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Classical cadherins play a crucial 
role in establishing intercellular 

adhesion, regulating cortical tension, 
and maintaining mechanical coupling 
between cells. The mechanosensitive 
regulation of intercellular adhesion 
strengthening depends on the recruit-
ment of adhesion complexes at adhesion 
sites and their anchoring to the actin 
cytoskeleton. Thus, the molecular mech-
anisms coupling cadherin-associated 
complexes to the actin cytoskeleton are 
actively being studied, with a particu-
lar focus on α-catenin and vinculin. We 
have recently addressed the role of these 
proteins by analyzing the consequences 
of their depletion and the expression of 
α-catenin mutants in the formation and 
strengthening of cadherin-mediated 
adhesions. We have used the dual pipette 
assay to measure the forces required to 
separate cell doublets formed in suspen-
sion. In this commentary, we briefly sum-
marize the current knowledge on the role 
of α-catenin and vinculin in cadherin–
actin cytoskeletal interactions. These 
data shed light on the tension-dependent 
contribution of α-catenin and vinculin in 
a mechanoresponsive complex that pro-
motes the connection between cadherin 
and the actin cytoskeleton and their 
requirement in the development of adhe-
sion strengthening.

Forming and Strengthening  
E-Cadherin Cell–Cell Adhesions

E-cadherin is a calcium-dependent 
cell adhesion protein that controls 
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interactions between epithelial cells. 
This protein is the prototypical classical 
cadherin1 composed of an extracellular 
region (ecto-domain) carrying five “cad-
herin repeats,” a transmembrane domain, 
and a cytoplasmic region. Classical cad-
herins form one of the six clusters evident 
in the phylogenetic tree of the superfam-
ily of cadherins. This tree comprises sev-
eral hundred proteins across 30 species 
characterized by the presence of at least 
two cadherin repeats.2,3 Classical cadher-
ins, herein referred to as “cadherins,” play 
crucial roles during morphogenesis, and 
are involved in epithelial–mesenchymal 
transition, epithelial sheet maintenance, 
cell migration, tissue rearrangement, 
cell sorting, and synaptogenesis.4 Their 
functional deregulation leads to several 
pathologies, including various cancers, 
neuropsychiatric disorders, and skin 
defects.5-7

In epithelia, junctional, and extra-
junctional, E-cadherin molecules con-
nect neighboring cells, make a bridge 
between their cortical actin cytoskeleton, 
and contribute to mechanical coupling 
within cells and mechanical resistance 
of epithelia to stretch. The ecto-domain 
of E-cadherin expressed at the cell–cell 
surface is responsible for homophilic 
interactions.8 Despite interacting in 
trans, E-cadherin ectodomains are actu-
ally thought to cluster by cis-interaction.9 
Upon these ecto-domain interactions, 
the conserved cytoplasmic domain of 
E-cadherin recruits partners that con-
tribute to its connection to the actin 
cytoskeleton, leading to the formation of 
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recent study analyzing the crystal struc-
ture of full-length αE-catenin revealed 
that the αE-catenin dimer is asymmetric 
and that β-catenin binding to αE-catenin 
hinders the recognition of F-actin at the 
C-terminal site of αE-catenin.42

Thus, the tripartite cadherin/β-
catenin/αE-catenin complex initially 
thought to directly connect cadherin 
to actin appears insufficient to tether 
cadherins to F-actin, even transiently.43 
The interaction of α-catenin with actin-
binding proteins such as vinculin and 
eplin could fulfill the function to con-
nect the cadherin–catenin complex to 
F-actin.37,44,45 Alternatively, it was pro-
posed that the transient dissociation of 
αE-catenin from the tripartite complex 
induces a local increase in monomers that 
favors the formation of homodimers in the 
vicinity of the cadherin-mediated adhe-
sion sites, the latter negatively regulating 
Arp2/3 complex-dependent actin assem-
bly and promoting actin bundling.39,46 
This assumption on the modulation of 
αE-catenin monomer vs. dimer con-
centration near adhesion sites was tested 
using a mathematical modeling based on 
experimental data.47 The findings sug-
gested that the local increase in homodi-
mers near cell–cell adhesion sites depends 
on the transient homodimerization of 
αE-catenin at the cadherin/β-catenin/
αE-catenin complex.47 However, this 
does not provide any molecular cues for 
the tethering of cadherin-associated com-
plexes to F-actin. Moreover, it has been 
recently shown that while neither C. ele-
gans α-catenin nor vertebrate αN-catenin 
can assemble into homodimers, both 
proteins can sustain adherens junction 
assembly in a similar tripartite cadherin/
β-catenin/α-catenin complex.28,48 These 
findings suggest that both functions of 
αE-catenin (i.e., tethering the tripartite 
adhesion complex and regulating actin 
dynamics) could be uncoupled.

