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SUMMARY STATEMENT  

In this study, we developed and externally validated a deep learning model to investigate the 

impact of sarcopenia, defined as the loss of skeletal muscle mass, on patients with head and neck 

squamous cell carcinoma (HNSCC) undergoing radiotherapy. We demonstrated an efficient, fully-

automated deep learning pipeline that can accurately segment C3 skeletal muscle area, calculate 

cross-sectional area, and derive a skeletal muscle index to diagnose sarcopenia from a standard 

of care CT scan. In multi-institutional data, we found that pre-treatment sarcopenia was 

associated with significantly reduced overall survival and an increased risk of adverse events. 

Given the increased vulnerability of patients with HNSCC, the assessment of sarcopenia prior to 

radiotherapy may aid in informed treatment decision-making and serve as a predictive marker for 

the necessity of early supportive measures. 

  

ABSTRACT  

Purpose: Sarcopenia is an established prognostic factor in patients diagnosed with head and 

neck squamous cell carcinoma (HNSCC). The quantification of sarcopenia assessed by imaging 

is typically achieved through the skeletal muscle index (SMI), which can be derived from cervical 

neck skeletal muscle (SM) segmentation and cross-sectional area. However, manual SM 

segmentation is labor-intensive, prone to inter-observer variability, and impractical for large-scale 

clinical use. To overcome this challenge, we have developed and externally validated a fully-

automated image-based deep learning (DL) platform for cervical vertebral SM segmentation and 

SMI calculation, and evaluated the relevance of this with survival and toxicity outcomes.  

Materials and Methods: 899 patients diagnosed as having HNSCC with CT scans from multiple 

institutes were included, with 335 cases utilized for training, 96 for validation, 48 for internal testing 

and 393 for external testing. Ground truth single-slice segmentations of SM at the C3 vertebra 

level were manually generated by experienced radiation oncologists. To develop an efficient 

method of segmenting the SM, a multi-stage DL pipeline was implemented, consisting of a 2D 
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convolutional neural network (CNN) to select the middle slice of C3 section and a 2D U-Net to 

segment SM areas. The model performance was evaluated using the Dice Similarity Coefficient 

(DSC) as the primary metric for the internal test set, and for the external test set the quality of 

automated segmentation was assessed manually by two experienced radiation oncologists. The 

L3 skeletal muscle area (SMA) and SMI were then calculated from the C3 cross sectional area 

(CSA) of the auto-segmented SM. Finally, established SMI cut-offs were used to perform further 

analyses to assess the correlation with survival and toxicity endpoints in the external institution 

with univariable and multivariable Cox regression. 

Results: DSCs for validation set (n = 96) and internal test set (n = 48) were 0.90 (95% CI: 0.90 – 

0.91) and 0.90 (95% CI: 0.89 - 0.91), respectively. The predicted CSA is highly correlated with 

the ground-truth CSA in both validation (r = 0.99, p < 0.0001) and test sets (r = 0.96, p < 0.0001). 

In the external test set (n = 377), 96.2% of the SM segmentations were deemed acceptable by 

consensus expert review. Predicted SMA and SMI values were highly correlated with the ground-

truth values, with Pearson r ³ 0.99 (p < 0.0001) for both the female and male patients in all 

datasets. Sarcopenia was associated with worse OS (HR 2.05 [95% CI 1.04 - 4.04], p = 0.04) and 

longer PEG tube duration (median 162 days vs. 134 days, HR 1.51 [95% CI 1.12 - 2.08], p = 

0.006 in multivariate analysis.  

Conclusion: We developed and externally validated a fully-automated platform that strongly 

correlates with imaging-assessed sarcopenia in patients with H&N cancer that correlates with 

survival and toxicity outcomes. This study constitutes a significant stride towards the integration 

of sarcopenia assessment into decision-making for individuals diagnosed with HNSCC. 
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INTRODUCTION  

Head and neck squamous cell carcinoma (HNSCC) is the 6th most common cancer worldwide (1), 

commonly linked to the consumption of alcohol and tobacco and human papillomavirus (HPV) 

infection (2). The primary treatment approach for early stages is either surgery or radiotherapy, 

while advanced stages require multimodal therapy, including systemic therapy (3). Although 

HNSCC can be cured in a portion of locally advanced disease, treatment often results in 

significant, acute and long-term toxicities (4). Sarcopenia, a skeletal muscle (SM) disorder 

characterized by decreased muscle function and reduced SM mass, is predominantly found in 

older adults due to age-related muscle loss and it may also be caused by factors such as 

malnutrition, inactivity, neurological disorders, and malignant neoplasms (5,6). Progressive 

sarcopenia is part of cancer cachexia, a multifactorial syndrome that leads to functional decline 

even with or without loss of fat mass and it cannot be fully reversed by nutritional support (7). 

Both sarcopenia and cachexia are symptoms and negative prognostic indicators in many forms 

of malignancy (8). HNSCC patients are particularly susceptible to sarcopenia due to the impact 

of disease- and treatment-related malnutrition and dysphagia (9,10). Recent studies have 

established sarcopenia as a negative predictor of overall survival (OS) in HNSCC patients 

undergoing treatment (10–14).  

 

Computed tomography (CT) is a well-established method for quantifying body composition and it 

has been extensively employed in clinical research (15). Imaging-assess sarcopenia has typically 

been performed by of SM at the L3 vertebra (5,16,17). However, routine CT imaging for head and 

neck cancer (HNC) patients does not extend to the abdomen, which significantly restricts the 

feasibility of performing L3 measurements using CT images. To overcome this limitation, a series 

of recent studies proposed a new method of estimating sarcopenia that utilizes SM at the C3 

vertebral level and showed a strong correlation with validated standard L3 SM assessment 

(10,14,18).  

