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Background: Several 9p21.3 variants, such as rs1333049, rs4977574,

rs10757274, rs10757278, and rs10811661, identified from recent genome-

wide association studies (GWASs) are reported to be associated with

coronary artery disease (CAD) susceptibility but independent of dyslipidemia.

This study investigated whether these 9p21.3 variants influenced lipid

profiles.

Methods and results: By searching the PubMed and Cochrane databases,

101,099 individuals were included in the analysis. The consistent finding

for the rs1333049 C allele on lipid profiles increased the triglyceride (TG)

levels. Moreover, the rs4977574 G allele and the rs10757274 G allele,

respectively, increased low-density lipoprotein cholesterol (LDL-C) and high-

density lipoprotein cholesterol (HDL-C) levels. However, the rs10811661 C

allele largely reduced LDL-C levels. Subgroup analyses indicated that the

effects of the rs1333049 C allele, rs4977574 G allele, and rs10757274 G allele

on lipid profiles were stronger in Whites compared with Asians. In contrast,

the effect of the rs10811661 C allele on lipid profiles was stronger in Asians

compared with Whites.

Conclusion: The rs1333049 C allele, rs4977574 G allele, and rs10757274 G

allele of lncRNA, and the rs10811661 G allele of CDKN2A/2B had a significant

influence on lipid levels, which may help the understanding of the underlying

mechanisms between 9p21.3 variants and CAD.
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Introduction

The variant (mutation) of the 9p21.3 allele is prevalent in
the general population at a rate of 50% (1–4). One copy of the
9p21.3 allele increases the risk of coronary artery disease (CAD)
by 25%, whereas two copies augment the risk by 50% (1–4).

The 9p21.3 allele contains a long non-coding RNA (also
known as lncRNA, ANRIL, or CDKN2BAS) and two protein-
encoding genes (CDKN2A and CDKN2B). rs1333049, a genetic
variant in lncRNA, is formed by a nucleotide substitution from
guanine (G) to cytosine (C). In addition, rs4977574, rs10757274,
and rs10757278, genetic variants in lncRNA, are formed by
a nucleotide substitution from adenine (A) to guanine (G).
Moreover, rs10811661, a genetic variant in CDKN2A/2B,
is formed by a nucleotide substitution from thymine (T)
to cytosine (C).

A series of basic studies tested the effects of gene expression
levels of lncRNA and CDKN2A/2B on lipid profiles, but the
results were inconsistent. For instance, the knockdown of
lncRNA inhibits lipid uptake and accumulation and promotes
macrophage reverse cholesterol transport (mRCT) (5), while the
overexpression of lncRNA significantly increases intracellular
lipid accumulation in macrophage-derived foam cells (5).
In contrast, the knockdown of CDKN2B induced C/EBPα

expression and lipid accumulation in 3T3-L1 cells (6). However,
knockout of the 9p21 risk locus (chr4170kb/170kb, ApoE–/–
on 129 background) (7) or CDKN2A (8) did not affect lipid
levels in deficient mice. Similarly, a large body of clinical trials
have detected the effects of these five variants on lipid profiles,
but the results are controversial. For instance, the C allele
of rs1333049 increased triglyceride (TG) (9), total cholesterol
(TC) (10), and low-density lipoprotein cholesterol (LDL-C) (9,
10) and lowered high-density lipoprotein cholesterol (HDL-
C) levels (9). In contrast, the G allele of rs4977574 increased
TC (11) and lowered the HDL-C levels (11), the G allele
of rs10757274 increased the HDL-C levels (12), the G allele
of rs10757278 increased the TC (13) and LDL-C levels (13),
and the C allele of rs10811661 decreased the TG (14–16),
TC (14, 15), and LDL-C (15) levels and increased the HDL-
C levels (15, 16). Notably, an observational study conducted
by Ahmed et al. (17) indicated that the C allele of rs1333049
remodeled lipid metabolism, therefore influencing myocardial
infarction risk. Moreover, a set of elegant lipidomics studies
(NPHSII, Northwick Park Heart Study II) conducted by
Meckelmann et al. (18) indicated that the G allele of rs10757274
remodeled CAD risk by modulating lipid metabolism. However,
the results obtained from other clinical trials did not favor
these findings (19–23). Hence, a meta-analysis is needed to
clarify whether these variants affected lipid profiles to resolve
these discrepancies.

