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Abstract: In the study of cancer, omics technologies are supporting the transition from traditional
clinical approaches to precision medicine. Intra-tumoral heterogeneity (ITH) is detectable within a
single tumor in which cancer cell subpopulations with different genome features coexist in a patient
in different tumor areas or may evolve/differ over time. Colorectal carcinoma (CRC) is characterized
by heterogeneous features involving genomic, epigenomic, and transcriptomic alterations. The study
of ITH is a promising new frontier to lay the foundation towards successful CRC diagnosis and
treatment. Genome and transcriptome sequencing together with editing technologies are revolution-
izing biomedical research, representing the most promising tools for overcoming unmet clinical and
research challenges. Rapid advances in both bulk and single-cell next-generation sequencing (NGS)
are identifying primary and metastatic intratumoral genomic and transcriptional heterogeneity. They
provide critical insight in the origin and spatiotemporal evolution of genomic clones responsible
for early and late therapeutic resistance and relapse. Single-cell technologies can be used to define
subpopulations within a known cell type by searching for differential gene expression within the
cell population of interest and/or effectively isolating signal from rare cell populations that would
not be detectable by other methods. Each single-cell sequencing analysis is driven by clustering of
cells based on their differentially expressed genes. Genes that drive clustering can be used as unique
markers for a specific cell population. In this review we analyzed, starting from published data,
the possible achievement of a transition from clinical CRC research to precision medicine with an
emphasis on new single-cell based techniques; at the same time, we focused on all approaches and
issues related to this promising technology. This transition might enable noninvasive screening for
early diagnosis, individualized prediction of therapeutic response, and discovery of additional novel
drug targets.

Keywords: colorectal carcinoma; intratumor heterogeneity; single-cell next-generation sequencing;
precision medicine

1. Introduction

Genome and transcriptome sequencing and editing technologies, supplemented with
machine learning, are setting the stage for the transition from traditional to precision
medicine [1–8]. In cancer studies, we are observing a promising transition from research
on spatiotemporal tumor heterogeneity [9–11] to early-stage clinical trials [12–17].

As inter-tumor heterogeneity is characterized by variability in patients with the same
histologic type [18,19], this might influence clinical care in cancer by providing targeted
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therapies based on tumor genetic features. We can now monitor clonal dynamics during
treatment or identify clinical resistance during disease progression.

Intra-tumoral heterogeneity (ITH) is detectable: subpopulations of cancer cells differ
in genome features and tumor areas and/or may evolve/differentiate over time [20–22].
Thus, ITH represents a key determinant of treatment failure, drug resistance, and disease
recurrence [19].

Colorectal carcinoma (CRC) is a leading mortality cause worldwide [10,11] and is char-
acterized by heterogeneous genomic, epigenomic and transcriptomic alterations [23–29].
The heterogeneous nature of CRC may also be related to colorectal cancer stem cells
(CCSCs): a small population with stem-like behavior responsible for tumor progression,
recurrence, and resistance to therapy [16].

CRC treatment has been standardized based on clinicopathological and genetic fea-
tures (KRAS/NRAS/BRAF mutation and Microsatellite instability (MSI) status), as well
as based on tumor staging. Characterization of multiple samples from the same patient
proved to be a significant ITH indicator between different areas of the same tumor (spatial
heterogeneity) as well as comparing the primary tumor and a subsequent local or distant
recurrence (temporal heterogeneity) [18].

The ability of next-generation sequencing (NGS) both at whole genome and single-
cell levels to identify disease-associated variants and tumor features triggered a renewed
interest on the effectiveness of biomedical and oncology research [1,2,18,30]. Whole ge-
nomic and transcriptomic profiling only shows us the average cellular characteristics, thus
hiding critical aspects of tumor heterogeneity. Deep bulk sequencing can only capture 1%
of the cell population, excluding some types such as circulating tumor cells. Therefore,
single-cell techniques allow us to accurately explore cellular properties [31]. Despite recent
advances, single-cell next generation sequencing (scNGS) suffers from limited availabil-
ity of public data/databases and the lack of standardization of laboratory protocols and
computer analysis.

Although over the years conventional research has improved, as well as outcomes
in CRC patients through diagnosis standardization, staging, and multimodal treatment,
important critical and clinical issues remain unresolved [6–9,32].

Recent considerations of dynamic clonal evolution [33], spatiotemporal detection of
genomic clones, circulating tumor DNA (ctDNA), identification of ITH [34] and circulating
cell heterogeneity [35] allow delineation and improvement of therapeutic failure and
relapse [36]. Single-cell transcriptomics, CRISPR-Cas9, and their combination returned
exciting data on cell-to-cell drug-dependent variability [9,37,38]. Pioneering combinations
of scNGS, CRISPR-Cas, and Hi-C technologies raise high hopes for understanding the
linear and nonlinear interactions that control gene expression at single-cell resolution [39].