 

Currently, the calculation of skeletal muscle index (SMI) through C3 muscle segmentation relies 

primarily on manual or semi-automated techniques (10–12,14,18,19), which can be extremely 

time-consuming and prone to errors as well as interobserver variability. A fully-automated solution 

with robust segmentation capabilities is necessary to replace the existing manual or semi-

automated methods. Over the past years, a multitude of deep learning (DL) models have been 

created and extensively utilized for the medical image domain (20–23). Although there have been 

some recent studies that applied DL techniques to determine SM through abdominal CT scans 
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(24–26), very few of them have ventured into utilizing head and neck imaging. Recently, Naser et 

al. introduced a multi-stage DL approach for segmenting the C3 region using head and neck CT 

scans, which showed good model performance and its potential for predicting patient survival (27). 

Despite this, the dataset used was limited in size and lacked external validation (27).  

 

In this study, we developed and externally validated a fully-automated method for segmenting 

skeletal muscle to calculate the SMI and identify sarcopenia. We evaluated the clinical relevance 

of these measurements by assessing the prognostic value of baseline quantification of sarcopenia 

and its influence on survival outcomes and toxicity outcomes in patients during curative therapy. 

To achieve this, we developed an end-to-end DL pipeline that incorporates 2D Convolutional 

Neural Networks (CNN) and U-Net models to accurately localize the C3 vertebra and segment 

the C3 musculature. By automating the process of imaging-assessed sarcopenia determination, 

this method shows potential to generate fast, consistent, and precise measurements to facilitate 

evidence-based clinical decision-making for patients diagnosed with HNSCC. 

 

MATERIALS AND METHODS 

Study design and datasets 

This study was conducted in accordance with the Declaration of Helsinki guidelines and following 

the Mass General Brigham (MGB) Institutional Review Board (IRB) approval. Waiver of consent 

was obtained from the MGB IRB prior to research initiation. The model development dataset (n = 

479) was curated from one public available, de-identified patient cohort from the MD Anderson 

Cancer Center (MDACC) via The Cancer Imaging Archive (TCIA) (28). Part of the ground truth 

segmentations for the development dataset (n = 390) was obtained from a public available dataset 

(29). The remainder of the images in the development dataset (n = 89) were manually reviewed 

and segmented at the image axial slice- and scan-level by an experienced radiation oncologist 

(A.S.) with four years of clinical experience using 3D Slicer software (https://slicer.org). For 

external validation, 1,316 patients undergoing primary radiation therapy for HNSCC from 1996 to 

2013 with pretreatment CT simulation scans were retrospectively collected from Brigham and 

Women’s Hospital (BWH). Of these 1,316 patients, 988 patients were included with complete CT 

scans and annotated clinical data. Subsequently, 610 patients were excluded due to pre-RT 

surgery (n = 190), missing body mass index (BMI) information (n = 378), leading to a final set of 

420 patients used in the external set (Fig. 1).  
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Figure 1. Consort diagrams for training, validation, internal test and external test datasets. TCIA: 

The Cancer imaging Archive. BWH: Brigham and Women’s Hospital. DSC: dice similarity 

coefficient. CSA: C3 cross-sectional area; SMA: L3 skeletal muscle cross-sectional area. SMI: 

skeletal muscle index.  
 
CT scan characteristics and image acquisition  

The CT scans were performed on various CT scanner models from multiple institutions, including 

GE LightSpeed Plus, GE Discovery ST, Toshiba Aquilion One, Toshiba Aquilion, Philips 

GeminiGXL 16, Philips Brilliance Big Bore, and TomoTherapy Incorporated Hi-Art. CT scans were 
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diagnostic quality, using 120-140 kVp energy, slice thickness of 1-5 mm, and pixel spacing of 0.3-

2.7 mm.  

 

CT image preprocessing 

All CT images were converted from DICOM format to NRRD format via rasterization packages 

utilizing SimpleITK and plastimatch (https://plastimatch.org) in Python v3.8. For slice selection 

model and segmentation model, we adopted two different preprocessing strategies. In the slice 

selection step, CT intensities were first truncated in the range of [−175, 275] Hounsfield units to 

increase soft tissue contrast and then normalized to the range of [-1, 1] scale. Then the 3-

dimensional (3D) images were converted to 2-dimensional (2D) Numpy files with corresponding 

slice indices as model inputs. In the segmentation step, predicted image slice from slice selection 

step was extracted from normalized CT images. A standard cropping step was then employed on 

x-y planes to get rid of excessive empty space for each of the scans. All scans were then resized 

to 512x512 using linear interpolation via SimpleITK and served as the inputs for the segmentation 

model.  

 

 
Figure 2. Workflow of the fully-automated deep learning pipeline for accurate C3 segmentation. 

The 3-dimensional (3D) CT scans were first normalized and converted to 2-dimensional (2D) 

Numpy files with corresponding slice indices as inputs for slice selection model. The DenseNet 

regression model performed predictions on each individual axial slice, and then processed the 
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results to determine the target C3 slice. The input to the model is a series of CT slices, and it 

learns to predict a single continuous value that represents the difference in position (z-offset) of 

the slice from the target C3 slice. Then the C3 slice was extracted from 3D CT scan and 

underwent a series of preprocessing steps including cropping, resizing and normalization. 

Subsequently the preprocessed C3 slice was fed into the U-Net segmentation model to segment 

the C3 SM and calculate the cross-sectional areas at the C3 level. The L3-SMI was derived to 

perform a series of predictive analyses.  

 

Deep learning model implementation 
To build an efficient fully-automated pipeline for accurate C3 segmentation, we adopted a two-

stage DL approach, consisting of a slice selection step and a segmentation step. Specifically, the 

slice selection step predicts the C3 image slice from the input 3D CT scan and the segmentation 

step generates the SM segmentation on the predicted C3 slice. The DenseNet architecture (Fig. 