It has been well documented that rs1333049 C allele (1),
rs4977574 G allele (24), rs10757274 G allele (2), rs10757278
G allele (3), and rs10811661 T allele (25) increased the risk

of CAD by 30–40% in Whites (1–3, 25) and East Asians
(24, 25). Since dyslipidemia is one of the most important
risk factors for CAD and accounts for at least 50% of the
population-attributable risk (26), it is tempting to speculate
that the increased CAD risk caused by these variants may
stem from a remodeled lipid profile. Surprisingly, the increase
in CAD risk attributed to these risk alleles was reported to
be independent of dyslipidemia in four GWAS studies (1–
4). Since dyslipidemia is closely related to the pathogenesis
of CAD (26), these five variants indeed have the potential to
affect lipid levels (9–18). It is reasonable to speculate that these
five variants may affect lipid profiles after enhancing statistical
power. Therefore, we conducted this meta-analysis in a large
sample size (101,099 individuals) to identify whether these
five variants remodeled lipid metabolism and to increase our
understanding of the underlying mechanisms between 9p21.3
variants and CAD.

Due to diverse constraints, most independent or single
clinical trials are imperfect or flawed. For instance, the sample
size is too small, the gender is not balanced, the coverage of
the age group is too narrow, or it is impossible to obtain richer
and more accurate experimental results due to the limitations
of the examining technology or experimental condition (27–
29). Since these constraints are inevitable and usually result in
severe deviations or heterogeneity, a common truth may be
masked by these independent clinical trials (27–29). Therefore,
we attempted to utilize the light of evidence-based medicine
by a meta-analysis to examine the differences and to identify
the sources of heterogeneity across these independent studies
to reveal a common truth (whether variants of rs1333049,
rs4977574, rs10757274, rs10757278, and rs10811661 in 9p21.3
are statistically impacted or with a trend to influence lipid
levels). Moreover, the specific reason to select these five variants
rather than other variants loci in 9p21.3, such as LINC-PINT
(30), LINC00599 (30), or rs1537373 (31), is due to only these
five variants with sufficient data to execute meta-analysis.

In the past few decades, circulating TG levels have been
widely reported to be associated with the occurrence, progress,
and prognosis of CAD. For instance, a meta-analysis of the Asia-
Pacific region indicated that TG was an independent predictor
of CAD (32). This is consistent with the findings of a Chinese
multi-provincial cohort study (33). Moreover, another meta-
analysis of 29 prospective studies (34) indicated that TG was
moderately or highly associated with CAD risk. Intriguingly,
it was verified by the Copenhagen City Heart Study (35),
whereby increased TG levels were associated with an increased
risk of myocardial infarction, ischemic heart disease, and
death. Notably, the Bezafibrate Infarction Prevention trial (36)
further revealed that increased TG levels were independently
associated with increased mortality in patients with CAD,
indicating that circulating TG was a critical risk factor for
CAD and hypertriglyceridemia should not be ignored in
CAD intervention.
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Here, we systematically analyzed the effects of the rs1333049
C allele, rs4977574 G allele, rs10757274 G allele, rs10757278
G allele, and rs10811661 C allele in 9p21.3 on lipid profiles in
101,099 individuals by a meta-analysis.

Materials and methods

The present meta-analysis follows the Preferred
Reporting Items for Systematic Reviews and Meta-analyses
(PRISMA) (37).

Literature search

A comprehensive search of the literature was executed
from January 5, 2021 to February 15, 2022, by using
the PubMed and Cochrane databases. The following
keywords were used in the search: (“long non-coding RNA,”
“lncRNA,” “ANRIL,” “CDKN2BAS,” “CDKN2A/2B,” “9p21.3,”
“rs1333049,” “rs4977574,” “rs10757274,” “rs10757278,” or
“rs10811661”), (“mutation,” “variation,” “mutant,” “variant,”
or “polymorphism”), and (“lipids,” “lipid metabolism,”
“lipoprotein,” “cholesterol,” “circulating lipids,” “blood lipids,”
“plasma lipids,” “serum lipids,” or “lipid profile”).

