probability, 0.08. The same set of labels of premises used in [20] are adopted to
facilitate comparison.

doi:10.1371/journal.pcbi.1004633.9009
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Fig 10. Posterior distributions of the mean latent period, denoted as ., and of the transition rate p;
and transversion rate u,. The grey dashed line and the dotted line indicate the median value of y,; obtained
from our analysis and from [20] respectively.

doi:10.1371/journal.pcbi.1004633.9010

Improvements of inference. The mutation rates make a significant contribution to the
likelihood and therefore to the joint inference of epidemic and evolutionary process. Applica-
tion of our method enables us to estimate the mutation rates (Fig 10) which were assumed to
be known in [20]. Note that we allow two types of mutation (transition and transversion) while
previous analyses assumed a single aggregate mutation rate [9, 20]. Nevertheless, the orders of
magnitude of our estimated mutation rates are consistent with the literature [9, 36]. It is noted
that these estimated mutation rates are slightly lower than the smallest values assumed in the
simulation study (see S12 Fig).

The typical value of the latent period (i.e., sojourn times in class E) of FMD suggested in the
literature is around 5 days (with 95% confidence interval [1, 12]) [37-39]. However, with the
same dataset, the median of the mean latent period was estimated in [20] to be much higher (24
days with 95% C.I. [17 days, 35 days]). These authors hypothesized that the over-estimation was
likely due to the scenario that some of the infected premises in the data were actually infected by
undetected infectious premises. Fig 10 shows the posterior distribution of the mean latent period
obtained using our method. It suggests a significantly lower median value of the mean latent
period, 14.2 days, compared with the previous estimate of 24 days. Although our estimated
mean latent period is much closer to the range suggested in the literature it is nevertheless dis-
tinctly high, supporting the notion that undetected infected premises may play a role [20].

Sensitivity analysis: Inclusion of unreported susceptibles. The number and locations of
susceptible premises in the region were not reported and therefore were not considered in the
earlier analysis [20]. In this section we investigate the effect of unreported susceptibles on esti-
mation by randomly assigning 300 susceptible premises in a rectangular region (253 km?)
encompassing the sampled premises. The number of susceptible farms we choose ensures that
the farm density in the area we consider is consistent with the crude farm density across Dur-
ham County [40, 41]. Note that the model dimension does not expand significantly after the
inclusion as we are not required to consider genetic sequences on susceptible sites. Results
show that most of the model parameters, except the primary and secondary transmission rates,
are robust to the inclusion of significant numbers of susceptible sites (Fig 11). In particular, we
notice that the mean latent period is only slightly affected. The posterior distribution of the
transmission graph is largely unaffected (not shown here). Posterior distributions for the full
set of model parameters are shown in S12 Fig.

Discussion

In response to the increasing availability of genetic data from pathogens in epidemic outbreaks
substantial progress has been made on the joint analysis of epidemiological and genetic data [9,
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Fig 11. Posterior distributions of the mean latent period y;,;, the primary transmission rate a and the
secondary transmission rate 8 obtained from fitting the model to 10 independently simulated
datasets (grey curves) obtained by adding 300 randomly assigned susceptible premises. The
posteriors corresponding to the case ignoring susceptibles are coloured in black. The values of primary
transmission rate a are represented on the logarithmic scale for ease of comparison.

doi:10.1371/journal.pcbi.1004633.g011

13-21]. However, existing approaches make use of approximations in modelling the epidemio-
logical-evolutionary process, which in particular avoid inferring the unobserved sequences
transmitted from donors to recipients upon infections or use approximate Bayesian inference
to account for these sequences. These approximate approaches greatly reduce the computa-
tional challenges inherent in inferring the unobserved transmitted sequences, but only partially
capture the joint epidemiological-evolutionary dynamics (Refs [23-26]) and may lead to less
robust and accurate inference - for instance, the reconstruction of the transmission tree can be
sensitive to priors chosen for some epidemiological parameters [16] and the latent period of a
disease may be overestimated [20]. There is therefore a need to extend current approaches and
develop a more systematic framework for the joint inference of these two coupled processes.
Such a framework is useful to better understand the epidemic dynamic and to systematically
characterise the importance of genetic data, which may yield useful insights for predicting,
managing and controlling the epidemics [12, 25, 26].