S1), known for its impressive classification performance (30), was utilized for train the slice 

selection model. Similarly, the U-Net architecture (Fig. S2), widely recognized for its effectiveness 

in biomedical image segmentation tasks (31), was employed for train the semantic segmentation 

of C3 SM on the chosen C3 image slice. An overview of the architecture for the fully automated 

segmentation pipeline is provided in Fig. 2. In the slice selection step, the DenseNet regression 

model performed slice-wise regression predictions on each axial slice of the 3D CT scan 

independently, followed by post-processing to output the target C3 slice. The model takes input 

CT slice series and learns to predict a single continuous valued output representing the offset of 

that slice from the target C3 slice (z-offset). To adapt the model architecture for regression task, 

the final fully connected layer with softmax activation was replaced with a fully connected layer 

with a single output unit and a sigmoid activation function to output a number ranging from 0 to 1. 

The mean absolute error loss between this output and the regression target, C3 slice with 0 z-

offset, was then used as the loss function in model training. In the segmentation step, the 

predicted C3 slice was passed to the U-Net segmentation model to segment the C3 SM for 

estimating the cross-sectional areas at the C3 level. In the U-Net structure, batch normalization 

was added to each activation, and the loss function was changed to soft Dice maximization loss 

in order to deal with class imbalances between the muscle mass and the background.  

 

Deep learning training and validation 
After data preprocessing, the total development dataset (n = 479) was randomly split into training 

set (n = 335), validation set (n = 96), and test set (n = 48) with a split ratio of 70%:20%:10%. To 
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reduce model overfitting in training, we employed data augmentation strategies including small 

random translations of up to 0.05 times the image size in both the horizontal and vertical directions, 

and small rotations of up to 5 degrees in either direction drawn from a uniform distribution. The 

models were trained for 100 epochs with an initial learning rate of 0.005 that was multiplied by a 

factor of 0.1 every 25 epochs. To achieve optimal training and validation performance, model 

hyper-parameters including the number of layers in each dense block of DenseNet, up/down 

sampling modules, and initial features of U-Net were chosen as recommended in a full body 

composition study that experimented with a similar architecture by Bridge et al. (32). A batch size 

of 16 was used for model training and the Adam’s optimizer was used to minimize the loss 

functions during the training of both models. All models were trained from scratch using 

TensorFlow v2.8 in Python. The performance of the automated pipeline was evaluated by the 

placement of the C3 selected slice and the Dice Similarity Coefficient (DSC) of the auto 

segmentation over ground truth on the validation set. The reliability of the auto segmentations for 

its use in the sarcopenia determination is evaluated by the Intra Class Correlation (ICC) coefficient 

of cross-sectional area measurement. 

 

Model external validation on BWH cohorts 
To determine if the model could generalize to patients from outside institutions, we used HNSCC 

CT scans (n = 420) from BWH dataset for external validation of the model. To evaluate the model 

C3 segmentation performance, two experienced board-certified head and neck radiation 

oncologists (B.H.K., 10 years of experience and F.H., 21 years of experience) individually 

reviewed and evaluated the segmentations with Likert scales of 0 to 3: 0 = wrong slice, 1 = 

unacceptable (expected segmentation variation of ³ 5% versus ground truth), 2 = acceptable, 

minor revisions needed (expected segmentation variation of <5% versus ground truth), 3 = 

acceptable, no revisions needed. The inter-rater reliability test was performed to measure the 

agreement. 

 

Definition of sarcopenia 
As proposed by Swartz et al. (18) and van Rijn-Dekker et al. (10), the SMA at the L3 lumbar level 

was calculated based on Equation 1 and then the SMI was calculated from Equation 2. 

           SMA = 27.30 + (1.36 ´	CSA) – (0.67 ´	age) + (0.64	´	weight) + (26.44	´	sex)        [1]                                                            
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Here SMA is the cross-sectional area in cm2 at the L3 lumbar level. CSA is the cross-sectional 

area in cm2 at the C3 cervical level. Age is the patient’s age in years. Weight is the patient’s weight 

in kg. Sex is equal to 1 if the patient is female and is equal to 2 if the patient is male.  

SMI	=	
!"#

$%&'$(!
        [2] 

Here SMIL3 is SMI at the L3 lumber level. SMA is the SMA in cm2 at the L3 lumbar level. Height is 

the patient’s height in meters.  

 

SMI thresholds of 52.4 cm2/m2 for males and 38.5 cm2/m2 for females were adopted for SMI to 

classify patients into sarcopenia group and non-sarcopenia group, as previously established by 

Prado et al. (33). 

 

Statistical analysis  
The Dice similarity coefficient scores (DSC) were calculated and served as the primary endpoint 

to assess the similarity between the model predicted C3 segmented area with the ground truth 

segmentation. Precision and recall scores were also calculated to provide supplementary 

information on the model performance. Additionally, Intraclass Correlation Coefficient (ICC) 

scores were generated to access the model performance. To examine the correlation between 

the cross-sectional areas, we utilized the Pearson correlation coefficient. To determine if these 

areas were significantly different, we performed a two-sided Wilcoxon signed-rank test. The 

Pearson’s Chi-square test was performed to test the statistically significant differences among the 

training, validation and internal test and external test datasets. A p-value less than 0.05 was 

considered statistically significant. The inter-rater reliability test was used to measure the 

agreement between the ratings by two clinicians on the acceptability of SM segmentations for the 

external validation set. To address the data imbalance of the acceptability scores, we adopted 

the Agreement Coefficient 1 (AC1) introduced by Gwet (34). The 95% confidence intervals were 

calculated based on 10,000 bootstrapped iterations. All the above statistical metrics and curves 

were generated using the Scikit-learn and SciPy packages in Python v3.8. The predictive effect 

of sarcopenia on toxicity endpoints was evaluated using univariate logistic regression analyses. 