Based on a review of published data, we aimed at discussing the possible achievement
of a transition from CRC clinical research to precision medicine with a special emphasis on
new single-cell-based techniques, focusing on all approaches and issues related to these
technologies. This transition may provide feasible non-invasive screening procedures
for early diagnosis, individualized prediction of therapeutic response and discovery of
additional novel drug targets.

2. Innovative Methodologies Applied to Precision Medicine

Proper analysis and extensive use of the large amount of data generated from single
scNGS experiments are very challenging and require experienced personnel. A full un-
derstanding of the experimental and computational pathways starting from the wet lab to
the sophisticated computer analysis of data is needed. Attention must be given to quality
control measures for determining which individual cells to include for further examination,
data normalization methods, clustering, and visualization for dimensional reduction of
data into a two-dimensional graph.
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As far as the experimental design is involved, no less significant are the costs that vary
from EUR 1–2 to a few cents per cell. The price is highly dependent on the number of cells
sequenced, the desired sequencing depth, and the sequencing platform used.

Regardless of cell separation method and labeling of mRNA molecules, all approaches
rely on similar computational pipelines for transcriptional profiling. Some concepts are
applicable to the majority of single-cell sequencing platforms that use DNA barcodes as
an approach to link mRNA transcripts to a single-cell source. Single-cell technologies can
be used to define subpopulations within a known cell type by seeking differential gene
expression within the cell population of interest; at the same time, they can effectively
isolate signal from rare cell populations that would not be detectable by other methods.
Each individual cell analysis is driven by clustering of cells based on their differentially
expressed genes. The genes driving the clustering can be utilized as unique markers for a
specific cell population.

2.1. Generation of Single-Cell Expression Datasets

There are several high-throughput single-cell sequencing platforms on the market
at the moment: the most widely used and cost-effective are Fluidigm C1, DropSeq and
Chromium 10X [40,41]. These technologies can define the transcriptional profile from
hundreds to thousands of individual cells simultaneously. They all are based on labeling
mRNA molecules with DNA barcodes during reverse transcription and/or subsequent
steps, which allow for indexing of transcripts to their individual cells of origin [42–44].

The various cell capture methods have to consider several parameters that differ from
one method to the other and affect the final sequencing results. The main parameters are
the number of starting cells (which varies from about 1000 to 500,000), the method of cell
separation (cell capture, droplet-based, etc.) and the efficiency of cell capture [45].

The C1 system isolates single cells into individual reaction chambers in the Fluidigm
integrated fluidic circuit (IFC). The optically clear IFC enables the operator to automatically
stain captured cells and examine them by microscopy for viability, surface markers or
reporter genes. Cell lysing, reverse transcription, and cDNA amplification are performed
on the C1 Single-Cell Auto Prep IFC using a SMARTer Ultra Low RNA Kit for cDNA
synthesis [46–49] followed by a standard Illumina NGS library protocol.

Droplet-based single-cell gene expression approaches, including DropSeq and the
10X platform, use microfluidic chips to isolate single cells along with individual micro-
spheres embedded in oil droplets using a microfluidic so that each droplet contains a single
cell [50,51]. The microspheres are coated with DNA oligos that are composed of a poly(T)
tail at the 3′ end for capturing cellular mRNA, and at the 5′ end possess a cellular barcode
that is identical for each oligo coating a single bead and an individual unique molecular
identifier (UMI) barcode for high diversity [52–54]. The transcripts from each individual
cell captured and labeled by the DNA oligos attached to a bead are reverse transcribed and
amplified with PCR; subsequently, they are sequenced using a high-throughput platform
after breaking and pooling droplet contents.

2.2. Bioinformatics Approaches to Single-Cell Analysis

scRNA-seq data analysis poses several unique computational challenges that need
the adaptation of existing workflows, as well as the development and application of new
analytical strategies (Figure 1). Many analytical procedures rely on specialized algorithms
developed and made available to the international community by reference bioinformatics
laboratories [55]. Sequencing data from various methods are mostly produced using
standard NGS methodology and Illumina instrumentation. They are aligned to a reference
genome to annotate each transcript to its gene. Cell barcodes allow computational linkage
of each gene transcript to its cell of origin. The number of individual gene transcripts
expressed in each cell is counted using UMIs, allowing the assembly of digital gene
expression arrays (DGEs), which are tables of cell barcodes and gene counts.
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Figure 1. Brief outline of the state of the art of colorectal cancer management, issues to be addressed and potential solutions
proposed by recent technologies for exploring genome and transcriptome alterations by mass and single-cell sequencing.

