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Abstract: Despite their differences, biological systems at different spatial scales tend to exhibit
common organizational patterns. Unfortunately, these commonalities are often hard to grasp due to
the highly specialized nature of modern science and the parcelled terminology employed by various
scientific sub-disciplines. To explore these common organizational features, this paper provides a
comparative study of diverse applications of the maximum entropy principle, which has found many
uses at different biological spatial scales ranging from amino acids up to societies. By presenting
these studies under a common approach and language, this paper aims to establish a unified view
over these seemingly highly heterogeneous scenarios.

Keywords: maximum entropy principle; biological systems across scales; model-free data analysis;
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1. Introduction

While the scientific endeavor is traditionally associated with the divide et impera motto, the last
decades have witnessed a shift in many areas of research towards considering the collective properties
of sets of interacting elements such as cells, circuits of neurons, brains, species, and ecosystems [1].
This interest is fostered by the growing understanding that “more is different”, i.e., that many of
these systems exhibit emergent properties that cannot be explained by the nature of their parts in
isolation [2]. Another driver of this shift is the increasing amount of data available for analysis, which
are enabled by novel recording techniques and recent advances in technologies for information storage,
transfer, and analysis [3].

Biological research is, nowadays, in a peculiar situation: while there are more data available than
ever before spanning all spatial biological scales, there is still a lack of an operational theory to explain
the collective behavior of living organisms on different scales. One approach to pave the road towards
finding such principles is to employ data-driven modeling techniques from the statistics literature,
which—due to their generality—can be applied in diverse biological scenarios. While this way of
proceeding might go against the traditional wisdom built by means of mechanistic considerations,
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a number of articles have shown that collective behavior can be effectively characterized by statistical
models constructed purely from data [4,5], importantly, these studies show that is possible to build
accurate statistical models without the need to characterize the mechanistic interactions or biological
processes from first principles.

The maximum entropy principle (MEP) is one of the statistical methods that have found
applications over a surprisingly wide range of biological scenarios. The core idea of the MEP is
to build statistical models that agree with data, but are otherwise as “structureless” as possible.
In other words, the MEP provides a method to find the least biased model that is consistent with the
data, i.e., the maximally noncommittal with regard to missing information [6]. The initial success of
the MEP method in physics and engineering rapidly triggered a plethora of applications in biology,
including DNA motifs of transcription factor binding sites [7], co-variations in protein families and
amino acid contact prediction [8–10], diversity of antibody repertoires in the immune system [11,12],
collective activity of neural populations [4,5,13–19], collective behavior of bird flocks [20,21], collective
behavior in groups of mice [22], and ecology of abundance and distribution [23,24]. The fact that the
MEP has been successfully applied in these highly heterogeneous scenarios suggests that there might
exist interesting organizational commonalities across biological scales. However, these commonalities
are obscured by the parcelled language and terminologies employed in the various sub-disciplines of
biology, which makes comparative studies highly non-trivial.

To help the exploration of common organizational properties, this article provides a unified review
of recent advances related to the applications of the MEP across biological scales. The target audience
for this article are researchers already familiar with the MEP, but are not aware of other applications in
the realm of biology.

There are recent reviews related to the MEP applied to different fields of biology, with a focus
on, e.g., parameter inference [25–27], reverse engineering [28], the learning of hidden variables [29],
and information-processing in biophysical systems [30]. To complement this literature, the goal of this
article is to provide a comparative study of applications of the MEP across biological spatial scales,
providing a unified formalism, perspective, and notation that can bridge the differences between
various scientific sub-fields. We compare and highlight some differences, extensions, and limitations
of the MEP approach, and discuss open challenges for future research.

2. Maximum Entropy Principle: Preliminaries and Fundamentals

When studying living systems from data, scientist are usually unable to access all of the relevant
information that would be required to fully characterize the system of interest. This limitation seems
not to be a mere technological issue, but rather an intrinsic characteristic of biology—at least in
the foreseeable future. For example, it is unlikely to be able to simultaneously measure the firing
patterns of each of the ≈ 1011 neurons in the human brain, or quantify and classify all of the insects
that live in the Amazonian rain-forest at a given time. Despite this limitation, it is usually possible
to obtain accurate estimations of global properties from incomplete data, e.g., the average value
of certain quantities of interest. Therefore, it is often relevant to find models consistent with this
accurate—but partial—information.

An additional challenge is the fact that usually there are an infinite number of statistical models
that are consistent with a given set of global properties measured from data. Therefore, one needs an
additional criteria to decide which model to use. The MEP provides a rational basis to guide the model
selection stage in these situations. The core of the MEP method is based on a constrained optimization
problem of a concave functional—the Shannon entropy—resulting in a unique probability distribution
that is consistent with the partial information at hand, being otherwise as “random” as possible.

In the rest of this section, we introduce the MEP from a broader perspective, i.e., as an inverse
problem from statistical mechanics. After introducing the basic building blocks of this principle, we set
the notation and fundamental ideas to unify the approach presented in the remaining sections.
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2.1. Forward versus Inverse Problems

The idea of maximizing entropy has its origin in thermodynamics and statistical mechanics.
In these branches of physics, there are two opposite approaches to build statistical models for
characterizing the phenomena under study. One is to assume complete knowledge of the relevant
mechanistic interactions that rule the constituents of the system, which is known as forward modeling.
This approach provides a probabilistic model, which in turn determines values for the average
of various observables of the system. The second approach works backward, hence it is called
inverse modeling: one uses data to determine the average value of various observables, and then
builds the “least structured” statistical model that is consistent with those values.