The sarcopenia associations with overall survival (OS) and PEG tube duration were assessed on 

the external dataset with Cox Proportional Hazard (CoxPH) regression analysis. The overall 

survival and PEG tube duration was visualized using Kaplan Meier curves with Lifelines package 
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in Python v3.8. All the CoxPH and logistic regression analyses were conducted with Stata, 

Version 17.0 (College Station, TX, USA). 

 

Table 1. Head and neck cancer patient characteristics. 

Patient Cohort   
(n = 899)  

Training  
(MDACC, n = 
335)  

Validation  
(MDACC, n = 
96)  

Internal Test  
(MDACC, n = 
48)  

External Test  
(BWH, n = 
420)  

p-value 

Age           0.37# 
median (range)  57 (24 – 83)  58 (29 – 81)  59.5 (41 – 87)  59 (24-87)   
Sex n (%)           
Female  41 (12.2%) 16 (16.7%) 8 (16.7%)  75 (17.9%)  0.32+ 
Male  291 (86.9%) 80 (83.3%) 40 (83.3%)  344 (81.9%)   
Unspecified  3 (0.9%)  0 (0.0%)  0 (0.0%)  1 (0.2%)   
Smoking Status      < 0.001+ 
Current 68 (20.3%) 19 (19.8%) 11 (22.9%) 55 (13.1%)  
Former 95 (28.4%) 40 (41.7%) 17 (35.4%) 217 (51.7%)  
Never 103 (30.7%) 33 (34.4%) 17 (35.4%) 145 (34.5%)  
Unspecified 67 (20.0%) 4 (4.2%) 3 (6.2%) 3 (0.7%)  
Primary Cancer 
Site n (%)          < 0.001+ 

Oropharynx  309 (92.2%)  92 (95.8%)  45 (93.8%)  314 (74.8%)   
Nasopharynx  1 (0.3%) 0 (0.0%)  0 (0.0%)  0 (0.0%)   
Larynx/Hypopharynx 2 (0.6%)  0 (0.0%)  0 (0.0%)  76 (18.1%)   
Oral cavity  2 (0.6%)  0 (0.0%)  0 (0.0%)  0 (0.0%)   
Unknown/Other  19 (5.7%)  4 (4.2%)  3 (6.2%)  30 (7.1%)   
AJCC Stage  
(7th ed) n (%)          0.001+ 

I  3 (0.9%)  1 (1.0%)  0 (0.0%)  12 (2.9%)   
II  11 (3.3%)  3 (3.1%)  2 (4.2%)  34 (8.1%)   
III  42 (12.5%)  16 (16.7%)  12 (25.0%)  75 (17.9%)   
IV  266 (79.4%)  72 (75.0%)  31 (64.6%)  295 (70.2%)   
Unspecified  13 (3.9%) 4 (4.2%) 3 (6.2%)  4 (1.0%)   
HPV/p16 Status*  
n (%)          < 0.001+ 

Negative  19 (5.7%)  9 (9.4%)  9 (18.8%)  49 (11.7%)   
Positive  98 (29.3%)  76 (79.2%)  36 (75.0%)  224 (53.3%)   
Unspecified  218 (65.1%)  11 (11.5%)  3 (6.2%)  147 (35.0%)   
T-Stage (7th ed) 
n (%)         0.24+ 

T0  2 (0.6%)  0 (0.0%)  0 (0.0%)  0 (0.0%)   
T1  56 (16.7%)  20 (20.8%)  11 (22.9%)  89 (21.2%)   
T2  143 (42.7%)  35 (36.5%)  17 (35.4%)  160 (38.1%)   
T3  77 (23.0%)  22 (22.9%)  10 (20.8%)  109 (26.0%)   
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T4  44 (13.1%)  15 (15.6%)  7 (14.6%)  57 (13.6%)   
Unspecified  13 (3.9%)  4 (4.2%)  3 (6.2%)  5 (1.2%)   
N-Stage (7th ed) 
n (%)         < 0.001+ 

N0  33 (9.9%)  9 (9.4%)  5 (10.4%)  85 (20.2%)   
N1  31 (9.3%)  13 (13.5%)  9 (18.8%)  52 (12.4%)   
N2  246 (74.3%)  68 (70.8%)  31 (64.6%)  247 (58.8%)   
N3  12 (3.6%)  2 (2.1%)  0 (0.0%)  31 (7.4%)   
Unspecified  13 (3.9%)  4 (4.2%)  3 (6.2%)  5 (1.2%)   

*Patients with non-oropharyngeal carcinoma who did not undergo HPV- or p16-testing were 

coded as negative, given the very low incidence of HPV/p16 positive tumors in these disease 

sites. For numerical data as in age, the Kruskal-Wallis rank sum test (#) was performed to test the 

statistical significances among age medians. For categorical data, the Fisher’s Exact test (+) was 

performed to test the statistically significant differences among train, validation and internal test 

and external test datasets. AJCC: American Joint Committee on Cancer. HPV: Human 

papillomavirus. 

 

RESULTS 

Patient characteristics 

The total patient cohort consisted of 899 HNSCC patients from two institutions, with 479 patients 

in the development set from MD Anderson Cancer Center (MDACC) and 420 patients in the 

external test set from Brigham and Women's Hospital (BWH) (Table 1). The age of the patients 

ranged from 24 to 90 years old, with a median age of 58 years. Most of the patients were male 

(83.9%, n = 754), as typically found in HNSCC. The primary cancer site was most commonly the 

oropharynx (84.5%, n = 760), followed by the larynx, hypopharynx, and nasopharynx. Most of the 

patients had stage IV cancer (73.9%, n = 664) according to the American Joint Committee on 

Cancer (AJCC) 7th edition staging system, followed by stage III cancer (16.1%, n = 145). The 

human papillomavirus (HPV)/p16 status was positive for 48.3% (n = 434) of patients, negative for 

9.6% (n = 86) of patients, and unspecified for 42.2% (n = 379) of patients.  