Vinculin only recently became an 
important candidate in asserting the link 
between cadherin complexes and F-actin. 
Biochemical and crystal structure analyses 
of the interaction of the VH2a domain of 
αE-catenin with the VH1 domain of vin-
culin revealed that an αE-catenin–vincu-
lin complex can form and bind to F-actin 
by the C-terminal actin-binding domains 

F-Actin Binding Proteins 
α-Catenin and Vinculin

Vinculin is a scaffolding protein recruited 
at integrin-associated complexes30 that 
contributes to mechanotransduction 
at cell–matrix adhesions.31 It is com-
posed mostly of helical bundles that are 
organized toward a globular head at its 
N terminus comprising four vinculin-
homology (VH) domains that carry 
binding sites for talin, α-actinin, IpaA, 
α-catenin, and β-catenin. A short linker 
connects the vinculin head to the rod-
shaped tail domain (VH5) located at the 
C terminus, which carries binding sites 
regulating vinculin binding to actin and 
cytoskeletal remodeling proteins, includ-
ing VASP, vinexin, ponsin, Arp2/3, as 
well for binding of PKC, paxillin, PiP2, 
and F-actin (reviewed in refs. 32 and 33). 
Vinculin exists in an auto-inhibitory form 
where the head and tail domains interact 
with high affinity. In this closed confor-
mation state, vinculin cannot bind to its 
partners or to F-actin. The activation of 
vinculin by talin or its additional partners 
in a combinatorial activation model dis-
rupts this auto-inhibitory interaction and 
exposes the head and tail domains for their 
binding to F-actin.34-36 This protein is also 
recruited at cell–cell adhesion sites.37

α-catenins are members of the vincu-
lin family of proteins, characterized by 
three successive VH domains from its N 
to C terminus.29,38 The VH1 carries the 
β-catenin binding site, and a homodi-
merization site partly overlapping with 
the β-catenin, ajuba, and spectrin bind-
ing sites. The VH2 is subdivided into two 
parts: VH2a and VH2b. VH2a carries 
vinculin-, formin-, and α-actinin-binding 
sites whereas VH2b comprises a modula-
tion domain that overlaps with the afadin-
binding site. Finally, the VH3 domain 
interacts with eplin, ZO-1, and F-actin. 
Each of these domains is structured in 
α-helical bundles, as in the vinculin mol-
ecule. In vitro, purified αE-catenin is 
mostly monomeric but can homodimer-
ize.39 Only the monomeric form can bind 
to E-cadherin/β-catenin complexes, likely 
because the dimerization domain and the 
β-catenin-binding site partly overlap.40 In 
contrast, αE-catenin homodimers bind to 
F-actin with high affinity.41,42 Moreover, a 

adhesion plaques that mature in adher-
ens junctions in epithelia. The degree of 
growth or maturation of these plaques, 
which is a mechanosensitive process,10 is 
thought to be related to the strength of 
the intercellular contacts.11-14 In addition, 
cadherin-mediated adhesion activates 
signaling cascades that regulate gene 
expression and cytoskeleton remodel-
ing.15-20 However, coupling of the cad-
herin tail to the actin cytoskeleton at 
the cell surface remains the major factor 
contributing to junction stabilization 
(reviewed in ref. 21). The regulation of 
this coupling is also required for cell–
cell adhesion strengthening,22 collective  
cell migration,23 and tissue 
rearrangement.24