2.1.1. Forward Modeling

The primary goal of statistical physics is to derive observable quantities from microscopic
laws governing the parts and interactions of a system. The standard way in which these ideas
are introduced is through Hamiltonian models that describe the interactions of a system from first
principles. This approach is often called “forward,” and the goal is to characterize observables
representing collective phenomena such as spin magnetization, correlations, or to characterize phase
transitions as a function of the physical parameters of the model.

2.1.2. Inverse Modeling

The inverse problem starts by taking average values of observables from data. The goal of
this approach is to infer the parameters of a candidate Hamiltonian that defines the rules of local
interactions, and in turn characterize the system using only data. Although some branches of
biology have rich theories [31], there are other domains for which no mechanistic far-reaching
accounts are available yet; in the latter cases, the MEP is usually among the best alternatives.
Additionally, this approach can be used in any branch of biology that wants to “confirm” the parameters
or interactions of a candidate Hamiltonian from data. Unfortunately, inverse problems are usually
hard to solve; in particular, the application of the MEP to biological data usually relies on sophisticated
numerical algorithms and computational power [4,16,17,32].

2.2. Maximum Entropy Principle: Definitions and Methods

The MEP is an inverse problem commonly employed in statistical mechanics, which has found
applications in several other scenarios. This approach can reconstruct local rules of interaction from
the data, without adopting specific mechanistic assumptions. While the MEP can take a very general
form (see, e.g., [33]), this article focuses on the standard approach that focuses only on average
values computed from data. In the next section, the basic building blocks of the MEP are explained,
while introducing the notation that is used throughout the rest of the article.

2.2.1. State Space, Observables, and Average Values

Suppose that scientists are interested in a particular system, for which they only have data
but otherwise no additional knowledge. The first step in building the maximum entropy model
of the system is to describe the set of possible configurations, which is called state space. For
concreteness, let us consider a system made of N sub-units x = (x1, . . . , xN), where each coordinate
xi ∈ X i represents the state of each sub-unit. The state space is denoted by X = X 1 ×X 2 · · · × X N .
It is important to note that the state space grows exponentially with the number of sub-units.
Therefore, when considering systems composed by many sub-units, the state space is usually too large
to be characterized directly from data, i.e., the cardinality of the state space is usually much larger than
the number of data samples.
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Having a clear idea of the state space of the system, the second step is to choose the observables
of the system. Observables are real-valued functions on the state space of the form:

f : X → R
x 7→ f (x) .

Observables are random variables whose average values can be estimated from data. With the
state space defined and the estimation of basic statistical features with sufficient accuracy, the scene is
set to build the minimally structured model that is consistent with these measurements.

2.2.2. Entropy Maximization under Constraints

Although the concept of entropy was first used by Rudolf Clausius in the field of thermodynamics
to study the relationship between energy and temperature, Shannon entropy [34] has a much broader
scope dealing with the notions of information and uncertainty. Mathematically, for a discrete random
variable with discrete probability distribution q over the state space X , its entropy is

S [ q ] = − ∑
x∈X

q(x) log q(x). (1)

The notion of entropy can also be applied to continuous variables via the differential entropy [35].
In this case, sums over the discrete state space are replaced by integrals:

S [ q ] = −
∫

q(x) log q(x)dx (2)

Shannon entropy can be understood as a generalization of the principle of insufficient reason,
and Laplace’s principle of indifference. The basic formulation of these principles state that, if one is
interested in assigning probabilities to events, but there is no further information available about them,
one should assign the probabilities using the uniform distribution (which is the distribution that
maximizes entropy when the number of events is finite). The MEP generalizes this to scenarios with
infinite events, or when information about the system is available. For these cases, the MEP states that
one should assign probabilities according to the distribution that maximizes the entropy while being
consistent with the available information.

The inputs for the MEP are the average values of a set of observables, which represent the
knowledge obtained from the data. As the empirical average of observables are usually not enough to
uniquely determine a probability distribution, the MEP is used to obtain the unique probability measure
p that maximizes the entropy among all the probability measures q that match the expected values of
all of the observables. The MEP can be stated mathematically as the following optimization problem:

max
q∈M

S [ q ]

subject to Eq [ fk ] = 〈 fk〉e, ∀k ∈ {1, . . . , K},

where M is the set of probability measures, Eq[ fk] is the average of the observable fk for all k ∈
{1, . . . ,K} with respect to q, and 〈 fk〉e is the empirical average of fk obtained from data. For more
information about the technical aspects of the MEP, please refer to [6,17,18,36,37].

3. Examples at Different Spatial Scales

One of the most powerful features of the MEP is its generality, which enables its use over a
extremely broad range of scenarios. This section explores six case studies of the application of the
MEP in biology at different spatial scales, employing a unified methodology and notation. The cases
are the following: amino acids in proteins (Section 3.1), retinal ganglion cells (Section 3.2), whole
brain networks (Section 3.3), plant communities (Section 3.4), macroecologic biodiversity (Section 3.5),
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and human vote interactions in the US Supreme Court (Section 3.6). Rather than reviewing many
articles related to each scale, we follow particular articles that summarize well the application of
the MEP at that particular spatial scale. For each scenario, we describe the state space, the chosen
observables, and the inferred information.