Inclusion and exclusion criteria

The inclusion criteria were as follows: (1) Articles that
detected the effect of the rs1333049 C allele, rs4977574 G
allele, rs10757274 G allele, rs10757278 G allele, or rs10811661
C allele on lipid profiles; (2) articles that provided at least one
of the four parameters in lipid profiles [TG, total cholesterol
(TC), LDL-C, and HDL-C]; (3) articles that provided genotype
frequencies of variants of rs1333049, rs4977574, rs10757274,
rs10757278, and rs1081166; (4) articles that offered mean lipid
levels with standard deviation (SD) or standard errors (SE)
by the genotypes; (5) the interventional studies that provided
pre-intervention data; and (6) the language of eligible studies
restricted to English and Chinese. The exclusion criteria were
as follows: (1) articles not related to rs1333049, rs4977574,
rs10757274, rs10757278, and rs10811661; (2) articles in which
human subjects used lipid-lowering drugs; (3) articles that did
not present genotype counts; (4) studies that provided invalid
data; (5) pedigree articles; (6) overlapping articles; and (7)
abstract, review, case report, meta-analysis, and animal articles.

Subgroup analysis

Subgroup analysis was conducted on ethnicity/race and
disease status. Ethnicity/race includes White, Asian, and other

ethnicities. Disease status includes CAD, type 2 diabetes mellitus
(T2DM), and healthy subjects. In some studies, the subjects
were divided into more than one subpopulation (e.g., the
subjects originated from a different gender or a different
race). Each subpopulation was regarded as an independent
comparison in this study.

Other items

Since data extraction and analysis, heterogeneity
processing, sensitivity analysis, the risk bias test, and the
publication bias test were adopted from previous methods,
to avoid redundant descriptions, previous publication by
Liu et al. (38) provides more details. Moreover, a study
conducted by Phani et al. (23) only offered raw lipid data
by the genotypes of rs10811661 in their Supplementary
material. Therefore, we downloaded and analyzed those
raw data by performing a one-way ANOVA (the Kruskal–
Wallis test) in SPSS software (version 23.0, Inc., Chicago,
IL, United States).

Results

Study selection

By searching the PubMed and Cochrane databases, 4,307
articles were identified. After the screening, 4,131 articles were
excluded by their title and abstract. Next, 55 articles were
further estimated by their contents, of which 5 articles provided
lipid data by the genotypes of rs1333049 (39, 40), rs4977574
(41), rs10757274 (42), and rs10811661 (43) but expressed as a
median and interquartile range (IQR), 3 articles provided lipid
data by the genotypes of rs1333049 but human subjects used
lipid-lowering drugs (44–46), 2 articles provided the percentage
change of lipid data by the genotypes of rs1333049 (47, 48), 1
article did not present genotype counts of rs1333049 (17), and 1
article (49) provided lipid levels by the genotypes of rs1333049
but in an aberrant genetic model [(CG + GG) vs. CC]. Therefore,
12 articles were further excluded. Finally, 43 articles involving a
total of 101,099 individuals were included in the present study
(Figure 1). Of the 43 articles, 15 articles (22,513 individuals),
9 articles (31,762 individuals), 7 articles (36,636 individuals),
6 articles (5,156 individuals), and 8 articles (6,028 individuals)
were identified for the effects of rs1333049 C allele, rs4977574 G
allele, rs10757274 G allele, rs10757278 G allele, and rs10811661
C allele on lipid profiles, respectively.

Characteristics of the included studies are presented
in Supplementary Table 1. Circulating lipid levels by the
genotypes rs1333049, rs4977574, rs10757274, rs10757278,
and rs10811661 are presented in Supplementary Tables 2–
6, respectively.
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FIGURE 1

A flow diagram of the study’s selection process.