 

Slice selection and auto-segmentation model performance 
Evaluation of model slice selection revealed that the difference between the predicted mid-C3 

slice and the ground truth slice was minimal, as demonstrated by the histogram analyses of the 

difference between the locations of the predicted C3 slice and the ground truth slice (Fig. 3A). 

The mean difference (Dh) between the locations of the predicted C3 slice and the ground truth 

slice was 0.11 ± 1.13 mm and 0.07 ± 1.08 mm for validation and internal test sets, respectively 
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(Fig. 3A). The DSC values obtained for the validation set and internal test set predicted 

segmentations as compared to ground truth were found to be 0.90 (95% CI 0.90 - 0.91) and 0.90 

(95% CI 0.89 - 0.91), respectively (Fig. 3C). Additionally, the precision (validation: 0.97 [95% CI 

0.96 - 0.97]; test: 0.97 [95% CI 0.95 – 0.97]), recall (validation: 0.84 [95% CI 0.84 - 0.85], test: 

0.85 [95% CI 0.83 - 0.85]) and ICC scores (validation: 0.99 [95% CI 0.98 - 0.99], test: 0.96 [95% 

CI 0.94 - 0.98]) as summarized in Fig. 3D all showed excellent model performance in predicting 

C3 segmentations. C3 CSAs derived from predicted segmentations showed near perfect 

correlations with the ground truth calculated CSAs (validation: r = 0.99, p < 0.0001, test: r = 0.96, 

p < 0.0001, Fig 3B-C). Representative examples of C3 section slices on sagittal CT images and 

ground truth segmentations on axial images with performance metrics are shown in Fig. 4. 

 

Skeletal muscle index measurement comparisons 
We calculated and compared the SMA and SMI values between model predictions and ground 

truth for both the validation set (Fig. 5A) and internal test set (Fig. 5B). Accurate model SM 

segmentations led to predicted SMA and SMI values were highly correlated with the ground-truth 

values, with Pearson r ³ 0.99 (p < 0.0001) for both female and male patients in all datasets (Fig. 

5). 

 

Evaluation on external test set 
Representative cases with C3 slice predictions and segmentations for acceptability scores 1, 2, 

3 are shown in Fig. 4C for the external test set. The review scores were summarized in Fig. 3E, 

with 183 (46.7%) and 188 (48.9%) cases deemed acceptable with minor or no changes needed, 

respectively for reviewer 1 and with 199 (47.4%) and 161 (38.3%) cases deemed acceptable with 

minor or no changes needed, respectively for reviewer 2. We qualitatively re-reviewed all 

unacceptable cases and identified 42 (10%) problematic scans, including those without head and 

neck portion (n = 30), post-operative (post neck-dissection) scans (n = 7), severe dental artifact 

(n = 4), skinfold artifact (n = 2). After exclusion of the faulty scans, we had a final set of 377 

patients and high inter-rater agreement (AC1 score = 0.94). We further investigated the 

unacceptable segmentations that were given by either one of the reviewers. We identified 23 

cases (6.1%), with 11 cases (2.9%) from reviewer 1 and 18 cases (4.8%) from reviewer 2. Failure 

modes are summarized in Table S1, and included 9 cases (39.1%) with sternocleidomastoid 

(SCM) muscle missing (Fig. S3A); 6 cases (26.1%) with lymph node included (Fig. S3B); 3 cases 

(13.0%) with posterior neck muscles missing (Fig. S3C); 3 cases (13%) with anterior deep muscle 

missing (Fig. S3D); 1 case (4.4%) with submental muscle included (Fig. S3E); and 1 case (4.4%) 
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with other muscle included (Fig. S3F). Given high overall acceptability, we moved forward with 

SMI calculation and designation of sarcopenia for the external test set. 

 

Figure 3. The performance of the CNN slice selection model and U-Net segmentation model was 

evaluated for the segmentation of the C3 vertebra section. (A) Histogram shows the difference 

(Dh) between the location of the model-predicted C3 section slice and the location of the ground-

truth manually segmented CT slice for validation set (mean Dh = 0.11 ± 1.13 mm) and internal 

test set (mean Dh = 0.07 ± 1.08 mm). (B) Scatter plot depicts the C3 skeletal muscle cross-

sectional area (CSA, cm2), with the ground-truth manual segmentation on the x-axis and the 

calculated CSA (cm2) using predicted segmentations on the y-axis for validation and internal test 

sets. (C) DSC distributions were shown for validation and internal test sets. (D) DSC, precision, 

recall and intra-class correlation coefficient values were summarized to show the model 

performance. (E) C3 segmentations predicted by model were individually reviewed by two 
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experienced board-certified radiation oncologists with Likert scales of 0 - 3: 0 - wrong slice, 1 - 

unacceptable (expected segmentation variation of ³ 5% versus ground truth), 2 - acceptable, 

minor revisions needed (expected segmentation variation of < 5% versus ground truth), 3 - 

acceptable, no revisions needed. IQR: inter quantile range. DSC: Dice similarity coefficient.  

 

 
Figure 4. Representative cases with ground truth slices of C3 sections on sagittal CT images 

(green plane) and ground truth segmentations (green contours) on axial images were shown for 

validation (A) and internal test (B) sets. Predicted segmentations (blue contours) with varying 

DSC values (> median DSC, = median DSC, < median DSC) were also overlaid on axial CT 

images as compared to show their similarities to ground truth segmentations for validation (A) 

and internal test (B) sets. Corresponding distance (Dh) between the predicted C3 section slice 

and ground-truth slice and DSC values were annotated for each case in validation (A) and internal 

test sets (B). Model predicted C3 slices on sagittal CT images (blue planes) and segmentation on 

axial CT images (blue contours) were also shown for the external test set (C). Acceptability scores 

from expert clinicians’ review were annotated for corresponding cases in the external test set (C). 