3.1. Amino Acid Interactions in Proteins

Proteins are sequences of amino acids, whose three-dimensional arrangement (tertiary structure)
is critical for determining its biological function. An example of this is the case of homolog proteins:
proteins with a common evolutionary ancestor, where the tertiary structure and biological function
is highly conserved, while the amino acid sequence may differ in many ways. A family of homolog
proteins can be summarized in the so-called “Multiple Sequence Alignment” (MSA): a matrix where
all the sequences belonging to a given protein family are aligned using sophisticated similarity
methods [38,39]. Large databases of MSA for different protein families are nowadays available
(see, e.g., [40]) and the number will keep increasing as more complete genomes are sequenced [41].

This important technological advance faces the challenge of finding statistical regularities between
the protein tertiary structure and the linear amino acid sequence. In fact, if the biological function of a
protein highly depends on its tertiary structure, and the conservation of the tertiary structure depends
on the conservation of interactions between amino acids residues, then it is expected that some sites of
the amino acid sequences co-evolve, thus preserving its biological function.

Here, we review the results reported by Cocco et al. [42], focusing on showing explicitly the
basic building blocks of the MEP, i.e., the state space, the observables, and the inferred information.
In the article, the authors showed a wide variety of applications of MEP to the analysis of MSA as
the prediction of co-evolving sites, physical interactions between amino acid residues on the tertiary
structure, and the prediction of biological functions from the linear amino acid sequence.

3.1.1. State Space

Consider a protein family composed of M homolog protein sequences (either from
different species or different pathways inside the same specie). To align sequences of different
lengths, a gap, “−”, may be introduced in some sequences. Therefore, there are r = 21
possible values for each sequence site, namely 20 amino acids plus a gap, and hence we use
X i = {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y,−} (each letter represents one amino acid
in the conventional representation).

Let us denote by L the aligned length of each protein sequence. Then, the MSA can be represented
as a M× L matrix (see Figure 1), where the sequence of each protein is a L-vector and each sequence
site l corresponds to one of the 21 amino acids from the X i set. However, for technical reasons,
Cocco et al. [42] used a binary embedding, where each sequence is represented as a binary Lr vector,
where the ith entry of each sub-vector is 1 if the corresponding ith amino acid of the X i set is present on
that site and 0 otherwise. Thus, the state space is conformed by all the possible amino acid sequences
of length L, i.e., X = {0, 1}Lr.

3.1.2. Observables and Average Values

The observables of interest are single site occurrence rates and pairwise occurrence rates.
Hence, their average values consider both the single site averages and the pairwise
site-correlations statistics:

• 〈 fi(a)〉 = 〈ai〉 is the average occurrence of the amino acid a at the ith sequence site.
• 〈 fi,j(a, b)〉 = 〈aibj〉 is the average co-occurrence of the amino acids a at the ith site and b in the jth site.
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Figure 1. The amino acid sequences of M homolog proteins are aligned in the Multiple Sequence
Alignment (MSA) matrix. Each MSA column is a sequence site and each row is the sequence of a
member of the protein family. To have a fixed sequence length L, a gap (“−”) may be introduced.
From the MSA, two sets of observables are considered: (i) fi(a) is the occurrence of the amino acid a at
the site i; and (ii) fij(a, b) is the co-occurrence of amino acid a at the site i and amino acid b at the site j.

3.1.3. Inferred Information

The statistical models built from the MEP yield valuable information about protein tertiary
structure, its function, and protein design. Among the inferred information is the following.

1. Co-evolving site pairs: The interaction strength between site i and site j can be obtained as a
function of the model parameters Ji,j(a, b), i.e., the interaction between amino acid a in site i with
the amino acid b in site j. This coupling strength can be used to identify evolutionary constraints
on the site-interactions of the protein family.

2. Contact Prediction: The protein tertiary structure is associated with a topology of contacts
between far amino acids residues. Interestingly, this topology can be inferred from the Ji,j(a, b)
coefficients. For predicting the tertiary structure of proteins, interactions between sites with a
minimum separation of five sites on the linear sequence are usually studied—which is equivalent
to one turn in an α-helix. The MEP approach outperforms the pairwise site contact prediction
given by correlation-based methods (e.g., mutual information) [25,26,42], illustrating the power
of considering interactions instead of mere correlations.

3. Protein Design and the Effect of Mutations: According to the energy landscape theory of
protein folding [43], proteins conserved along evolution tend to minimize their free energy in
their folded state. Using the MEP, the energy of each amino acid sequence can be computed,
which allows to score each sequence according to its energy. This results in a set of non-naturally
occurring proteins that minimizes the energy and, possibly, preserves the same functions as the
original protein family. This inferred information has been applied to test and predict the effect
of mutations [44,45].

To conclude, it is worth noting that the MEP approach represents an appealing alternative to
computationally expensive molecular dynamics simulations.