The molecular interactions involved 
in E-cadherin-based adhesion strength-
ening and mechanosensing are studied 
mostly in cultured cells but also in vivo. 
Cadherin–actin coupling is not direct 
and requires interactions with cytoplas-
mic partners. The binding of the protein 
β-catenin at the catenin-binding domain 
of the cadherin tail is essential but not 
sufficient for cadherin-based adhesion. 
β-catenin recruits the vinculin-related 
protein, α-catenin, a multi-domain 
F-actin-binding protein with homology to 
vinculin crucial for strong cell–cell adhe-
sion.25,26 It was initially proposed that the 
cadherin/β-catenin complex is already 
assembled at the reticulum surface and 
exported at the cell membrane, and then 
associated to α-catenin, which directly 
binds the complex to F-actin.27 Later, bio-
chemical and structural studies argued 
for a more complex sequence of molecu-
lar interactions and the participation of 
additional partners such as vinculin, to 
the extent that α-catenin can interact 
with various partners and recruit them at 
cell–cell adhesion sites, in addition to its 
binding to F-actin (see below). However, 
very recent functional in vivo studies in 
Drosophila have re-established the tri-
partite cadherin/β-catenin/α-catenin 
complex as the central unit of cadherin 
adhesions, leaving a central open question 
as to the mode of association of this unit 
to the actin cytoskeleton.28 In vertebrates, 
two isoforms of α-catenin coexist, αE- 
and αN-catenins, encoded by two sepa-
rate genes.29



www.landesbioscience.com	 Cell Adhesion & Migration	 347

cell–cell adhesion strengthening, whereas 
a chimeric E-cadherin–αE-catenin can 
rescue this process as efficiently as wild-
type cadherin.22 In addition, defective 
adhesions were described in α-catenin-
depleted MDCK or CHO cells66,67 and 
in DLD-1 cell variant (R2/7) lacking this 
protein.68,69 Other studies showed that vin-
culin depletion produces defective adhe-
sion in F9 and MDCK cells.59,70 However, 
no one has tested whether αE-catenin and 
vinculin, as well as αE-catenin–vinculin 
interactions, were involved in cadherin 
adhesion strengthening. Thus, we fur-
ther investigated the abilities of various 
αE-catenin mutants and fusion proteins 
to rescue E-cadherin adhesion strength-
ening. For this we used first α-catenin-
depleted DLD-1-R2/7 cells that express 
E-cadherin but failed to strengthen their 
intercellular adhesions over time.63 We 
expressed in these cells the wild-type 
αE-catenin or truncated proteins lacking 
actin-binding binding domain (aa 1–670 
αE-catenin) or both this domain and the 
modulation domain (aa 1–510 αE-catenin) 
or an αE-catenin mutated in its vinculin-
binding site by inverting the charge of aa 
residues at 12 positions between aa 326 
and 348. We also expressed membrane-
targeted αE-catenin such as chimeric 
E-cadherin fused after its transmembrane 
domain with wild-type αE-catenin or to 
a αE-catenin lacking the VH1 domain. 
The defective adhesion strengthening in 
these cells was rescued by the expression of 
soluble or membrane-targeted αE-catenin 
(E-cadherin αE-catenin chimera), the lat-
ter bearing or not the VH1 domain. This 
indicated that the constitutive recruitment 
of α-catenin at the cadherin-tail could 
fulfill the α-catenin function in adhesion 
strength independent of the α-catenin 
homodimer regulation of the actin cyto-
skeleton, as confirmed since then in vivo 
in Drosophila embryo epithelial cells.28

We further showed that αE-catenin 
mutant lacking both the modula-
tion and actin-binding domains (aa 
1–510 αE-catenin) rescued E-cadherin-
mediated adhesion, the recruitment 
of vinculin at cadherin adhesions and 
allowed cells to spread on Ecad-Fc sur-
faces, while the mutant lacking only 
the actin-binding domain (aa 1–670 
αE-catenin) failed to do so, reinforcing 