Single-cell experiments can be considered as thousands of separate experiments, so
it is essential to apply the right quality control (QC) metrics to decide which individual
data sets are valid [56]. For example, in a droplet-based experiment the QC can effectively
determine, by applying a number of different parameters, which droplets are failed and
exclude these data from further analysis [57,58]. An important QC metric to evaluate is
the number of transcripts per cell, or the percentage of transcripts per cell that align with
the reference genome and establish a cutoff to identify outliers. These cutoffs must be
defined by the user for each experiment, for instance: cells with a few dozen transcripts
and/or with several thousand; otherwise, they can be automatically defined by a software
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as cells with a summary of transcripts greater than two SD from the mean value. Excessive
numbers of uniquely barcoded transcripts may result from duplicates (i.e., two or more
cells suspended in a drop), whereas a small number of transcripts is an indicator of poor
capture quality. Additional QC metrics related to the diversity of the tissue to be analyzed
must then be applied [59,60]. For example, in an experiment to study circulating tumor
cells, the number of tumor cells will be very low compared with normal blood cells and
transcript counts will need to be adjusted; in fact, normal and generally quiescent blood
cells have relatively low amounts of RNA compared with active tumor cells.

A common QC metric is the number of mitochondrial gene transcripts: excessive
numbers of mitochondrial transcripts indicate cellular stress. In normal tissues, cells with
excessive mitochondrial gene expression are not included in the analysis [61]. However,
this parameter is highly dependent on the tissue and the purpose of the investigation [62].
Mitochondrial mRNA percentages should be assessed in a tissue-dependent approach.

An important point in analyzing single-cell data is normalization to eliminate batch
effects if multiple sequencing runs are to be compared. These batch effects can be caused
by a non-avoidable number of technical variations given by different experimental sessions
(e.g., RNA isolation method, sequencing depth, etc.). In addition, for bulk RNA sequencing,
data normalization involves comparing multiple batches of biological material; however,
in sequencing individual cells that are not all the same type, normalization parameters are
required to maintain cell-to-cell variability. A common way to normalize sequencing data is
based on comparison with housekeeping genes [62,63]. Based on the characteristics of the
biological sample, a selected housekeeping gene is chosen for normalization. Assuming that
this gene is expressed at the same level in all cells, data are scaled to make the expression
level of the housekeeping gene equal in all cells.

The next analytic step is to use a clustering algorithm to determine which cells are
closely related. The most widely used is the principal component analysis (PCA) [60], which
uses a relatively simple linear dimensionality reduction algorithm; the latter can predict
the relatedness of cells in this case based solely on differential gene expression. Due to the
highly dimensional nature of scRNA-seq data, several reduction methods are required,
including nonlinear methods such as the t-Distributed stochastic neighbor embedding
(t-SNE) and the uniform manifold approximation and projection (UMAP) techniques. The
t-SNE is a common data visualization approach [64–66] that uses a machine learning
algorithm to reduce size and is suitable for embedding high-density data into a two- or
three-dimensional setting for visualization. For example, if cell diversity was found to
be well represented with some PCs, t-SNE will plot the cells on a two-dimensional graph
in a way that preserves the relationship between cells; as a consequence, cells that are
close on a multi-dimensional graph remain close together on a two-dimensional graph.
UMAP is a dimension reduction technique that can be used not only for visualization but
also for general nonlinear dimension reduction [67]. Sensitivity studies on these methods
determined that t-SNE gave the best overall performance with the highest accuracy. On
the other hand, UMAP showed the highest stability and moderate accuracy while well
retaining original cohesion and separation of cell populations [68].

3. Recent Results on Precision Medicine Applied to Colorectal Carcinoma

Intratumoral heterogeneity is a crucial factor in tumor biology, response to therapies
and patient survival [69,70]. Due to the need to characterize the phenotypes and interac-
tions of the tumoral cell subtypes, to date molecular profiling studies have adopted a bulk
approach by not identifying the signatures of distinct cell populations.

As single-cell sequencing technologies ensure a complete, unbiased analysis of cellu-
lar diversity within tumor masses, they can be used to explore the measurement somatic
mutation rates, the clonal evolution of cell tumor lineages, and gain insights into chemother-
apeutic drug response [71,72]. Whole genomic and transcriptomic profiling of a tumor
sample shows us only average measures of cellular characteristics, thus concealing critical
aspects of tumor heterogeneity.
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Currently, several studies on single cells genomics and transcriptomics analysis [6,73,74]
have increased existing molecular classifications of CRC by detecting new distinct subclones
within a single phenotype, previously identified through standard transcriptomics [31,75].