3.2. Retina

The retina is a part of the brain which is located in the back part of the eye. Its main function
is to encode different aspects of the visual stimulus and convey information to the visual brain
areas about the visual stimulus, namely size, color, and movement, through the retinal ganglion
cells as sequences action potentials (spikes) and silences. The integration and transformation of the
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stimulus from retinal ganglion cells constitutes the first stage of our visual perception. Multi-electrode
arrays allow the recording spikes from thousands of retinal ganglion cells responding simultaneously
to light stimuli. Since the seminal work of Schneidman et al. [13] and Pillow et al. [46] to
characterize the spike train statistics of the vertebrate retina responding to natural stimuli, a succession
of research efforts have helped to better understand some aspects of the so called ’“retinal code”
(i.e. the input–output relationship). Since then, the MEP approach has become a standard tool to
build statistical models in this field [4,13,46–48], and it is more and more clear that genuine collective
behavior in the retinal network can be characterized using the MEP from relatively weak correlations
among pairs of neurons (Ising model) [13].

Here, we translate the results reported by Tkačik et al. [4] into our standardized terminology.
In this article, the authors built an accurate maximum entropy model that matches the firing rate of
each retinal ganglion cell, their pairwise correlations, and the distribution of summed spikes in the
network at each time bin.

3.2.1. State Space

Consider a time discretization in which, for each time bin, each neuron can take only two values,
either zero or one (see Figure 2). In the paper, the authors used a time window of ∆tb = 20 ms.
Consequently, in a network of N neurons, we denote xk

t the binary variable which takes value 1
whenever the kth neuron emits a spike during the tth time bin, and 0 otherwise. Therefore X i = {0, 1}
for all i = 1, ..., N.

This standard procedure transforms data into sequences of binary patterns (see Figure 2). A spike
pattern is the spike-state of all the network at time bin t, denoted by xt :=

[
xn

t
]N

n=1. Finally, a spike
train or dataset is a finite sequence of spiking patterns. The state space is formed by all the spike
patterns X = {0, 1}N .

Figure 2. The retina of a vertebrate animal is extracted and mounted on the multi-electrode array
in order to obtain the extracellular potential of the retinal ganglion cells responding simultaneously
to natural stimuli. A signal processing procedure called spike sorting leads to the detection of the
spikes of each cell. A binning procedure is applied to obtain binary patterns of activity, from which the
average values of the observables are computed.
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3.2.2. Observables and Average Values

The observables and their average values used in this study are:

• 〈 fi(x)〉 = 〈xi〉: The firing rate of neuron i, for all neurons.
• 〈 fij(x)〉 = 〈xi xj〉: The synchronous pairwise correlation between neuron i and neuron j, for all

pairs of neurons.
• 〈 fK(x)〉 = 〈δ(∑N

i=1 xi
t, K)〉, for K = 1, .., N.

Above, δ(·) represents the Kronecker delta, which takes value 1 when both arguments are equal,
otherwise it is zero. Please note that in this scenario 〈·〉 corresponds to a temporal average taken over
the data (see Figure 2).

3.2.3. Inferred Information

The inferred maximum entropy distribution is used to investigate the principles underlying
population coding, i.e., how groups of neurons orchestrate their spiking activity characterizing the
neural code. In the article, the authors used the maximum entropy distribution p(x) to investigate the
following issues:

1. Joint Shannon entropy: To characterize the size of the neural vocabulary, the effective number
of configurations is reduced to 2S (1). The entropy represents the ability of the system to explore
these available states, and hence assesses the capacity of the neural population to represent visual
information. In this case, a low entropy shown that the expected frequency of spike patterns are
extremely inhomogeneous.

2. Classification of activity patterns into meta-stable collective modes: The energy landscape
inferred from the maximum entropy method presents valleys, which resembles a “clustering of
patterns” of neural activity, but obtained without a particular metric for similarity among patterns.

3. Redundancy: From the inferred joint distribution p(x), the authors computed the conditional
marginal distributions p(xi = 1 | x\i), where x\i means all x except i. They showed that the state
of individual neurons is highly predictable from the rest of the population, characterizing in this
way the level of redundancy in the neural population. This property is suggested to allow error
correction capabilities.

3.3. Resting State Networks in the Human Brain

As presented previously, the pairwise maximum entropy model (MEM) accurately describes firing
patterns in the retinal ganglion cells [4,13], but additionally firing patterns and local field potentials
(LFPs) in human cortical tissues in vitro [14] and large-scale firing patterns in the visual cortex of
monkeys and cats in vivo [49,50]. These findings suggest the idea that the human brain activity
patterns during rest may accurately be described by pairwise MEMs.

Here, we discuss results reported by Watanabe et al. [51] focusing on the detailed description
of the state space and observables and inferred information. In this article, the authors studied
spontaneous brain activity (in the absence of a task, but awake) using functional magnetic resonance
imaging (fMRI) data. This technique has revealed that different brain regions interact with each other
during rest, forming several resting-state networks (RSNs) [52]. The RSNs, including the default
mode network (DMN) and the fronto-parietal network (FPN), are highly reproducible across different
healthy individuals and are considered to underlie cognitive processes.