Effect of rs1333049 C allele on lipid
profile

All the results stated below were statistically analyzed
from the included studies that eliminated heterogeneity (please
see “recalculated results that eliminated heterogeneity” in
Supplementary Tables 7–11 for more details). The consistent
finding for the effects of the rs1333049 C allele on lipid
metabolism (Supplementary Table 7 and Supplementary
Figure 1) was a slight increase in TG levels (Figure 2). The
subgroup analysis indicated that the effect of the rs1333049 C
allele on TG levels was observed in Whites (Supplementary
Table 7), indicating that Whites with the rs1333049 C allele
had an increased risk of CAD. Intriguingly, this speculation was
supported by the present analysis results, whereby the C allele

of rs1333049 significantly increased the TG levels in patients
with CAD (Supplementary Table 7). Meanwhile, the C allele
of rs1333049 showed a statistical influence on the TC levels in
patients with CAD (Supplementary Table 7).

Effect of rs4977574 G allele on lipid
profile

The G allele of rs4977574 slightly increased the LDL-C
(Figure 3) levels and lowered the TG levels (Supplementary
Figure 2). Subgroup analyses indicated that the effects of the
rs4977574 G allele on the LDL-C, HDL-C, and TG levels were
noted in Whites and healthy subjects (Supplementary Table 8).
This indicates that Caucasians and healthy subjects with the
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FIGURE 2

A forest plot of lncRNA rs1333049 variant with circulating TG levels.

G allele of rs4977574 were at a high risk of CAD due to the
increased LDL-C levels.

Effect of rs10757274 G allele on lipid
profile

The G allele of rs10757274 slightly increased HDL-C
(Figure 4) and lowered TG levels (Supplementary Figure 3).
Subgroup analyses indicated that the effects of the rs10757274
G allele on the HDL-C and TG levels were noted in Whites and
healthy subjects (Supplementary Table 9). This indicates that
Whites and healthy subjects with the G allele of rs10757274 may
have a reduced CAD risk.

Effect of rs10757278 G allele on lipid
profile

The present study indicated that the G allele of rs10757278
did not statistically influence lipid levels (Supplementary
Figure 4 and Supplementary Table 10).

Effect of rs10811661 C allele on lipid
profile

The C allele of rs10811661 significantly reduced the LDL-C
(Figure 5) and TC levels (Supplementary Figure 5). Subgroup
analyses indicated that the significant effects of the rs10811661
C allele on the LDL-C and TC levels were observed in Asians
and in patients with T2DM (Supplementary Table 11). This
indicates that Asians and patients with T2DM with the C
allele of rs10811661 were at low risk of CAD. Moreover, the
C allele of rs10811661 significantly reduced the TG levels
in Whites (Supplementary Table 11), indicating that Whites
with the rs10811661 C allele may have a reduced risk of
CAD.

Evaluation of heterogeneity

Significant heterogeneity was detected in the analysis of
the effects of the rs1333049 C allele, the rs4977574 G allele,
and the rs10811661 G allele on lipid profiles (Supplementary
Tables 7–10). The SMD and 95% CIs of TC and HDL-C
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FIGURE 3

A forest plot of lncRNA rs4977574 variant with circulating LDL-C levels.

modulated by the rs1333049 C allele did not change substantially
after eliminating heterogeneity (see Supplementary Table 7
for more details). However, the standardized mean difference
(SMD) and 95% CI of TG and LDL-C affected by the rs4977574
G allele and the rs10811661 C allele changed significantly
after eliminating heterogeneity (as shown in Supplementary
Tables 8, 11 for more details).

Sensitivity analysis

Sensitivity analysis showed that one comparison
[Shakhtshneider et al. (19)] may affect the effect of the
rs1333049 C allele on the LDL-C levels (Supplementary
Figure 6), one comparison [Hindy et al. (50)] may affect the
effects of the rs4977574 G allele on the LDL-C and HDL-C levels
(Supplementary Figure 7), and one comparison [Mehramiz
et al. (16)] may affect the effect of the rs10811661 C allele on the
LDL-C levels (Supplementary Figure 8). However, the effects
of the rs1333049 C allele, rs4977574 G allele, and rs10811661
C allele on lipid profiles did not change substantially after
omitting these comparisons. This indicates that the synthetic
results were robust.

