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1/x power‑law in a close proximity 
of the Bak–Tang–Wiesenfeld 
sandpile
Alexander Shapoval1,3*, Boris Shapoval2 & Mikhail Shnirman1,3

A cellular automaton constructed by Bak, Tang, and Wiesenfeld (BTW) in 1987 to explain the 1/f 
noise was recognized by the community for the theoretical foundations of self-organized criticality 
(SOC). Their conceptual work gave rise to various scientific areas in statistical physics, mathematics, 
and applied fields. The BTW core principles are based on steady slow loading and an instant huge 
stress-release. Advanced models, extensively developed far beyond the foundations for 34 years 
to successfully explain SOC in real-life processes, still failed to generate truncated 1/x probability 
distributions. This is done here through returning to the original BTW model and establishing its larger 
potential than the state-of-the-art expects. We establish that clustering of the events in space and 
time together with the core principles revealed by BTW lead to approximately 1/x power-law in the 
size-frequency distribution of model events.

Bak, Tang, and Wisenfeld wrote “we believe that the new concept of self-organized criticality can be taken much 
further and might be the underlying concept for temporal and spatial scaling in a wide class of dissipative systems 
with extended degrees of freedom”1. SOC-systems evolve to a critical state characterized by power-laws without 
parameter tuning. The absence of adjustable parameters such as the temperature or magnetization distinguishes 
the SOC systems from the systems which generate the critical dynamics at the phase transition. As BTW pro-
jected, a huge quantity of real systems and processes exhibiting SOC were exposed2–5. Nevertheless, the power-
law exponents usually depend on the features of sub-systems (f. e., seismic faults, geographical regions, forest 
fires, and stellar flares, respectively6–8), thus leaving the question regarding the extent to which the underlying 
systems are self-organized to be open.

The BTW model is defined on a square lattice that contains integers interpreted as grains. Initially, all lat-
tice cells contain less than 4 grains. At each time moment a grain is added to a randomly chosen lattice cell. If 
the resulting number of grains is still less than 4, nothing more happens at this time moment. Otherwise, the 
overloaded cell transfers 4 grains in such a way that all adjacent cells (their number is 4 inside the lattice) receive 
1 grain. Grains are lost off the edge of the lattice since the boundary cells do not have 4 nearest neighbors. As a 
result of the transfer, other cells can be overloaded. The transfers continue while there are overloaded cells. The 
sequence of the transfers occurred at a single time moment forms an avalanche, the size of which is the number 
of the transfers. For any initial distribution of grains over the lattice, the system attains a critical state character-
ized by the power-law size-frequency relationship of the avalanches with the exponent τ ≈ 1.209.

Modeling of real-life systems characterized by power-laws at the critical state can be potentially performed 
with modifications of the original BTW model that involve various ways of stress propagation including its 
directed transportation, quenched disorder, and remote transfers10–13 and implement the BTW mechanism on 
different spaces including fractals and networks14–17. The value of the exponent τ characterizing the power-law 
segment x−τ of the size-frequency relationship has been obtained numerically for various models; rigorous proofs 
have been obtained for some of them9.

Changes in the details of the steady loading or transport mechanism conserve the exponent τ ≈ 1.20 , known18 
for the BTW sandpile, for its deterministic isotropic modifications19. A turn to stochastic transport in isotropic 
sandpiles switches the exponent to τ ≈ 1.2719–21. The nature of self-organized criticality is captured by the inde-
pendence of the power-laws on model details and the existence of just a few exponents within a broad class of 
isotropic sandpiles on the square lattice. This imposing feature of the isotropic sandpiles, nevertheless, reduces 
the range of its direct applications to real systems because the latter exhibit various power-law exponents.

OPEN

1HSE University, Myasnitskaya str. 20, Moscow, Russia  101000. 2University of Colorado Boulder, Boulder, 
USA. 3Institute of Earthquake Prediction Theory and Mathematical Geophysics RAS, Profsoyuznaya 84/32, 
Moscow, Russia 117997. *email: abshapoval@gmail.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-97592-x&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:18151  | https://doi.org/10.1038/s41598-021-97592-x

www.nature.com/scientificreports/

The purpose of this paper is a BTW-mechanism extension that allows to tune the power-law exponent and 
belongs to a “narrow neighborhood” of the original BTW sandpile, thus compromising between a certain refusal 
from self-organization and keeping the mechanism staying behind it. With applications in mind, we weaken the 
complete separation of the slow and quick times scales, understood as the idealization of the BTW mechanism, 
and combine close in space and time events into mega-events. Our design of the isotropic BTW mechanism on 
the square lattice will lead to ∼ 1/x size-frequency relationship.