We show that it is feasible to systematically integrate epidemiological and genetic data by
devising an algorithm for jointly imputing the transmission graph and the transmitted
sequences in a statistically sound Bayesian framework. Our key innovation is the development
of an MCMC algorithm that allows for explicit representation and imputation of unobserved,
transmitted sequences which in turns facilitates the use of realistic likelihood functions in the
analysis. We have tested and validated this methodology via specifically-designed computer
experiments (for details see S1 Text :Validation of the Methodology) and demonstrated its util-
ity in a range of scenarios. We have tested our methods on epidemics with moderate size
(n~ 150) comparable to those used in practical applications [16, 18, 20], which should also suf-
fice for example, providing insights into decision support during the early stage of a major out-
break. Also, the run-time is greatly reduced when we consider partial genome sequencing, but
that this resulted in no material difference in the estimates of epidemiological parameters com-
pared to using full genome sequencing (see S1 Text :Computing Time and Other Benchmarks).

Our results also have important implications for future study design. Using our methods,
we characterise and quantify the effect of using a subset of genetic data from a number of
important perspectives. First, generally speaking, both the epidemiological and evolutionary
model parameters, including the transmission graph, are more accurately estimated when
more genetic data are available. In particular, we show that the spatial transmission mechanism
(i.e. the spatial kernel) can be estimated more precisely. The identification of the clusters of
transmission helps the identification of risk factors and yields useful insights into devising
effective control strategies [30, 31]. We show that, even if the transmission graph may not be
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well-identified at low levels of sub-sampling of sequences data, the clusters and the sites of pri-
mary infections can still be identified with good accuracy. We also show that the parameter val-
ues of mutation rates and latent period distributions can have some influence on the tolerance
level of sub-sampling for achieving robust inference. Moreover, our results suggest that partial
genome sequencing may be adequate if the epidemiological dynamic is of primary interest.
Lastly, we demonstrate that genetic data can also facilitate model assessment using methods
recently developed by the authors [27].

We show the practical usage of our framework by applying our methods to data on the
FMD outbreak in 2001 in the UK, demonstrating both agreement with and improvement over
previous findings. First, our results suggest a transmission graph broadly consistent with previ-
ous work [20], supporting the use of specific pseudo-systematic approaches [16, 20] when only
the transmission graph is of primary interest. Also, our results validate the one-cluster assump-
tion used in [20], which also demonstrates the flexibility of our (multiple-cluster) framework.
On the other hand, we show that more realistic estimates of the latent period can be obtained,
and mutation rates can also be estimated. This highlights the importance of explicitly taking
into account the transmitted sequences for constructing a more accurate and integrated repre-
sentation of the transmission dynamics, with the proximate goal of reliable prediction and the
ultimate aim of effective management of disease outbreaks.

Our framework can readily accommodate more complicated models and be applied more
generally, by relaxing a number of simplifying assumptions made in formulating the compo-
nent models that we use in this paper. For instance, similar to many practical applications in
the literature [16, 18, 20], we assume a dominant strain on an exposure at any time point. In
doing so, we have not considered the within-host dynamic of the pathogens. By considering a
single dominant strain, we assume that the transmitted strain in an infection event is a direct
descendant of the strain transmitted in a previous transmission event involving the same
donor. This assumption simplifies the structure of the tree that we need to consider (Ref [42])
and facilitates the design of the proposal distributions used for the joint updating of donor and
transmitted strain which is fundamental to our algorithm. However, a within-host diversity
model component can be included naturally, by at the same time specifying a distribution for
selecting a transmitted strain among the multiple strains in a host. Similarly the assumption of
having one master sequence G,; may be relaxed by treating p and G, as nuisance parameters
(see discussion in Models and Methods). For example, if suggested by empirical data or prior
knowledge, one may allow for multiple distinct master sequences for different specified ranges/
domains of time or space. We also note that the background/primary sequences are largely
constrained by the sampled sequences, and the principal goal of including a primary infection
model is to include more explicitly the primary sequences into our framework. Also, it is not
required to assume a primary infection model when considering a single-cluster scenario.

Nevertheless, we have successfully demonstrated in this paper the feasibility of integrating
systematically epidemiological and evolutionary processes using a methodology that allows
explicit inference of both. Moreover, application to a real world problem demonstrates not
only the practicality of this approach but also the added-value which it brings in terms of
extracting information from available data.