DSC: Dice similarity coefficient.  
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Figure 5. Scatter plots of the lumbar level 3 skeletal muscle cross-sectional area (SMA) and 

skeletal muscle index (SMI) values determined for validation set (A) and internal test set (B) 

patients (stratified by sex) using the ground-truth manual segmentation (x-axis) and model 

predicted segmentations (y-axis). Pearson’s correlations showed all model-predicted values and 

ground truth values were significantly correlated (p < 0.0001).  

 
Univariate and multivariate analyses for Sarcopenia  
A total of 342 patients with complete survival and toxicity information from the external test set 

were further included for sarcopenia predictive analysis (Table 2). The median follow-up for all 

patients was 43 months (range 1 month – 170 month). The overall survival at 5 years was 80.7%. 

There were 261 (76.3%) sarcopenic patients and 81 (23.7%) non-sarcopenic patients in the 

dataset. Median age was 59 (range 24 - 87), most were male (83%), smoking history <10 pack-

years (py) (51%), Adult Comorbidity Evaluation 27 (ACE-27) score 0 (39%) or 1 (38%), non-

oropharynx primary (73%), and American Joint Committee on Cancer (AJCC) 7th edition stage 

III (16%), IVa (65%), or IVb (8%).  

 

Sarcopenia and survival outcomes 
Five-year survival was 84.4% in patients without sarcopenia vs. 73.1% in patients with sarcopenia 

(HR: 2.21 [95% CI 1.08 - 4.12], p = 0.03) (Fig. 6A). On multivariate analysis, variables associated 

with worse OS were sarcopenia (HR 2.05 [95% CI 1.04 - 4.04], p = 0.04), ACE-27 score 2+ (HR 
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2.24 [95% CI 1.39 - 3.62], p = 0.001), non-oropharynx diagnosis (HR 3.92 [95% CI 2.45 - 6.25], p 

< 0.001), and T3-4 stage (HR 2.36 [95% CI 1.47 - 3.77], p < 0.001), but not age > 65 (p = 0.79), 

smoking history >10py (p = 0.75), N2-3 (p = 0.60), or stage 3 - 4 (p = 0.41) (Table 3).  

 

Sarcopenia and toxicity outcomes 
Sarcopenia was associated with longer percutaneous endoscopic gastrostomy (PEG) tube 

duration (median 162 days vs. 134 days, HR 1.67 [95% CI 1.23 - 2.22], p = 0.001) (Table 4, Fig. 

6B). On multivariate analysis, variables associated with longer PEG tube duration were 

sarcopenia (HR 0.66 [95% CI 0.48 – 0.89], p = 0.003), ACE-27 score (HR 0.72 [95% CI 0.53 – 

0.97], p = 0.03) and non-oropharynx primary site (HR 0.80 [95% CI 0.56 - 1.14], p = 0.03) (Table 

4). Sarcopenia was not associated with insertion of PEG tube at diagnosis (p = 0.12) but was 

associated with higher risk of having PEG tube at last follow-up (odds ratio (OR) 2.25 [95% CI 

1.02 - 4.99], p = 0.05) (Table 5). Sarcopenia was not significantly associated with higher risk of 

hospitalization < 3 months after RT (Table 5; OR 2.18 [95% CI 0.82 - 5.79], p = 0.12). Sarcopenia 

was not significantly associated with risk of osteoradionecrosis (p = 0.39), post-RT stricture (p = 

0.24), or treatment-complication requiring surgery (p = 0.50) (Table 5).  

 
Table 2.  Patient characteristics for Non-Sarcopenic and Sarcopenic groups. 

  Sarcopenic (n = 261) Non-Sarcopenic (n = 81)  p-value 

Gender   0.99* 
Male 216 (82.76%) 67 (82.72%)  

Female 45 (17.24%) 14 (17.28%)  

Smoker   0.53+ 
Former 126(48.28%) 42 (51.85%)  

Smoking at initial consult 40 (15.33%) 9 (11.11%)  

Never 94 (36.02%) 29 (35.80%)  

Unspecified/Unknown 1 (0.38%) 1 (1.23%)  

Hospital during RT   0.59+ 
Yes 62 (23.75%) 19 (23.46%)  

No 198 (75.86%) 61 (75.31%)  

Unspecified/Unknown 1 (0.38%) 1 (1.23%)  

PEG Tube Insert   0.14+ 
Yes 237 (90.80%) 68 (83.95%)  

No 23 (8.81%) 12 (14.81%)  

Unspecified/Unknown 1 (0.38%) 1 (1.23%)  
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T-Stage   0.18* 
T1 50 (19.16%) 24 (29.63%)  

T2 100 (38.31%) 31 (38.27%)  

T3 75 (28.74%) 18 (22.22%)  

T4 36 (13.79%) 8 (9.88%)  

Unspecified/Unknown 0 0  

N-Stage   0.27* 
N0 52 (19.92%) 17 (20.99%)  

N1 28 (10.73%) 10 (12.35%)  

N2 167 (63.98%) 45 (55.56%)  

N3 14 (5.36%) 9 (11.11%)  

Unspecified/Unknown 0 0  

HPV Status   0.12* 
+ 138 (52.87%) 49 (60.49%)  

- 34 (13.03%) 4 (4.94%)  

Unspecified/Unknown 89 (34.10%) 28 (34.57%)  

Chi-squared test for the independence (*) or Fisher's exact test (+) were used for group 

comparisons between non-sarcopenic and sarcopenic groups for each gender. Fisher's exact test 

was used if the expected values of Chi-squared test were smaller than 5. SMI: skeletal muscle 

index. HPV: Human papillomavirus. RT: radiotherapy. PEG: percutaneous endoscopic 

gastrostomy. 