Results
Model.  As in the original BTW model, we define the model dynamics on a square lattice. The cells of the 
lattice are numbered from 1 to A = L2 , where L ∈ N is the lattice length. Each non-boundary cell i shares a com-
mon side with 4 adjacent cells. These adjacent cells form the set Ni of the neighbors of the cell i. The boundary 
cells have 3 or 2 (in the case of the corner) neighbors. For any cell i an integer hi interpreted as the number of 
grains is assigned to it. A cell i is stable if its height hi < H , where H = 4 is a threshold. The dynamics are given 
by the following procedure.

Avalanches and their size.  At each time moment N = NL ∼ log L different cells i1 , . . . , iN are chosen at 
random. Their heights are increased by 1:

If none of them attains the threshold H, nothing more occurs at this time moment. If at least a single height 
attains the threshold H, the grain transport starts: unstable cells pass H grains equally to the neighbors. Formally, 
for any i with hi = H,

As the number of the neighbors |Ni| is 4 for the inner cell i and less than 4 for the boundary cell, the grain 
transfer (2), (3) is conservative inside the lattice and dissipative at the boundary. Let us say that each unstable cell 
generates an avalanche. If n unstable cells {i1, . . . , in} , n ≤ N , appear as a result of the grain adding at the time 
t, then n avalanches ai1,t , . . . , ain ,t occur at t. At the beginning, each avalanche aik ,t , k = 1, . . . , n , “propagates” to 
a single cell, namely, the origin ik that generates the avalanche. The size sik ,t of each avalanche is set to 0 at this 
moment. The unstable cells i1 , . . . , in and their neighbors update the heights in line with (2), (3) simultaneously. 
The size sik ,t of the avalanches aik ,t is increased from 0 to 1. The updates can induce instability in other cells. New 
unstable cells are associated with just those avalanches that propagate to them. In other words, if an unstable 
cell j obtained a grain from a cell j′ associated with the avalanche ai,k , then j is also associated with ai,k . If two 
(or more) avalanches propagate to j (i. e., pass a grain to j) simultaneously, then the choice of the avalanche to 
be assigned to j is performed at random. Each update induced by the instability of the cell associated with the 
avalanche aik ,t results in the rise of its size sik ,t by 1, k = 1, . . . , n . The updates ruled by (2) and (3) occur while 
there are unstable cells. As soon as hi < H for all cells i, the next time moment begins.

Note that a cell can attain the threshold H several times within a single time moment. The correspondence 
to the avalanche is determined when the cell becomes unstable. The result of the determination can differ from 
case to case.

Mega‑avalanches and their size.  We note that the above dynamics extends the original BTW model 
with N = 1 to the case of N > 1 . The extension results in several avalanches spreading simultaneously. Resolv-
ing this ambiguity, we merge the avalanches that are close in space and time into the mega-avalanches and focus 
on the probability distribution of the mega-avalanches. A mega-avalanche consists of a single avalanche if this 
avalanche is not merged with another avalanche.

The proximity between the avalanches is found through the comparison of the Manhattan distance (the sum 
of the absolute differences of the Cartesian coordinates) ρρρ with an appropriate function φ of the avalanches’ sizes. 
To formalize the rule, we introduce the characteristic (two-state) function 1 condition that attains 1 if the condition 
holds and 0 otherwise. Let U ∼ Uni(0, 1) be a uniform [0, 1] random variable. Then the inequality

underlies the merging of ai1,t1 and ai2,t2 , where p ∈ [0, 1] , T ≥ 0 , C′ > 0 , and d > 0 are the parameters. We fix 
C′ = 0.025 and d = 0.33 , taking them from a range of affordable values. The specific choice affects the other 
parameters that result in the scale-free distribution of the mega-avalanches.

With T = 0 and p = 0 , (4) becomes

Therefore, the first term in (4) controls the deterministic merging of the avalanches, specifying a monotone 
increasing function of sizes φ(s1, s2) = C′L(sdi1,t1 + sdi2,t2) that has to exceed the distance ρρρ between the avalanche 
origins in order to secure the coalescence. The switch to positive values of p admits the random merging of 
(possibly, small) avalanches located anywhere with the intensity p. In general, the second term in (4) means 
that remote instabilities can occasionally cause one another. Positive integers T allow to coalesce the avalanches 

(1)hi −→ hi + 1, ∀i ∈ {i1, . . . , iN }.