Independently, α-catenin was proposed to 
act as an acto-myosin-dependent mecha-
notransducer at adherens junctions.56 
Structural and biochemical analyses of 
the αE-catenin VH2 domain suggest that 
this domain may switch between a closed 
and open conformation in a force-depen-
dent manner. In a closed conformation, 
the vinculin-binding domain is masked 
by the modulation domain, whereas in 
open conformation, this site is acces-
sible for interaction with vinculin.38,57,58 
Furthermore, vinculin recruitment at 
adherens junctions is inhibited by blebbi-
statin, suggesting that the α-catenin–vin-
culin interaction is increased upon force 
at adhesion sites.56,59 Thus, vinculin may 
contribute to cadherin-based mechano-
sensing and junctional remodeling.60-62 
However, there has been no direct dem-
onstration of the contribution of the 
force-dependent conformational switch 
of α-catenin or of the recruitment of vin-
culin in mechanosensitive contact rein-
forcement at intercellular junctions since 
this point has been mostly investigated in 
the cases of cell–cell junctions relaxation 
using myosin II inhibition56-62 or endothe-
lial junction remodeling using thrombin 
treatment.60

In a recent study, we63 directly ana-
lyzed the effect of the force exerted at 
cell–cell adhesions and showed that 
stretching of cell doublets increases vin-
culin recruitment at intercellular adhesion 
sites and induces a change of αE-catenin 
from a closed to an open conformation, 
as revealed by the recognition by a spe-
cific antibody directed against an epitope 
accessible only in the open conformation. 
This finding points to a force-driven, 
α-catenin-dependent mechanism for 
the recruitment of vinculin at cadherin-
based adhesions. Furthermore, we directly 
addressed the roles of αE-catenin and 
vinculin in cadherin-based intercellular 
adhesion strength using the dual pipette 
assay.63 In this assay, the force required 
to separate cell doublets is used as a 
read-out of adhesion strength.64 We have 
shown in earlier studies a time-dependent 
adhesion strengthening that depends 
on cadherin expression levels, actin 
cytoskeleton dynamics, and cadherin–
actin coupling.22,65 Indeed, cytoplasmic 
domain-deleted E-cadherin does not allow 

of either protein.36,49,50 The binding of 
α-catenin on vinculin, playing the role 
of talin binding, may induce the head-
tail opening of the molecule, increasing 
its affinity for F-actin. These studies fur-
ther reported the existence of a vinculin– 
α-catenin heterotetramer, at least in vitro, 
which may contain a total of four func-
tional binding sites for F-actin. As such, 
αE-catenin may exist within cells in at 
least three forms (monomeric, dimeric, 
and heterotetrameric) that could theo-
retically be diffusive or bound to cad-
herin–catenin complexes or F-actin with 
multiple valences. Whether this tetramer 
or the αE-catenin–vinculin heterodimers 
are bound to F-actin, associated to cad-
herin complexes, or both is unknown so 
far. A demonstration of the involvement of 
these F-actin adaptors in cadherin adhe-
sion strengthening in cellulo have been 
hampered, in part, because α-catenin and 
vinculin also play biological roles unre-
lated to cadherin-based adhesions.

α-Catenin and Vinculin  
in Mechanosensing  

and Strengthening of  
Intercellular Adhesions

The formation of cadherin adhesions 
depends on the environmental stiffness. 
This has been previously demonstrated 
by culturing C2 myoblast cells on poly-
acrylamide gels or on flexible polydimeth-
ylsiloxane (PDMS) pillars coated with 
Ncad-Fc.10 However, only on rigid sur-
faces do cells form cadherin adhesions 
connected to actin cables51 that transmit 
myosin II-generated forces.52 Cadherin 
adhesion formation following increased 
environmental stiffness correlates with 
an increase in cell traction forces at these 
sites, indicating that cadherins contribute 
to the distribution of intercellular con-
tractility through a myosin II-dependent 
mechanism.10,53 This process shares simi-
larities with the mechanism of mecha-
nosensing described for integrin-based 
adhesions,54 which involve acto-myosin 
cables and mechanosensors located at the 
interface between adhesion receptors and 
the cytoskeleton. Borghi and coworkers55 
showed recently that the tension transmit-
ted to cadherin-based adhesion through 
the actin cytoskeleton requires α-catenin. 
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