Risk bias test

While analyzing the effects of the rs1333049 C allele,
rs4977574 G allele, rs10757274 G allele, and rs10811661 C
allele on lipid profiles, some concerns were observed in the
randomization process (10–25%). However, the overall results
showed a low risk of bias (75–90%) among the included studies
(Figure 6). Consequently, the studies included in the meta-
analysis were of relatively high quality.

Publication bias test

In the present study, Begg’s test did not find any publication
bias. This was confirmed by Egger’s regression test (as seen in
Supplementary Figures 9–13 for more details).

Discussion

In sharp contrast to previous GWAS studies (1–4), our
study indicated that the rs1333049 C allele, rs4977574 G allele,
rs10757274 G allele, and rs10811661 C allele were robustly
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FIGURE 4

A forest plot of lncRNA rs10757274 variant with circulating HDL-C levels.

FIGURE 5

A forest plot of lncRNA rs10811661 variant with circulating LDL-C levels.

associated with lipid profiles in 101,099 individuals. This may
help the understanding of the underlying mechanisms between
these 9p21.3 variants and CAD.

The precise mechanisms underlying the effect of these
five 9p21.3 variants on lipid profiles have not been clarified
yet. However, several putative regulatory pathways could be
proposed to interpret its mechanisms. (1) By modulating the
expression of CDKN2A/2B. CDKN2A/2B plays a crucial role
in regulating reverse cholesterol transport (RCT) (5) and in
maintaining lipid metabolism homeostasis (6). However, the

expression of CDKN2A/2B was largely determined by the
C allele of rs1333049 (51) and rs10811661 (52) and the G
allele of rs4977574 (53), rs10757274 (54) and rs10757278 (55,
56). Therefore, these five variants may indirectly influence
the lipid levels by impacting CDKN2A/2B expression. (2)
By modulating the expression of lipid metabolism-related
genes. lncRNA is a known regulator of multiple genes (57),
which may remodel lipid metabolism by regulating lipid
metabolism-related genes (58). Therefore, some genetic
variants in 9p21.3, such as rs1333049 C allele (59, 60),
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FIGURE 6

The risk bias plot of lncRNA variant with circulating lipid levels [(A) rs1333049 with TG; (B) rs4977574 with LDL-C; (C) rs10757274 with HDL-C;
and (D) rs10811661 with LDL-C].

rs4977574 G allele (60), rs10757274 G allele (60), rs10757278
G allele (60, 61), and rs10811661 C allele (52), may affect the
lipid levels by influencing ANRIL expression. Intriguingly,
this speculation was supported by a lipidomics study (18),
in which the G allele of rs10757274 remodeled the lipid
metabolism by altering the expression of lysophospholipids
(LysoPLs), lysophosphatidic acid (LysoPA), and autotaxin
(ATX). Notably, other lipid metabolism-related genes, such
as, low density lipoprotein receptor (LDLR) (62), very low
density lipoprotein receptor (VLDLR) (63), ATP-binding
cassette transporter A1 (ABCA1) (64), apolipoprotein C2
(APOC2) (65), apolipoprotein A-I (APOA1) (66), and
HMG-CoA reductase (HMGCR) (67) may also be regulated
by these variants.

In the present study, the C allele of rs1333049 showed a
statistical influence on TG and TC levels in patients with CAD
(Supplementary Table 7), indicating the significant association
between the rs1333049 C allele and increased CAD risk (1)
was mediated, at least partly, by increased TG and TC levels.
However, the G allele of rs4977574 simultaneously increased the
LDL-C (harmful) levels and lowered the TG (beneficial) levels
(Supplementary Table 8), indicating that the rs4977574 G allele
had an ambiguous influence on lipid profiles. When combined
with a previous GWAS study (24), whereby the G allele of

rs4977574 largely increased the risk of CAD, the increased levels
of LDL-C at least partly mediated the correlation between the
rs4977574 G allele and increased CAD risk.