(2)hi −→ hi −H

(3)hj −→ hj + 1 ∀j ∈ Ni .

(4)1 ρρρ(i1,i2)<C′L(sdi1,t1
+sdi2,t2

) · 1 |t1−t2|≤T + 1 U<p · 1 t1=t2 > 0

(5)ρρρ(i1, i2) < C′L(sdi1,t1 + sdi2,t2), t1 = t2.
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observed at subsequent time moments. As we will see, a gradual increase in T from zero is required rather than 
the jump to 1. This leads us to the fractional values of T ∈ (0, 1) and the probabilistic nature of the inequality 
|t1 − t2| ≤ T . This inequality is claimed to hold with certainty if t1 = t2 and with probability T if |t1 − t2| = 1.

If the avalanches ai1,t1 , . . . , aik ,tk , k ≥ 1 , form the mega-avalanche a, then the size s = size(a) of a is the sum 
of the corresponding sizes: s = si1,t1 + . . .+ sik ,tk . The origin of the mega-avalanches is the weighted average of 
the origins of the contributing avalanches, where the weights are proportional to the sizes.

Probability distribution of the mega‑avalanches.  Let fL(s) be the empiri-
cal density of the mega-avalanches occurred on the L× L-lattice with respect to their sizes s and 
FL(s) = #{a : σ = size(a) ∈ [s/�s, s�s)}/#{a : σ = size(a) > 0} be the proportion of the mega-avalanches 
with the size located between s/�s and s�s , where �s = 1.2 is chosen in the graphs (in the continuous case, it 
would be fL(s) = −F ′L(s) ). If fL(s) follows a power-law 1/xτ , so does FL(s) but the exponent is τ − 1 instead of 
τ . Gathering the points of fL(s) within the exponentially growing bins into FL(s) , we give the relevant pattern of 
the power-law segment up to the abrupt bend down in the log-log scale, Fig. 1. The scaling s → s/L2 normalizes 
the right endpoint of the power-law segment, Fig. 1.

All four graphs of Fig. 1 (the right part is omitted to highlight the power-law segment) follow an almost flat 
step corresponding to s1−τ , τ ≈ 1 , that is turned to a quick decay at the right.

The power-law segments are collapsed after the transformation of the axis: s → s/L2 , FL → FL log L (Fig. 1b). 
The fact that the transformation s −→ s/L2 of the horizontal axis normalizing the right endpoint of the power-
law segment does not allow to collapse the tails is inherited from the BTW sandpile (because of its multifractal 
scaling22).

The logarithmic extra-loading N ∼ log L conserves the density of the grains at its critical level (not supported 
by graphs). The deterministic merging of the avalanches into the mega-avalanches creates two power-law parts of 
FL(s) The left part extends to the size of approximately 3000 for all values of L (as the blue curve does in Fig. 2), 
but the right endpoint of second power-law part scales as L2 and its slope becomes steeper as L increases (not 
illustrated here). The introduction of the time clustering with the parameter T > 0 makes the right power-law 
part flatter in the log-log scale (the orange curve in Fig. 2). The contraction of the gap between two consecutive 
values of T shown in Fig. 1 in approximately 1.5 times suggests that T saturates at ≈ 0.05 as L → ∞.

Interestingly, the changes in the exponent of the right power-law part preserves the existence of the power-law 
at the left but alters its slope. The return to the flat part of FL(s) is performed with the random merging through 
the adjustment of the parameter p. The choice of p = 0.19 is affordable for all graphs constructed with different 
values of L. Thus, our merging is expected to lead to T ≈ 0.05 , p ≈ 0.19 , and N ∼ log L as L goes to infinity.

Discussion
We insist that our approach principally differs from the two following simple constructions: the summation 
of the independent power-law random variables and merging of avalanches, which are adjacent in time, in the 
original BTW model. The first construction leads to the probability density, which is concave in the log-log 
scale, tending to the power function at the right part of the graph (the gray curve in Fig. 3 obtained through 8 
convolutions, i. e., the summation of 8 independent 1/x1.20 random variables with the support on [1, 1024]). The 

Figure 1.   Segment of the size-frequency relation: main result. Power-law segment obtained with exponentially 
increasing horizontal bins, i. e., the power-law exponent is increased by 1. The vertical axis is not normalized in 
(a) but normalized in (b).
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second construction can be defined through the coalescence of avalanches occurred during T subsequent time 
moments. The uncertainty with fractional values T is resolved with a probabilistic rule (say, if T = 2.5 and at is 
not merged with at−1 , then the avalanches at , at+1 , and at+2 are combined with certainty, whereas the avalanche 
at+3 is added with the probability of 0.5). This modification of the BTW model preserves the power-law segment 
that does not extend to the right with the growth of the system. The power-law part of FL(s) constructed for the 
different values of L is collapsed after the normalization of the size by the lattice area, Fig. 3.