 
Table 3. Univariate and multivariate analyses for overall survival. 

 Univariate Analysis Multivariate Analysis 

 HR (95 % CI) p-value HR (95 % CI) p-value 

Sarcopenia     
No Ref  Ref  
Yes 2.11 (1.08 - 4.12) 0.03 2.05 (1.04 - 4.04) 0.04 
Age     
 <65 Ref  Ref  
 ≥65 1.93 (1.20 - 3.10) 0.007 1.07 (0.65 - 1.77) 0.79 
Smoking History     
<10py Ref  Ref  
≥10py 2.00 (1.23 - 3.25) 0.005 1.09 (0.64 - 1.84) 0.75 
ACE-27 Score     
0-1 Ref  Ref  
2-3 2.24 (1.39 - 3.62) 0.001 2.03 (1.24 - 3.23) 0.005 
Tumor Site     
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Oropharynx primary Ref  Ref  
Non-oropharynx 3.92 (2.45 - 6.25) < 0.001 3.66 (2.20 - 6.09) < 0.001 
T-Stage     
T1-2 Ref  Ref  
T3-4 2.36 (1.47 - 3.77) < 0.001 2.29 (1.42 - 3.68) 0.001 
N-Stage     
N0-1 Ref    
N2-3 0.88 (0.54 - 1.43) 0.60   
AJCC 7th Stage     
Stage 1-2 Ref    
Stage 3-4 1.31 (0.69 - 2.49) 0.41   

HR: hazard ratio; CI: confidence interval; Ref: reference.  

 
Table 4. Univariate and multivariate analyses for PEG tube duration.  

 Univariate Analysis Multivariate Analysis 

 HR (95% CI) p-value HR (95% CI) p-value 
Sarcopenia     
No Ref    
Yes 0.60 (0.45 - 0.80) 0.001 0.66 (0.48 - 0.89) 0.006 
Age     
<65 Ref    
≥65 0.68 (0.51 - 0.91) 0.009 0.80 (0.58 - 1.09) 0.15 
Smoking History      
<10py Ref    
≥10py 0.60 (0.47 - 0.77) < 0.001 0.67 (0.51 - 0.87) 0.002 
ACE-27 score      
0-1 Ref    
2-3 0.70 (0.52 - 0.95) 0.02 0.72 (0.53 - 0.97) 0.03 
Tumor Site     
Oropharynx primary Ref    
Non-oropharynx 0.64 (0.45 - 0.90) 0.01 0.80 (0.56 - 1.14) 0.22 
T-Stage     
T1-2 Ref    
T3-4 0.71 (0.56 - 0.92) 0.008 0.78 (0.60 - 1.01) 0.06 
N-Stage     
N0-1 Ref    
N2-3 1.12 (0.84 - 1.48) 0.43   
AJCC 7th Stage     
Stage 1-2 Ref    
Stage 3-4 0.61 (0.34 - 1.12) 0.11   
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PEG tube duration was defined as the time from insertion of PEG tube to removal of PEG tube 

(i.e. HR < 1 represents longer time to removal or greater PEG tube duration). HR: hazard ratio; 

CI: confidence interval; Ref: reference. PEG: percutaneous endoscopic gastrostomy.  

 
Table 5. Univariate analysis for the association of sarcopenia with various toxicity endpoints. 

Toxicity No Sarcopenia Sarcopenia OR (95% CI) p-value 

PEG inserted at diagnosis 84% 91% 1.81 (0.86 - 3.84) 0.12 

PEG removal 77% 75% 0.46 (0.19 - 1.14) 0.09 

PEG at last follow up 10% 18% 2.25 (1.02 - 4.99) 0.05 

Hospitalization during RT 23% 24% 1.01 (0.56 - 1.81) 0.97 

Hospitalization <3months 
after RT 6% 13% 2.18 (0.82 - 5.79) 0.12 

Osteoradionecrosis 2% 1% 0.45 (0.07 - 2.77) 0.39 

Post-RT stricture 7% 12% 1.73 (0.70 - 4.30) 0.24 

Complication from 
treatment requiring surgery 7% 10% 1.38 (0.55 - 3.47) 0.50 

OR: odds ration; RT: radiotherapy; PEG: percutaneous endoscopic gastrostomy.  

 

Figure 6. Kaplan-Meier curves show significant differences in both the overall survival time (Log-

rank test p = 0.03) and the PEG tube duration (Log-rank test p = 0.007) between sarcopenia 

patients and no sarcopenia patients.  
 
DISCUSSION 
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In this study, we successfully developed and validated an end-to-end DL pipeline that utilizes 

head and neck CT images for efficient and accurate segmentation of cervical vertebral SM, 

calculation of SMI, and diagnosis of imaging-based sarcopenia in HNSCC patients. Our tool was 

applied to a large external validation cohort, where we found that imaging-based sarcopenia was 

associated with poorer OS and longer PEG tube duration. This externally-validated DL pipeline 

offers significant promise for clinical translation as a fast and fully-automated prognostic tool for 

the HNSCC patients in routine clinical practice. This is the first end-to-end DL pipeline for 

determining sarcopenia that uses head and neck CT images and has been externally validated 

with a substantial patient population. 

 

We followed a two-step process, which is similar to a recent study conducted by Naser et al. (27), 

to segment the C3 SM using two separate DL models. However, our methods differ significantly. 