3.3.1. State Space

Blood Oxygen Level-Dependent (BOLD) signals are extracted from anatomically defined regions.
Their study focuses on 12 regions for the DMN and 11 regions for the FPN. The continuous signals from
these regions was binarized, i.e., at each time step, the region is considered to be inactive (i.e., 0) if the
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BOLD signal is below a given threshold; otherwise, the region is considered active (i.e., 1, see Figure 3).
The threshold is set to maximize the accuracy of fit of the maximum entropy distribution.

The authors considered two separate datasets, one for the DMN and one for the FPN. Each dataset
is a sequence of patterns of zeros and ones. The state space as in the case of retinal ganglion cells is
X = {0, 1}N .

Figure 3. Regions of interest in the brain (represented as circles) corresponding to the DMN and FPN
are selected and their BOLD signals (continuous in time and state-space) are analyzed. To obtain binary
states, as in the previous example, the time is discretized choosing time windows of 9.045 s and the
BOLD signals are binarized using a threshold under which the continuous signal is zero and otherwise
is one (for details about the threshold and robustness of the choice, please refer to [51]). From the binary
data, the average values with respect to time of the observables are computed. The maximum entropy
principle is used to find the unique joint probability distribution that maximizes entropy, which is
consistent with constraints computed from data.

3.3.2. Observables and Average Values

The observables and average values used in the article are (see Figure 3):

• 〈 fi(x)〉 = 〈xi〉: The activation rate of region i, 12 for the DMN and 11 for the FPN.
• 〈 fij(x)〉 = 〈xi xj〉: The synchronous pairwise correlation between region i and region j, for all

pairs of regions of the DMN and FPN.

3.3.3. Inferred Information

The authors showed that the pairwise MEM accurately characterizes the statistical behavior of
discretized BOLD signals in the human RSNs. Functional interactions (coupling parameters) from the
pairwise MEM were similar to the anatomical connections. The authors showed that the agreement
between the estimated matrices of functional interactions and the anatomical connections is more
accurate than other methods such as: (1) Pearson’s correlation coefficients; (2) inverse Gaussian
model; (3) partial correlation; and (4) mutual information method. These findings suggest that the
large-scale human brain networks of resting state can be accurately modeled by a synchronous pairwise
model MEM.
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3.4. Plant Communities Relative Abundances

For a long time, ecologists have tried to build models to estimate the relative abundances of species
in a community [53]. Knowing this structure gives insights on the functionality of the community and
allows us to infer information about ecological interactions such as competition [54]

Inferring the relative abundance of species has been attempted using different alternatives such as
population biology approaches, and, lately, there have been more attempts using what is known as
“the Unified Neutral Theory of Biodiversity and Biogeography,” or simply neutral theory [55,56].

Another approach using MEP was developed by Shipley et al. [57] to estimate the relative
abundances of species. Shipley’s method was the first to predict macroecological patterns
(specifically, the species abundance distribution) from maximum entropy models using functional
traits as observables rather than species identities.

This model measures the mean value of functional traits of plant species in order to predict
community assemblies even for a 3000 square kilometer area with a pool of over 500 species [58].
This approach brought a substantial improvement in the prediction of plant relative abundances,
without considering explicitly in the model any biological or ecological processes [59]. In the following
section, we discuss the approach used by Sonnier et al. [58], using our conventions and notation.
We present these results focusing on the state space, observables and inferred information.

3.4.1. State Space

Consider a community of plants in a landscape A0 composed of a pool of S0 species. Within that
landscape, we could have any combination of proportions of each species i ∈ S0 given by xi. The state
space is:

X = {(x1, x2, . . . , xS0) | xi ∈ [0, 1] and
S0

∑
i=1

xi = 1}.

Please note that using an adequate definition of the species pool is a crucial step, as this determines
the state space and hence critically influences the model.

3.4.2. Observables

The observables are the functional traits of the pool of species that might be in the community.
Functional traits are morpho-physio-phenological traits that impact the growth, reproduction and
survival of the species [60]. They represent features such as diameter at breast height, whole plant
height, leaf, area per leaf, dry mass ,and seed mass, among others.

From a restricted area A0, traits are measured from all of the plants found without identifying
the plants. The average values of the observables (traits) are the constraints of the maximum
entropy problem. The optimal proportion consistent with the observed data is found using the MEP and
known databases where average traits are available for several plants (see Figure 4). Currently, in the
Botanical Information and Ecology Network (BIEN) database, there are 53 traits that can be extracted
for a large number of plant species, and if one of the traits is not available for the species level it can be
inferred as the mean of the next available phylogenetic level (e.g., genus and family) [61]. There are
also over 17 million plot observations where every plant has been recorded in a given area, thus there
is a large database with more than 485,000 species with which to test this method.
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Figure 4. (A) From a large dataset where several plant species have their recorded mean trait value,
we extract (B) a reduced database with the possible plant species present in A0 (blue rows selected in
(A)) and traits possible to be measured (blue columns selected in (A)). (C) Then, traits are measured in
the field for all possible plants without specifying the species. The average values of these traits are the
constraints for the maximum entropy problem of finding an estimate for the proportion of each plant
species in A0.