Our paper gives evidence that the 1/x power-law is feasible with isotropic extensions of the BTW sandpile 
(Fig. 1). The extension is constructed with the stress accumulation, proportional to log L , and the coalescence of 
the avalanches propagated closely in space and time. Such a coalescence is known, for example, in seismology, 
as the stress accumulation and the earthquakes themselves occurred in the slow and quick time respectively are 

Figure 2.   Size-frequency relation: adjustment of parameters. A part of FL(s) computed with the parameters 
reported in the legend and s1−τ-fits.

Figure 3.   Size-frequency relation FL(s) : BTW model, where the mega-avalanches are obtained through 
merging of the standard avalanches occurred within T consecutive time moments. (a) L is constant; the gray 
curve is obtained through the convolution of 8 probability densities ∼ s−1.20 with the support [1, 1024]. (b) L is 
variable; the sizes are normalized by L2 to collapse FL(s) with adjusted T.
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not completely separated23. An additional stress accumulation without the construction of mega-avalanches does 
not lead to the 1/x power-law. While the BTW critical density is conserved, the size-frequency relationship of the 
avalanches (not be confused with the mega-avalanches) follows the power-law segment found with the original 
BTW sandpile. An excessive loading ruins the critical state, destroying the power-law segment. The construction 
of the mega-avalanches, performed in the paper with equation (4), are likely to be designed in various ways. 
Nevertheless, when ignoring spatio-temporal clustering, e.g., assigning p = 1 in (4) and merging all avalanches 
occurred at the same time moment, one also destroys criticality. We argue that spatio-temporal correlations in 
the BTW-like models, exposed for the BTW sandpile in paper24, underlie the possibility to end up with the 1/x 
power-law. Chen et al.13 used this correlation, when allowing to pass grains to remote distances with a certain 
probability Pc , and perhaps obtained the power-law exponents that are located above 1.20 and controlled by 
Pc (the values of the exponents in the thermodynamic limits in their model are not clear as they simulated the 
model on the 50× 50 lattice). A full description of possibilities, which result in the 1/x power-law, and the choice 
of their “best” version remain the daunting challenge.

Proposed here minor deviations from the BTW model through the parameter domain preserve the critical 
density of the grains and the power-law size-frequency relationship for the mega-avalanches over the majority 
of feasible sizes (Fig. 2). The adjustment of the parameters pulls the exponent τ towards 1 (through a weak time 
clustering, parameter T) and corrects the slope of the restricted left part to fit the whole power-law segment 
(with the random coalescence in space, parameter p). Thus, our approach does not require any tuning of the 
dissipation-to-loading ratio as in attempts to relate self-organized criticality to the phase transition modeling25 
but controls the universality class of the sandpile and might lead to adjustable power-law exponents in a neigh-
borhood of 1. Furthermore, the horizon of the avalanche grouping in time, given by T, acts as the level of noise 
in the system that (see arguments of paper26) increases the power-law exponent. Eventually, the BTW-like sand-
pile with the control of the power-law exponent would improve our understating of real-life SOC-phenomena.

Methods
We have sampled the data for the empirical functions fL(s) and FL(s) for 5 · 105 subsequent time moments for all 
lattices. Sampling is performed after some transient period to let the system reach the steady state and eliminate 
the dependence on the initial conditions.

The summation of the probability density fL(s) over exponentially increasing bins increases the exponent of 
the power-law from −τ to −τ + 1 , as the sum follows the integral:

as s is large. In contrast to FL(s) , the graph of fL(s) is too noisy at the right to illustrate the full power-law segment 
(Fig. 4 exhibits fL(s) found with L = 1024 and L = 8192).

The logarithmic correction of the vertical axis required for the collapse of the power-laws in Fig. 1b is caused 
by the proximity of the probability density to 1/s-segment, the power-law scaling of the right endpoint s∗ of this 
segment, and a fast decay of FL at the right from s∗ . Then the integration of the density fL(s) = CL/s over [1,+∞] 
results in the estimate CL · c log L ≈ 1 , which implies CL ∼ 1/ log L.
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