Dai et al. generated a molecular census of tumor tissue cell types of a single CRC
patient alongside with a clustering analysis to define gene expression at single-cell level. A
total of 2824 cells were identified and classified into five distinct cell clusters. Each cluster
was characterized by different cell markers: cluster 2 prevalently contained genes related
to the major histocompatibility complex, while the remaining 4 possessed cell markers
related to themselves. Gene Ontology term analysis demonstrates that cluster 1 genes
were responsible for biological processes including ATP synthesis, cellular respiration,
and energy derivation. Cluster 3 and 4 genes mainly supported cells by providing energy,
generating extracellular matrix. Cluster 2 and 5 genes highlighted immunity functions
including immune response, regulation of lymphocyte, leukocyte, and T-cell activation.
Although the results of Dai et al. were obtained by a single CRC patient, they help us
understand how different activated and quiescent, abnormal cellular subpopulations
contribute to the initiation, maintenance, and progression of CRC disease [75]. These data
could represent an interactive map of genetic interaction and might be used to identify
targets to develop new therapeutic options for CRC.

Li et al. performed an scRNA-seq analysis on 11 primary CRCs and matched normal
mucosa to their microenvironments. They developed a method for single-cell transcriptome
analysis defined reference component analysis (RCA) based on an algorithm that improves
clustering accuracy.

Seven major cell types both in normal mucosa and CRC were isolated as well as
epithelial cells, fibroblasts, endothelial cells, B cells, T cells, mast cells and myeloid cells. By
using RCA, nine epithelial clusters and seven epithelial cell subtypes in human normal
mucosa were isolated de novo. These reference data allow to identify a strong enrichment
of stem/TA-like cells. Two distinct types of cancer-associated fibroblasts (CAFs), and
epithelial–mesenchymal transition-related genes were found to be upregulated in the
tumoral CAF subpopulation. CRC defined as single type in bulk transcriptomics, might
be divided into subgroups with different survival probability rates by using single-cell
signatures [75].

A recent study characterized the individual cell response of CRC cell lines to genotoxic
5-fluorouracil (5FU)-induced DNA damage using a scRNA-seq approach. After 5FU treat-
ment, the apparently single population CRC cells assume three distinctive transcriptome
profiles, corresponding to diversified cell-fate responses: apoptosis, cell-cycle checkpoint,
and stress resistance. Based on the group-specific expression gene patterns mediating DNA
damage responses, it can be inferred how individual cells shape their transcriptome in
response to DNA damage involving recurrence and chemoresistance. This might represent
one of the most important challenges in current cancer treatment [76]. The identifica-
tion of cell-fate-specific transcriptome patterns in in vitro experiments should promote
future studies on human CRC to explore heterogeneous cancer cell responses to genotoxic
chemotherapy, such as fractional killing and chemoresistant tumor recurrence.

Metastasis is a complex biological process in which tumor cells move from the primary
organ site and spread to distant organs through blood circulation [77]. Various models of
metastasis have been proposed: late spread, early spread, and self-seeding. In the first one,
tumor cells evolve over an extended stage at the primary site and then acquire specific
mutations that allow them to spread. In contrast, in the second one, cancer cells spread
early, and thus primary and metastatic tumors evolve in parallel [78]. Finally, based on the
self-seeding hypothesis, tumor cells spread from the primary tumor establishing distant
metastatic sites and then bidirectionally return to the primary site to promote growth [79].

A general difficulty in understanding metastatic lineages depends on the large intra-
tumor heterogeneity at primary and metastatic sites. Leung et al. developed a highly
multiplexed single-cell DNA sequencing approach to dissect the clonal evolution during the
metastatic process. They studied two CRC patients with matching liver metastases. They
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observed monoclonal seeding in the first patient: a single clone acquired a large number of
mutations before migrating to the liver to establish the second tumor site. In the second
patient, they observed polyclonal seeding: two independent clones seeded metastases to
the liver after migrating from the primary tumor lineage at different time points. Single-cell
data also revealed a striking independent tumor lineage that did not metastasize, and early
progenitor clones with the “first hit” mutation in APC that subsequently gave rise to both the
primary and metastatic tumors. Data from this study revealed a late-dissemination model
of metastasis in both CRC patients and provided unprecedented insight into metastasis at
single-cell genomic resolution [80]. Actually, despite the small number of CRC patients
observed and the fact that only the liver metastatic site was examined, Leung’s study
represents a preliminary confirmation that late-dissemination models of metastasis can
occur in CRC but should not be contemplated as a common model for all CRC patients.