3.4.3. Inferred Information

The results of this model successfully predict the relative abundances of plant species throughout
the landscape and over time [57]. The premise of Shipley’s model [57] is that the environment acts
as a filter of species acting on functional traits, i.e., it is not the species identity but its traits that are
important. As an example, this could lead to better predictions on how invasive a species could be in
a new environment. Usually, you can predict whether a species can survive in a novel environment
using species distribution modeling [62], but it is a lot more difficult to predict if that species will
become abundant enough to be a problem. This model bridge the gap between community ecology
and functional ecology.

3.5. Macroecology and Biodiversity

Macroecology is a field of ecology that studies ecosystems at a global scale looking for universal
patterns and relationships. The objects of study are species–area relationship and species–abundance
distributions, among others [63]. The MEP provides the theoretical framework to build data driven
statistical models which can be used in this context to unify and study community patterns of
macroecology through four variables which are measured in the field: number of species S0, number
of individuals N0, the total area A0, and total metabolic rate E0. In most cases, the metabolic rate of
individuals is inferred through scaling relationships, where individuals sizes predict their metabolic
rate through known relationships [64].

Certainly, there are many ways to describe macroecology, using different ideas and mathematical
techniques. There has been a recent effort to build unified theories of biodiversity [65].
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Here, we present one version based in information theory, i.e., the Maximum Entropy Theory
of Ecology (METE), which was introduced by Harte et al. [66,67], but called METE in the
book [23], discussed in [68–70], and recently revisited to clarify some of the notation and incomplete
derivations [71]. However, as discussed in [72], there is still work to be done in this theory. We use our
notation and focus on the description of the state space and observables.

3.5.1. State Space

One of the main problems faced by the METE is the estimation of the probability that a species
picked at random in a chosen area A0, belongs to a species that has a total population of n and with
metabolic rate ε, given that in that area it is known that there is a pool of S0 species, N0 total individuals
and a total metabolic rate of E0. This probability is denoted by:

p(n, ε|A0, S0, N0, E0), (3)

where p is a mixed discrete distribution over n (discrete number of individuals) and continuous over
ε (real valued metabolic rates). The state space is the product space between the abundance of each
species and the total metabolic rate of each of them. Mathematically, in our notation, it is X = N×R+.

3.5.2. Observables

The observables are the abundance per species n, whose average is estimated by the fraction N0
S0

where the numerator and the denominator are measured, and nε is the total metabolic rate of the
individuals within the species, whose average over species is E0

S0
. Please note that the values of these

quantities can be extracted or estimated from existent databases. Both average values serve as the
constraints of the MEP model:

∑ N0
n=1

∫ E0

ε=1
n · p(n, ε|A0, S0, N0, E0) dε = Ep[n] =

N0

S0
(4)

∑ N0
n=1

∫ E0

ε=1
n · ε · p(n, ε|A0, S0, N0, E0) dε = Ep[nε] =

E0

S0
. (5)

3.5.3. Inferred Information

Once the joint probability distribution p (3) is fitted by the MEP, many ecological relationships
can be derived. For instance, one can obtain the marginal distributions. Integrating over
ε, the species-abundance distribution is obtained which is usually denoted by φ(n0|A0, S0, N0).
Summing over n, the metabolic rate distribution over all individuals is obtained usually denoted
by ψ(ε|A0, S0, N0, E0) (see Figure 5). Similarly, the species–area relationship and the endemics–area
relationship, among other key features in macroecology, can be derived [24]. Recently, this methodology
has been used to estimate p using data from 60 different forest communities, with more than
2000 species and it was proven to successfully explain both the species–area relationship and the
individual–size distribution [73,74].
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Figure 5. (A) Database with the species, their counts, and the mass of that species for a given area A0.
From here, the quantities used to compute the average value of the observables S0 and N0 are obtained;
(B) Using the metabolic theory, the metabolic rate (MR) of each species is estimated. The quantity E0 is
computed from the standardized metabolic rate (SMR), which is obtained by dividing all of the MRs by
the minimum MR; (C) The species-abundance distribution φ(n0|A0, S0, N0) is computed from the joint
maximum entropy distribution and a graph of rank versus abundance is plotted; (D) The metabolic
rate distribution over all individuals is obtained ψ(ε|A0, S0, N0, E0). A graph of rank versus metabolic
rate is shown. (C,D) Images were obtained from the maximum entropy distributions fitted to data
available in the R package meteR [75] using Dan Gruner’s data [76].

3.6. Human Voting Interactions in the US Supreme Court

Human interacting systems may show interesting collective behavior [77,78], which can be
exhibited from data and from models that hypothesize the way in which they interact. In [79] the
authors considered the voting of the Supreme Court of the United States (SCOTUS), which is the
highest court in the US government. The article shows that the structure of coalitions among multiple
justices can be studied using a pairwise maximum entropy model. Moreover, it is shown that a
maximum entropy distribution provides surprisingly accurate descriptions of collective behavior in
voting patterns.

3.6.1. State Space

The data consist of N = 9 justices who vote on the constitutionality of legislative and executive
actions. The article considers data from the second Rehnquist Court (1994–2004, 895 votes) during a
period in which the membership stayed constant. The Court issues majority and minority opinions,
and these can be supplemented with other opinions; although opinions can be nuanced, each justice
casts a yes (xi = +1) or no (xi = −1) vote, and the majority of votes decides the fate of each case.
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The state of the whole system can be represented by x = (x1, . . . , x9). The state space of each variable
is X i = {−1, 1} and the state space of the whole system is X = X 1 ×X 2 × · · · × X 9.