Naser et al. used a 3D ResUNet model to segment the C3 vertebra section initially. They then 

automatically selected the middle slice of the section and applied a 2D ResUNet model to 

segment the SM on the selected slice. In contrast, we used a 2D DenseNet-based regression 

model to automatically select the C3 SM slice (slice selection model). We then used a 2D U-Net 

model to segment the selected slice (segmentation model). We achieved excellent model 

performance for both slice selection and segmentation models in the validation and internal test 

sets. In a large external test set, 96.2% of the SM segmentations were also deemed acceptable 

by expert consensus review. Compared to 3D CNN models, 2D CNN models are generally much 

easier to train and implement, making our pipeline fast and efficient for the C3 SM segmentation 

for sarcopenia analysis. Typically, it took an experienced board-certified radiation oncologist 5 - 

10 minutes to identify and segment a C3 SM. In contrast, our end-to-end DL pipeline was much 

faster and only required 0.15 seconds to segment the C3 SM. This is considerably quicker than 

a human expert. 

 

Sarcopenia has been found to be a significant prognostic factor for decreased overall survival in 

patients with varying types of cancers (5,6,33). For head and neck cancer, these findings appear 

to be irrespective of geographical area (western countries vs. Asia) as well as head and neck 

tumor sites (oral cavity vs. oropharynx) and treatment approach (surgical vs. 

Radiation/chemoradiation) (13,35). Similar to previous studies, we found sarcopenia to be 

associated with the worse OS (HR 2.21 [95% CI 1.08 - 4.12], p = 0.03) in a cohort of 342 patients. 

In addition to the poorer prognosis of patients with sarcopenia, there is also increased risk of 

toxicity after treatment (10,19,35–37). Radiotherapy to the head and neck region is widely known 
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to induce severe toxicities such as mucositis, odynophagia, and xerostomia, leading to critical 

weight loss and malnutrition (4,11,12,19). Although chemotherapy is not a primary treatment for 

HNC, it is often given in a concurrent setting. Recent retrospective studies in locally advanced 

HNSCC patients concluded that pre-treatment sarcopenia was a significant predictor of 

chemotherapy dose-limiting toxicity in patients treated with CRT using platinum-based 

chemotherapy (38,39). In this study, we tested the correlations between sarcopenia and a series 

of toxicity endpoints. We found sarcopenia was associated with longer PEG tube duration (median 

162 days vs 134 days, HR 0.66 [95 %CI 0.48 – 0.89], p = 0.006) and higher risk of having PEG 

tube at last follow (OR 2.25 [95 %CI 1.12 - 2.08], p = 0.05). This agrees with the study by Karsten 

et al. that demonstrated sarcopenia contributes to the risk of prolonged feeding tube dependency 

of HNC patients treated with primary chemoradiotherapy (CRT) (37). Sarcopenia showed a non-

significant trend towards higher risk of hospitalization < 3 months after RT (OR 2.18 [95% CI 0.82 

- 5.79], p = 0.12). We did not see the association between sarcopenia with risk of 

osteoradionecrosis (p = 0.393) and post-RT stricture (p = 0.24). In HNC surgical populations, 

sarcopenia is a demonstrated negative prognostic indicator for both overall complications and 

wound complications and also pharyngocutaneous fistula in patients undergoing total 

laryngectomy for HNSCC (17). Yet in our study, sarcopenia was not associated with treatment-

complication requiring surgery (p = 0.50). 

 

Our study has several limitations that should be considered. Firstly, our analysis is limited by the 

inherent constraints of a retrospective study. Due to various exclusion criteria, such as missing 

pretreatment CT scans, missing clinical information, and scan artifacts, a large number of patients 

were excluded from our analysis, which may impact the distribution of patient characteristics. 

Secondly, our median dice scores were lower than those reported by Naser et al. (0.90 vs. 0.95) 

(27). We believe this is due to the preprocessing step we implemented to account for significant 

differences in CT imaging parameters, such as field of views, spacings, and slice thickness, 

between our development cohort (MDACC) and external test cohort (BWH). We were able to 

achieve a median DSC of 0.94 for validation and internal test sets in the MDACC cohort without 

this preprocessing step. However, the robustness of our model decreased when applied to the 

external dataset. Moving forward, we plan to optimize our imaging preprocessing steps to further 

improve our model's performance while maintaining its generalizability. Moreover, we utilized the 

pre-defined gender-specific cut-off values proposed by Prado et al. (33) to determine sarcopenia. 

We found that female patients had significantly lower SMI values than males, consistent with 

previous studies. However, the cut-off values proposed by Prado et al. were based on an obese 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 6, 2023. ; https://doi.org/10.1101/2023.03.01.23286638doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.01.23286638
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23 

population (mean BMI 34.3 kg/m2), while the mean BMI in our population was 27.8 kg/m2. There 

is currently no consensus on the optimal method to define sarcopenia, and several other proposed 

thresholds exist. The end-to-end DL pipeline we developed for fully automated C3 segmentation 

allows for the efficient analysis of a large number of CT images from HNC patients. Traditional 

approaches involving manual or semi-automated C3 segmentation are laborious and require 

substantial expertise, making it challenging to analyze large datasets, particularly in multi-

institutional studies. In the future, we aim to expand our study to include international multi-

institutional patient cohorts to identify optimal cut-off values for sarcopenia through further 

analyses, such as receiver-operating characteristics and precision-recall analyses. We hope this 

will establish a more reliable association between sarcopenia and clinical risk factors for HNSCC 

patients. 

 

CONCLUSIONS 
We have developed and externally validated a fully-automated DL platform for fast and accurate 

sarcopenia assessment that can be used on routine head and neck CT imaging. Our model has 

demonstrated excellent C3 SM segmentation capability on datasets from different institutions, 

with high agreement with expert clinicians' segmentation and high pass rates from expert 

clinicians' reviews. Furthermore, we have shown that our model's estimated SMI strongly 

correlates with the ground truth SMI. We have also demonstrated that SMIs predicted worse 

overall survival and longer PEG tube duration in a large HNSCC cohort from our institution. If 

further validated, our end-to-end DL pipeline has significant potential for incorporation into 

standard clinical practice for directing future treatment approaches and clinical decision-making, 

as well as for individualized supportive measures, including nutrition guidance or physical therapy. 
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