The G allele of rs10757274 was identified as a risk
allele for CAD in the McPherson et al. (2) study. Since the
rs10757274 G allele may interact with cigarette smoking, alcohol
consumption, the presence of hypertension, the presence
of diabetes, and a family history of CAD to modulate
CAD risk (68, 69), and the G allele of rs10757274 slightly
increased the HDL-C levels and reduced the TG levels in
the present study (Supplementary Table 9). This indicates
that the correlation between the rs10757274 G allele and
increased CAD risk (2) was more likely mediated by other
cardiovascular risk factors, such as cigarette smoking, alcohol
consumption, the presence of hypertension, the presence
of diabetes, and a family history of CAD (68, 69), but
not ameliorated lipid metabolism (Supplementary Table 9).
Intriguingly, this speculation was favored by a large-sale GWAS
study conducted by Angelakopoulou et al. (70), in which the G
allele of rs10757274 significantly increased the risk of CAD but
independent of dyslipidemia. More large-scale clinical trials are
needed to verify this speculation.

However, we did not observe the effects of the rs10757278
G allele on lipid profiles (Supplementary Table 10). Since
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the G allele of rs10757278 may regulate the expression of
CDKN2A/2B (55, 56) and/or ANRIL (60, 61) and was closely
related to the onset of myocardial infarction (3), it was
reasonable to speculate that the G allele of rs10757278 very
likely impacted lipid metabolism. One plausible explanation
that can be proposed to interpret this phenomenon is that the
sample size included for rs10757278 lipid association analysis
was relatively small (as seen in Supplementary Table 10 for
more details), which largely reduced the statistical power;
therefore, future large-scale clinical trials are needed to verify
or correct our findings.

Strikingly, the C allele of rs10811661 substantially reduced
the LDL-C and TC levels in Asians (Supplementary Table 11),
indicating that the correlation between the rs10811661 C allele
and reduced CAD risk in Asians (25) was mediated, at least
partly, by decreased LDL-C and TC levels. According to
American College of Cardiology/American Heart Association
(ACC/AHA) (71), European Society of Cardiology/European
Atherosclerosis Society (ESC/EAS) (72), and the adult treatment
panel III (ATP III) cholesterol guidelines (73), LDL-C was
considered the major cause of CAD and was treated as
the primary target for therapy, while other lipids were
used as the secondary or supplementary therapeutic targets.
Since rs10811661 C allele largely reduced the LDL-C levels,
the C allele of rs10811661 may be a potential marker for
dyslipidemia and/or CAD.

According to the JDSC study (74), TG was considered a risk
factor for CAD comparable with LDL-C (a 1-mmol/L increase in
the baseline TG and LDL-C levels were associated with 63 and
64% higher risk of CAD, respectively). In the present study, the
C allele of rs1333049, the G allele of rs4977574, and the G allele
of rs10757274 consistently affected TG levels (Supplementary
Tables 7–9). This indicates the effects of the rs1333049 C allele,
rs4977574 G allele, and rs10757274 G allele on lipid profiles
predominantly in the TG levels. Since TG levels were closely
related to the pathogenesis of CAD (30–34, 71), these three
alleles of the three variants may be a potential marker for CAD.

Strengths and limitations

To the best of our knowledge, this is the first reliable
evidence that demonstrates that the rs1333049 C allele,
rs4977574 G allele, rs10757274 G allele, and rs10811661 C allele
in 9p21.3 had a statistical influence on lipid profiles. Several
strengths of the present study should be noted. For instance,
the clinical lipid data of 101,099 individuals were included in
the analysis, which increased the reliability of synthetic results
due to high statistical power. Moreover, data analyses were
performed after eliminating the studies with heterogeneity,
which further advanced the preciseness of conclusions drawn
in our study. Most importantly, our findings may help the
understanding of the underlying mechanisms between variants

of rs1333049, rs4977574, rs10757274, and rs10811661 in 9p21.3
and CAD. However, a large number of genes as well as some
environmental factors are involved in dyslipidemia. Our study
has not investigated the interaction of the 9p21.3 variant with
other variant locus or environmental factors on lipid profiles due
to the lack of original data from the included studies.

Conclusion

The rs1333049 C allele, rs4977574 G allele, rs10757274 G
allele of lncRNA and the rs10811661 G allele of CDKN2A/2B
had a significant influence on lipid levels, which may help the
understanding of the underlying mechanisms between 9p21.3
variants and CAD.
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