3.6.2. Observables

The model only considers pairwise correlations between the nine variables Cij = 〈xixj〉
(see Figure 6). These correlations are the restrictions of the maximum entropy problem. The maximum
entropy distribution that is consistent with the observed pairwise correlations among justices’ votes is
equivalent to an Ising spin glass with energy function:

H(x) = −1
2 ∑

i 6=j
Jijxixj,

Figure 6. (A) Interacting random variables xi representing the votes of the nine justices; (B) Correlation
matrix between random variables xi and xj measured directly from data; (C) Interaction matrix
computed from the maximum entropy principle.

3.6.3. Inferred Information

The MEP predicts the joint distribution over voting patterns p(x) and can be tested in various
ways. For example, the probability that the vote is split (k, 9− k), with k = [5, 9] votes for the majority,
can be computed from data and predicted from the model. Additionally, probability versus energy
and mutual information are measured from data and compared with the predictions of the model.
The article reports small quantitative discrepancies between the model and the data.

The MEM shows that voting patterns are organized in an energy landscape that is equivalent to an
Ising spin glass. The authors of [79] insisted that this is not a metaphor, but a mathematical equivalence.
This simple model correctly predicts the extent to which each justice is correlated with the majority
without accounting for “ideologies”. A useful application of this MEM is that allows computing and
ranking the influence that individual justices have on the majority decision. It can be observed that a
strong tendency toward unanimity emerges from the inferred probability model.

This investigation shows that the competition between unanimity and ideological division
emerges from interactions among the justices which can be inferred using the MEP under simple
constraints even in a complex political context.

4. Discussion

In the previous sections, we outline the fundamental ideas behind the MEP and explore how
it can be used to analyze data across different biological scales, ranging from the amino-acids up
to macroscopic social scenarios (see Table 1). A key feature shared by all of these scenarios is the
underlying randomness present in biological phenomena, which makes the probabilistic approach
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appropriate. Another important commonality is the impossibility of obtaining data that can cover the
whole state space, which turns modeling and statistical inference into a necessity.

Table 1. Table of examples including the state space and the observables from which average values
are calculated from data.

Scenario State Space Observables and Average values

Amino acids in proteins {0, 1}Lr Average amino acid occurrence on a given site
and average co-occurrences of amino acids on site-pairs

Retinal ganglion cells {0, 1}N Firing rates and pairwise correlations
Whole brain networks {0, 1}N Activation rates and pairwise correlations
Plant communities [0, 1]S0 Average value of traits
Macroecologic biodiversity N ×R+ Average abundance per species and average over species

of the total metabolic rate of the individuals within the species.
US Supreme Court {−1, 1}9 Pairwise correlations

4.1. Lessons from the Case Studies

Let us emphasize some key takeaway messages obtained from the comparative studies presented
in Section 3.

(i) The MEP can be applied to a wide range of systems. The flexibility of the MEP allows
its application to biological systems. Moreover, the range of application not only spans spatial
scales, but also includes technically diverse scenarios. In effect, in some of the considered case
studies, the observables are directly related to causal/mechanistic interactions, while in others
they are not. Moreover, the averages of these observables are in some cases temporal, while in
other cases spatial. The fact that the same formalism can be adapted to such different contexts
highlights the flexibility of the MEP approach [19].

(ii) It is critical (and highly non-trivial) to choose an appropriate state space and observables.
While different applications of the MEP do not require conceptual changes to the basic method,
the results rely entirely on the chosen state variables and observables, which are both determined
by the modeler. For this reason, the researcher needs to double-check that these choices are
adequate, i.e., if the model is capable of predicting (with some degree of accuracy) average values
of observables not included in the MEP to fit the data, and if the model is capable of addressing
the questions that one want to ask. It is crucial not to lose perspective on this issue; as the MEP is
based on a concave maximization problem, it will always finds a unique solution, which might
be useless if the state space and observables are not chosen appropriately.

(iii) Correlations versus interactions. It is important to note that the MEP makes a strong distinction
between interactions and correlations. Indeed, correlations are statistical dependencies between
variables, while interactions are the local rules of the system from which correlations and collective
phenomena emerge. Importantly, each interaction term depends on all the correlation terms,
and hence there exists no simple mapping between the correlation and the interaction between
two sub-units. Furthermore, it has been shown that the interactions inferred using the MEP give a
more useful account of the physical topology of some system than correlations. Examples of this
include neural structural connectivity [51,80], and contacts between proteins sites [42]. In these
examples, the inferred interactions obtained from the MEM parameters outperform linear or
nonlinear correlation when predicting physical interactions between system variables. We believe
that the key advantage of interactions over correlations is the fact that they faithfully reflect
conditions of conditional independency, which are key in many statistical causal frameworks [81].
This crucial property might be behind the success of MEM in assessing emerging behavior in
networks of interacting agents in biology [4,21,82–84].
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4.2. Concluding Remarks

The MEP fits well the needs of biology in the era of big data, where information abounds but
general principles—and corresponding mechanistic rules—are often scarce. Interestingly, what the
MEP provides is remarkably different to other big data approaches such as deep learning, which
usually focus in attaining accurate predictions without enabling insights about the underlying structure
of the system. In contrast, the MEP often offers significant information about the system that goes
beyond mere predictions, including statements about the physical interactions between its parts
(e.g., Section 3.3), redundancy and metastability (e.g., Section 3.2), and insights on the structure of
collective voting patterns (e.g., Section 3.6). Remarkably, all this added value is provided without the
need of embracing a particular mechanistic description.