Supporting Information

S1 Text. Supplementary information. We present the following supplementary information in
S1 Text: 1) Validation of our methodology using computer experiments and a mathematical
argument; 2) Supplementary details of the MCMC algorithm; 3) Supplementary details of assess-
ing the contribution of genetic data to model assessment; 4) Further simulated epidemics; 5)
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Supplementary information on the evolutionary model and other supplementary information; 5)
Supplementary tables Table S1-S7.
(PDF)

S1 Fig. A computer experiment for validating the methodology. See also S1 Text. Compari-
sons between the posterior distributions of the coverage rates and of x obtained from fitting
two models, the full model (Scenario I) and the epidemic model (Scenario II), to the epidemic
data (no sampled sequences).

(TIFF)

S$2 Fig. Inference for epidemics with lower mutation rates. Posterior distributions of the
model parameters for the epidemic with lower mutation rates. Here we consider an epidemic
with mutation rates that are in keeping with the FMD scenario. In particular, we set 8 = 8.0, y;
=107% u, = 5 x 107> with other model parameters being set to the values used for simulating
the 3-cluster epidemic in the main text. In order to discern any resulting differences due to the
change of mutation rates and genetic data, we consider a particular simulation yielding the
same epidemic data as the 3-cluster epidemic. (a) Epidemiological parameters. (b) Evolution-
ary model parameters.

(TIFF)

S$3 Fig. Inference for epidemics with lower mutation rates. Posterior distributions of the
overall coverage rate for the epidemic with lower mutation rates. Notice that, at the low sam-
pling percentage (10%) the availability of genetic data may not increase significantly the cover-
age rates compared to the scenario without any samples.

(TIFF)

$4 Fig. Inference for epidemics with lower mutation rates. Posterior individual coverage of
the sources of infection for the epidemic with lower mutation rates in scenarios with sampling
100%, 50%, 10% and 0%. The symbol + indicates an actual primary case.

(TIFF)

S5 Fig. Inference for epidemics with lower mutation rates. Posterior cluster identification
rate of the infections (see definition in main text, within each actual cluster of the epidemic
with lower mutation rates, in scenarios with sampling 100%, 50%, 10% and 0%.

(TIFF)

S6 Fig. Inference for epidemics with lower mutation rates. Posterior (primary) ancestor
identification rate of the infections (see definition in main text), within each actual cluster of
the epidemic with lower mutation rates, in scenarios with sampling 100%, 50%, 10% and 0%.
(TIFF)

S7 Fig. Inference for epidemics with a known latent period distribution. Posterior distribu-
tions of model parameters and the coverage rate from fitting the 3-cluster epidemic data with

sampling proportion 20% (assuming the latent period distribution is known).
(TIFF)

S8 Fig. Inference for epidemics with a known latent period distribution. Posterior distribu-
tions of model parameters and the cover rate from fitting the 6-cluster epidemic data with sam-
pling proportion 20% (assuming the latent period distribution is known).

(TIFF)

S9 Fig. Inference for single-cluster epidemics. Posterior distributions of the overall coverage
rate (with the single-cluster epidemic). (a) # = 1000. (b) n = 8000. We assume a = 0.0004, 5 =
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10.0 and other parameters are the same as those used for simulating the 3-cluster epidemic i the
main text. We consider a particular simulation giving rise to a single-cluster epidemic.
(TIFF)

S10 Fig. Inference for single-cluster epidemic. Violin plots showing the posterior distribu-
tions of the model parameters (with the single-cluster epidemic and number of bases

n =1000). Dashed lines represent the actual values of the model parameters. (a) Epidemiologi-
cal parameters. (b) Evolutionary model parameters.

(TIFF)

S11 Fig. Inference for single-cluster epidemic. Posterior distributions of the model parame-
ters (with the single-cluster epidemic and number of bases # = 8000). Dashed lines represent
the actual values of the model parameters. (a) Epidemiological parameters. (b) Evolutionary
model parameters.

(TIFF)

$12 Fig. Inclusion of susceptible farms for 2001 FMD outbreak in UK. Posterior distribu-
tions of the full set of model parameters obtained from fitting the model to 10 independently
simulated datasets obtained by adding 300 randomly assigned susceptible premises to the 2001
FMD data (grey curves). The posteriors corresponding to the case when susceptibles are not
considered are coloured in black. Non-informative flat priors are used for model parameters.
Note that the posterior distributions of p appear to be almost the same as the prior (i.e., U(0,
1)). To facilitate comparison, the posteriors of log(p~") are presented and appear identical to an
Exp(1) ~ log(U(0, 1)™") represented by the red dotted line, which suggests that the data are not
sufficient for estimating p (see more discussion in S1 Text.

(TIFF)
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