Tang et al. characterized the evolutionary pattern of metastatic CRC (mCRC) by
analyzing bulk and single-cell whole-exome sequencing (scWES) data of primary and
metastatic tumors from seven CRC patients. They proved that genomic profile could be bet-
ter explained by using scWES than through bulk sequencing. Rare mutations highlighted
by scWES were undetectable in bulk data. Several subclones have been identified in both
primary and metastatic tumor cells in MSI CRC patients. Although the individual cells
of each subclone share a substantial number of mutations, few subclone-specific single
nucleotide variants (SNVs) could characterize different cell clones with low mutation
frequencies in the entire population of tumor cells.

In MSS CRC patients, tumor cells were divided into two major cell populations from
primary and metastatic lesions, that shared most SNVs and involved genes associated
with CRC progression, such as TP53 and APC. Primary tumor cell populations were rich
in AXIN3 and RASGRF1 genes mutation, known to be associated with tumor prolifera-
tion and invasion. In addition, 24 non-synonymous SNVs specific to metastatic cells in
DNAH3, TBC1D4, CMYA5, MYO18A, PLEKHA7, and SLC19A3 genes have been identified,
validating their functions in cell migration capacity [81].

Another comparison of scWES versus bulk whole-exome sequencing (bulk WES) on
two CRC patients with tumor and adenomatous polyps, showed that both had mono-
clonal origin and shared partial mutations in the same signaling pathways; however, each
showed a specific spectrum of heterogeneous somatic mutations. Adenoma and cancer
further developed intratumor heterogeneity accumulating non-random somatic mutations
specifically in GPCR, PI3K-Akt and FGFR signaling pathways. New driver mutations were
identified that developed during the evolution of both adenoma and cancer: on one hand
OR1B1 (GPCR signaling pathway) was related to adenoma evolution; on the other hand,
LAMA1 (PI3K-Akt signaling pathway) and ADCY3 (FGFR signaling pathway) had a role
in CRC evolution. ScWES shows causality of mutations in certain pathways that would not
be detected by bulk tumor sequencing. Furthermore, it can potentially establish whether
specific mutations are mutually exclusive or occur sequentially in the same subclone of
cells [82].

To examine the genome, transcriptome, and methylome within CRC primary tumors
and metastases, Bian et al. used a single-cell triple homology sequencing (scTrio-seq) tech-
nique [83]. The scTrio-seq technique can assess somatic copy number alterations (SCNA),
as well as DNA methylation and transcriptome information simultaneously from the same
single cell [84]. The authors performed a multiregional sampling and generated scTrio-seq
profiles for 12 CRC patients with stage III or IV cancer. The majority of tumor cells from six
of the patients analyzed were assigned to the group with abnormal activation of WNT/β-
catenin and MYC signaling pathways, frequent somatic copy number alterations (SCNAs),
and no hypermutation. In the 10 patients with DNA methylation data were relatively
consistent within a single genetic line, single-cell SCNA profiling identified significant
focal SCNAs and likely target genes. Differences in methylation profiles between primary
and metastatic sites could be primarily due to differences in sub-lineage composition. No
results from de novo methylation or demethylation during metastasis were observed. As
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well as providing important information about the molecular alterations that occur during
CRC progression and metastasis, multicellular sequencing showed that DNA methylation
levels are consistent within lineages but can differ substantially between clones [83].

To summarize, shedding light on the main mechanisms behind the development of
metastasis based on the analysis of gene expression patterns at single-cell resolution should
lead to tailoring individualized cancer treatment.

To this end, the study of CRC heterogeneity through identification of tumor cells
subpopulations and analysis of their features by single-cell omics technologies is crucial
for the comprehension of the role of these cells and might lead to identify potential new
targets for clinical treatment.

Table 1 provides a summary of the most recent advances of the application of both single-
cell sequencing and editing technologies into precision medicine applied to CRC patients.

Application of omics technologies on other types of cancers is opening a way to verify
results also in diagnosis and treatment of other tumoral diseases, including CRC; this is the
case of breast cancer (BC) thoroughly studied through single-cell omics technologies. For
instance, Pinkney et al. adopted scRNA-seq to analyze the heterogeneity of lncRNA expres-
sion in vivo using Triple Negative BC (TNBC) xenografts; at the same time, they tried to
assess whether lncRNA expression is sufficient to define cellular subpopulations. These au-
thors observed that even if most lncRNAs are detectable at low levels in TNBC xenografts, a
subpopulation of cells could not be defined. They showed highly heterogeneous expression
patterns including global expression and subpopulation-specific expression; in addition, a
hybrid pattern of lncRNAs was expressed in several but not all subpopulations [85].