One of the main advantages of the MEP is that it is data driven. Therefore, the MEP can be used to
test existing theoretical frameworks and generative mechanistic models existing in biology at different
scales based on the data that these mechanistic models produce.

We expect the MEP approach to gather momentum as big data becomes ubiquitous at all scales of
experimental biology. In effect, the MEP has the ability to support the analyses of the ever-increasing
data, and pave the road towards new models of living systems based on their interactions, or towards
confirming existing ones. Furthermore, the steady progress of technology is likely to open up new fields
of application for inverse statistical analysis, in which the MEP might find novel fruitful applications.
We hope that this article will contribute to the development of a broader understanding of the MEP
across multiple biological scales, which in turn might help to foster new research avenues in the future.
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Abbreviations

The following abbreviations are used in this manuscript:

MEP Maximum entropy principle
MEM Maximum entropy model
DNA Deoxyribonucleic Acid
MSA Multiple sequence alignment
LFP Local field potential
fMRI Functional magnetic resonance imaging
BOLD Blood Oxygen Level-Dependent signals
RSN Resting state network
DMN Default mode network
FPN Fronto-parietal network
METE Maxent Theory of Ecology
SCOTUS Supreme Court of the United States
BIEN Botanical Information and Ecology Network
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Symbol List
xk

t State of kth variable at time t
xi State of ith variable on x
x Configuration of the N-elements of a system
X i State space of a random variable xi

X State space of a N-elements system
R Set of real numbers
q[x] Set of probability distributions that match 〈 fk〉e
p[x] Probability distribution that maximizes entropy and match 〈 fk〉e
S [ p ] Entropy of the probability measure p
K Number of observables
fk Observable k
〈 fk〉e Empirical average value of observable k
Eq[ fk] Expected value of fk with respect to q
M Set of probability measures
λk Lagrange multiplier associated to the constraint Eq[ fk] = 〈 fk〉e
H(x) Energy function
Z Partition Function
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4. Tkačik, G.; Marre, O.; Amodei, D.; Schneidman, E.; Bialek, W.; Berry, M.J. Searching for collective behavior

in a large network of sensory neurons. PLoS Comput. Biol. 2014, 10, e1003408. [CrossRef] [PubMed]
5. Nasser, H.; Cessac, B. Parameter Estimation for Spatio-Temporal Maximum Entropy Distributions:

Application to Neural Spike Trains. Entropy 2014, 16, 2244–2277. [CrossRef]
6. Jaynes, E. Information theory and statistical mechanics. Phys. Rev. 1957, 106. [CrossRef]
7. Santolini, M.; Mora, T.; Hakim, V. A General Pairwise Interaction Model Provides an Accurate Description

of In Vivo Transcription Factor Binding Sites. PLoS ONE 2014, 9, e99015. [CrossRef] [PubMed]
8. Weigt, M.; White, R.A.; Szurmant, H.; Hoch, J.A.; Hwa, T. Identification of direct residue contacts in

protein–protein interaction by message passing. Proc. Natl. Acad. Sci. USA 2009, 106, 67–72. [CrossRef]
[PubMed]

9. Morcos, F.; Pagnani, A.; Lunt, B.; Bertolino, A.; Marks, D.S.; Sander, C.; Zecchina, R.; Onuchic, J.N.;
Hwa, T.; Weigt, M. Direct-coupling analysis of residue coevolution captures native contacts across many
protein families. Proc. Natl. Acad. Sci. USA 2011, 108, E1293–E1301. [CrossRef]

10. Barton, J.; Chakraborty, A.K.; Cocco, S.; Jacquin, H.; Monasson, R. On the Entropy of Protein Families. J. Stat.
Phys. 2015, 162. [CrossRef]

11. Mora, T.; Walczak, A.M.; Bialek, W.; Callan, C.G. Maximum entropy models for antibody diversity. Proc. Natl.
Acad. Sci. USA 2010, 107, 5405–5410. [CrossRef]

12. Elhanati, Y.; Murugan, A.; Callan, C.G., Jr.; Mora, T.; Walczak, A.M. Quantifying selection in immune
receptor repertoires. Proc. Natl. Acad. Sci. USA 2014, 111, 9875–9880. [CrossRef] [PubMed]

13. Schneidman, E.; Berry, M.; Segev, R.; Bialek, W. Weak pairwise correlations imply string correlated network
states in a neural population. Nature 2006, 440, 1007–1012. [CrossRef] [PubMed]

14. Tang, A.; Jackson, D.; Hobbs, J.; Chen, W.; Smith, J.; Patel, H.; Prieto, A.; Petrusca, D.; Grivich, M.; Sher, A.;
et al. A Maximum Entropy Model Applied to Spatial and Temporal Correlations from Cortical Networks.
In Vitro J. Neurosci. 2008, 28, 505–518. [CrossRef] [PubMed]
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