LncRNAs have been progressively identified as the main group of oncology targets
acting as drivers in cancer, and are also being studied as clinical biomarkers [86]. LncRNAs
link with biological molecules, as well as with DNA, mRNAs, miRNAs and proteins, mod-
ulating epigenetic, transcriptional, post-transcriptional, translational and post-translational
events in gene expression [87,88]. LncRNAs have been observed to be of interest in cancer,
but little is known about their expression in cell subpopulations. Further investigation may
determine whether expression of specific lncRNAs contribute to specific cell populations
features; they might have a role also in invasion and/or proliferation, considering that
lncRNAs have been described as drivers of these processes [89]. Therefore, the spatial
distribution of lncRNAs within a patient’s cancer tissues might identify the potential of
subclone-specific lncRNAs as new therapeutic targets and/or biomarkers.

Zhang et al. performed a single-cell RNA- and ATAC-sequencing to examine the
immune cell dynamics in advanced TNBC patients treated with paclitaxel or paclitaxel plus
atezolizumab (anti-PD-L1). High levels of baseline CXCL13+ T cells linked to macrophage
proinflammatory features might predict responses to a drug combination. In patients
responsive to drug combination, an increase of lymphoid tissue inducer cells, follicular
B cells, CXCL13+ T cells, and type 1 dendritic cells was detected. The latter decreased
after paclitaxel monotherapy [90]. These data suggest the role of CXCL13+ T cells in the
responses to anti-PD-L1 therapies.

Immune checkpoint blockade (ICB) targeting PD-1/PD-L1 signaling axis and its use
has achieved significant responses in cancer patients, although the mechanisms underlying
ICB resistance have not been fully understood [91,92]. Thus, the advances in single-cell
technologies enable to characterize the basic properties of tumor-infiltrating immune cells
to determine their role in immune responses, antitumor immunity, and immunotherapies.
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Table 1. Summary of advances of single-cell sequencing and editing technologies into precision medicine in the colorectal cancer.

Sample Type Technology Findings Implications Ref.

1 patients
2824 sc scRNA-seq

-5 distinct cell subsets were identified consisting of: immune cells, related to the major
histocompatibility complex genes, related to genes serving to stabilize the cell, energy transportation
and cell regulation, TSPAN6, PFDN4, and TIMM13, majored in breakdown of extracellular matrix
and tissues remodeling, and genes involved in cancer, WFDC2
-cluster 1 and 3 revealed biological processes genes, including ATP synthesis, cellular respiration,
oxidative
phosphorylation, and mitochondrion organization
-cluster 2 and 5 revealed biological process genes, consisting of activation, positive regulation,
response to stress, cellular response, and cell adhesion
-cluster 4 revealed biological processes responsible for extracellular matrix organization, response to
stress, locomotion, cell migration, and cell motility

-provides insight into the heterogeneity
of CRC and which genes within each
cluster serve different functions

[93]

11 patients
7 cell lines CRC
590 patient-derived sc
561 cell line-derived sc

scRNA-seq, reference
component analysis algorithm

-scRNA-seq generated further sub-classification of CRC subtypes found by bulk RNA-seq with
prognostic significance based on their single-cell signatures

-scRNA-seq could enable clinically
relevant patient stratification [75]

3 cell lines CRC scRNA-seq

-transcriptomic characterization of CRC cell lines response to 5-fluorouracil (5FU)-induced DNA
damage
-three distinct transcriptome phenotypes were assumed by CRC cells, with different cell-fate
responses: apoptosis, cell-cycle checkpoint, and stress resistance

-understanding of the heterogeneous
DNA damage responses involved in
fractional killing and chemoresistance

[76]

2 patients
360 sc and bulk primary
tumor and liver
metastasis

scNGS, bulk WES

-the single-cell and bulk analyses were highly concordant
-monoclonal and polyclonal seeding were found
-rare cell subpopulations were associated with progression and metastasis
-a late-dissemination model was highly concordant between primary tumor and liver
metastasis samples

-the late-dissemination model suggests
that early surgical
intervention could prevent metastasis

[80]

7 patients
321 sc and bulk
primary tumor and
liver metastasis

scWES, bulk WES

-low genomic divergence between paired primary and metastatic cancers were found in bulk data
-scWES data defined two separate cell populations, indicative of the diverse evolutionary trajectories
between primary and metastatic tumor cells.
-rare mutations were identified using single-cell technology that were overlooked in bulk data

-validation of functions of different
metastatic subclone-specific-mutated
genes in cell migration

[81]

2 patients
96 sc (adenomatous polyp
and CRC)

scWES, bulk WES

-adenoma and cancer have monoclonal origin with subsequent subclonal evolution
-adenoma and cancer showed a specific spectrum of heterogeneous somatic mutations
-novel driver mutations that developed during adenoma and cancer evolution, in OR1B1 (GPCR
signaling pathway) for adenoma evolution; LAMA1 (PI3K-Akt signaling pathway) and ADCY3
(FGFR signaling pathway) for CRC evolution

-scWES provides evidence for the
importance of mutations in certain
pathways that would not be so apparent
from bulk sequencing of tumors

[82]

12 patients
1900 sc and bulk
multi-regional

scTrio-seq, bulk
multi-regional WGS

-cancer cells were classified into several genetic subclones
-primary tumor showed higher subclonality than metastatic tumour
-DNA methylation profiles were stable within a single genetic lineage

-single-cell multiomics sequencing can
trace epigenomic and transcriptomic
dynamics during progression and
metastasis

[83]
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Table 1. Cont.

Sample Type Technology Findings Implications Ref.

2 patients
CRC clonal
tumor organoids

3D Live-Seq (a protocol that
integrates live-cell imaging of
tumor organoid outgrowth
and WGS of each imaged cell
to reconstruct evolving tumor
cell karyotypes across
consecutive cell generations)

-reveals the genomic consequences of CIN across consecutive cell generations
-single-cell sequencing data displayed several de novo CNAs across three lineages
-mis-segregation of chromosome 7 displays the highlighted branch within the mitotic tree

-mapping the temporal dynamics and
patterns of karyotype diversification in
cancer enables reconstructions of
evolutionary
paths to malignant fitness

[94]

Cell lines
CRC tumor, stroma,
adjacent normal,
lung metastasis

quantitative micro-engraving

-single cells exhibit a range of secretory phenotypes for CXCL1, CXCL5, and CXCL8
-secretions of ELR+ CXC chemokines were found from thousands of single CRC and stromal cells
-CRC and stromal cells exhibit polyfunctional heterogeneity in the combinations and magnitudes of
secretions for these chemokines
-discordances exist between secretory states measured and gene expression for these chemokines
among single cells

-these measures suggest that secretory
states among tumor cells are complex
and can dynamically evolve
-heterogeneous release of these
chemokines by individual cells promotes
a robust signaling network within the
tumor microenvironment

[95]

14 patients
336 cells each
phenotypic population

scPCR gene-expression
analysis

-CRC tissues contain distinct cell populations whose transcriptional identities mirror those of the
different cellular lineages in healthy colon
-perturbations in gene expression programs linked to multi-lineage differentiation strongly associate
with patient survival
-development of two-gene classifier systems (KRT20 vs. CA1, MS4A12, CD177, SLC26A3) that predict
clinical outcomes with hazard-ratios superior to pathological grade

-development of a simple and
quantitative nature two-gene scoring
system

[96]

2 patients
88 sc rectal cancer WES, scWGS multi-region

-genomic heterogeneity was observed between the two patients, and the degree of ITH increased
when analyzed at single-cell level
-SCNAs were early events in cancer development
-single-cell sequencing revealed mutations and SCNAs which were hidden in bulk sequencing

-each tumor possesses its own
architecture, which may result in
different diagnosis,
-prognosis, and drug responses

[97]

2 patients
47 sc cancer stem and
differentiated tumor

scWGS

-CD45− EpCAMhigh CD44+ CSCs and CD45− EpCAMhigh CD44− differentiated tumor cells had
similar SCNA profiles
-the similarity of ubiquitous SCNAs between the CSCs and DTCs might have arisen from lineage
differentiation

-the possibility of a monoclonal CSC
phenotype is supported [98]

3 patients
organoid from multiple sc
CRC and normal mucosa

scWGS
-significant intra-tumor clonal heterogeneity with specific mutational signatures were identified
organoids treated with chemotherapeutic and targeted agents, even derived from the same patient,
exhibited differential responses independent of their mutational signatures

-substantial increases in somatic
mutation rate compared to normal
colorectal cells
-genetic diversification of each cancer is
accompanied by pervasive, stable, and
inherited differences in biological states
of individual cancer cells

[6]

scRNA-seq: single-cell RNA-seq, sc: single-cell, CRC: colorectal carcinoma, scNGS: single-cell next generation sequencing, scWES: single-cell whole-exome sequencing, WGS: whole genome sequencing, SCNAs:
somatic copy number alterations, TME: tumor microenvironment, S-TAM: small tumor-associated macrophages, L-TAM: large tumor-associated macrophages, CCDGs: cell cluster deregulated genes, CIN:
chromosomal instability, CAN: copy-number alterations, ITH: intratumor heterogeneity.
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4. Conclusions
4.1. Future Perspectives in Methodologies

In-depth knowledge of the cells of interest is crucial to properly manage genomic
data and make decisions of clinical impact based on standardized measurements and
accurate and reproducible quality controls. The use of scRNA-seq provides one of the
most innovative methods for addressing biological and medical questions concerning
the underlying processes of various developmental, physiological, and disease systems.
However, new programs and implementations of scRNA-seq methodologies have been
started in recent years but further advances in both technology and specific approaches to
use them are certainly warranted.

The deployment of a number of processes will make it possible to extend the analysis
of scRNA-seq studies not only on fresh material, but also on cryopreserved and fixed tissue
samples aiming at introducing this technique into the clinical practice. Volume reduction
and diffusion of techniques based primarily on microfluidics platforms should reduce costs
at the same time leading to a standardized and simplified use of different devices.

However, one of the current challenges is the creation of standardized collections and
data catalogues from single cells due to the fact that the number of samples used so far in
studies is small. Such analysis, in fact, requires a minimum/sufficient number of cells to
ensure that all cell types are represented. Only a bioinformatician with experience in single-
cell sequencing will be able to generate analyses that can be used to make meaningful
biological inferences by choosing appropriate cutoffs for applied algorithms and avoiding
misleading results. Currently, there are limited standardization protocols and guidelines
on standards (i.e., quality control, removal of technical artifacts, etc.).

Furthermore, development of single-cell gene expression maps for all tissues will
be necessary, as it occurred in bulk transcriptomics evolution. Many studies, in fact,
will benefit from these easily accessible archives that reduce the costs of comparison and
replication in normal tissues; at the same time, significant advances in bioinformatics and
computational methods thanks to data sharing are expected.

Thus, the new challenge will be represented by the use of a true inter-omic and multi-
disciplinary approach that will lead to a comprehensive examination of individual cells;
this will be achieved by characterizing the genome, epigenome, proteome and metabolome
while simultaneously examining the tumor microenvironment, its immunological char-
acteristics and the impact of pharmacogenomics; in addition, a clear picture of tumor
development will be given, together with cancer evolution and interactions. It will be
crucial to address genetic changes in the early stages of tumorigenesis deployment and how
transcriptional subpopulations evolve into malignancy in later stages of tumor progression.

The robustness of NGS systems in exploring heterogeneity, at genome and transcrip-
tome scale, will validate ITH variability and might determine the discovery of novel
targeted drugs; predictive biomarkers for individualized drug-oriented therapies might
also be developed. Pharmacogenomic profiling might predict response to chemotherapy
by correlating it with immune cell regulatory values that affect CRC survival mechanisms.
Future CRC studies employing comparison of primary, metastatic tumor ITH and liquid
biopsies might offer elucidating suggestions on the origins and evolution of genomic
subclones responsible for drug resistance and recurrence.

4.2. Clinical Implications of Intra-Tumoral Heterogeneity in CRC

CRC is extensively marked by phenomena of inter- and intra-tumor heterogeneity, spatial
and temporal differences regarding phenotypic and genotypic aspects, influencing recurrence
and therapeutic response and having a strong poor impact on CRC patient’s outcome.

Until now, genomic and transcriptome analyses on bulk tumor cell populations have
helped to explain tumor heterogeneity and also allowed to classify them into subgroups
with distinct molecular, morphological, and clinical features [99]. The application of
techniques capable of examining molecular aberrations at the single-cell level within a
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complex tumor population should refine the existing CRC classification system. In addition,
scRNA-seq could identify predictive markers for CRC prognosis.

Metastatic progression is linked to the majority of CRC-related deaths [100]. In
patients at stage I, the five-year survival rate is 90%, but a drastic reduction of slightly more
than 10% is observed when cancer patients reach stage IV [101]. Approximately 20% of
CRC patients already have metastases at diagnosis, and they are generally incurable [100].
Although anti-EGFR therapies are available for RAS wild-type CRC patients, and anti-
VEGF, anti-VEGFR, recombinant fusion protein and multi-kinase inhibitor were applied in
CRC patients with RAS mutation [102], unresponsiveness was seen in CRC patients with
BRAF and PIK3CA mutations [103]. Undoubtedly, drug development and techniques to
be used in identifying the complex heterogeneity of mCRC represent an unmet clinical
need. Single-cell omics represent an important tool to identify therapeutic targets for
personalized cancer medicine compared with bulk transcriptomics. In addition, single-cell
resolution molecular aberrations could shed light on the mechanisms underlying metastasis
development [104–106]. Finally, the ability to estimate presence of rare malignant chemical-
resistant carcinoma cells in removed tumors will be increased to guide treatment decisions;
at the same time exploration of immune cell responses and environmental influences will
provide molecular data to give support during the diagnostic process as well as in disease
progression, and treatment course.
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