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Purpose: To provide a tool for calculating radial and tangential retinal magnifications
as functions of field angle and retinal shape and to articulate patterns of magnification
across the retina for monocular and binocular combinations of prolate-, oblate-, and
spherical-shaped retinas.

Methods: Formulae were derived to calculate radial and tangential retinal magnifica-
tions (mm/deg) from field angle (degrees), retinal asphericity (unitless conic constant),
retinal vertex radius of curvature (mm), and nodal point position (mm). Monocular
retinal magnifications were determined for eyes with prolate, spherical, and oblate
retinas as functions of field angle. Bilateral differences in magnifications were examined
for combinations of those eyes.

Results: Retinal shape substantially affects magnification profiles even for eyes with
the same axial length. Greatest magnification changes across a retina and between
eyes, as well as greatest increase in radial–tangential differences (distortion), occur with
prolate retinas. Binocular magnification differences were smallest for oblate retinas.
Nodal points anterior to the vertex center of curvature and oblate asphericity both
cause field-dependent reductions in magnification relative to the fovea (barrel distor-
tion), whereas nodal points posterior to vertex center of curvature and prolate aspheric-
ity cause the opposite (pincushion distortion). Retinal magnification differences due to
eye shape are much greater than aniseikonia thresholds and chromatic differences in
magnification. A spreadsheet tool implements the magnification calculations.

Conclusions: Local retinal magnifications as functions of field angle have substantial
effects on objective applications (imaging retinal anatomy) and subjective experiences
(aniseikonia) and quantify an ocular property that differs across eye shapes and refrac-
tive errors.

Translational Relevance: Methods are provided to customize the calculation of radial
and tangentialmagnifications across the retina for individual eyes, whichwill bolster the
multifactorial study of the effects of foveal and peripheral optics across eye shapes and
refractive errors.

Introduction

Magnification is a fundamental attribute of ocular
optics that can relate distance units, such asmillimeters,
to visual angle units, typically degrees, on the retina.
Because the retinal image is two dimensional, magni-
fication at any point is commonly considered in two
components (along two meridians). As will be demon-

strated, radial magnification relates to the local shape
of the retina in a plane (such as a magnetic resonance
imaging [MRI] section of an eye1,2), and tangential
magnification relates to the distance that a hypothetical
ray of light travels to the retina. In a one-dimensional
ray diagram, the classical object–image relationship
is only illustrated in the radial dimension (Fig. 1B);
the tangential dimension is perpendicular to the radial
plane (Fig. 1A). Changes in magnification over the
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Figure 1. On-axis (foveal) axial length cannot unambiguously inform retinal shape ormagnification as a function of field angle. (A) Scheme
for representing an eyeball (translucent gray) as an ellipsoid of rotation around the z-axis. The fovea is located at the origin (0,0,0). A ray (solid
black line) emerges from the posterior nodal point (N′; pink diamond), 17 mm from the fovea (7 mm from the cornea), and intersects the
retina at k. Radial magnification is defined along the red solid ellipse (in the plane x= 0; partially plotted in pale red). Tangential magnification
is defined along the dotted red ellipse, which is orthogonal to the radial ellipse at point k and is in the cyan (tangential) plane (illustrated for
x< 0). The dashed black line connects point k to the geometric center of the ellipsoid. Supplementary Materials include an animation of (A).
(B) Radial profiles representing three anatomically plausible1,27 eyes with theoretical axial lengths of 24mm (red is a prolate ellipse, green is a
circle,blue is an oblate ellipse). Definitions of theseprofiles in termsof vertex radii of curvature r (indicatedby× symbols) and conic constants
Q (see legend for panel C) are described in theMethods. (C) Due to different retinal shapes, both radial and tangential retinal magnifications
(solid and dotted lines, respectively) differ substantially across the three eyes as functions of field angle. (D) Proportions (aspect ratio) of radial
magnification/tangential magnification as function of field angle. There is asymmetry between the radial and tangential dimensions for all
eye shapes; as a function of field angle, this increases much more rapidly for the prolate profile (retinal images are also illustrated in Fig. 6).

visual field and differences between radial and tangen-
tial magnifications are what is classically referred to as
distortion.

These local retinal magnifications are relevant to
clinical applications of objectively resolving anatom-
ical structures using adaptive optics3,4 or optical
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coherence tomography,5,6 when computing light irradi-
ance across the retina,7 and during focus-dependent
surgical techniques such as photocoagulation.8 Ocular
magnification also affects subjective visual experience
and is considered when minimizing aniseikonia during
the prescription of spectacles9,10 or intraocular lens
powers,11 as well as during low vision care of eyes
with central vision loss12 and in understanding the
optical and visual quality of emmetropic versus myopic
eyes.13

The adjusted axial length method proposed by
Bennett et al.14 is widely used to determine a foveal
retinal magnification factor, but this method assumes
that the retina and posterior focal planes of the eye
coincide, which is the case in neither foveal ametropias
nor in peripheral refractive errors. We show in this
paper why magnification in and around the fovea is
insensitive to retinal shape, and we focus on the more
challenging case of calculating retinal magnification
factors beyond the fovea.

How magnification changes as a function of visual
field angle (away from the fovea) is of interest given that
peripheral optics are important for signaling accom-
modative responses,15 driving,16 and mobility,17 as well
as in clinical perimetry.18 Further, due to associations
between off-axis optics and the onset and progression
of myopia,19 peripheral image quality is being increas-
ingly considered in the design of free-form specta-
cle lenses,20,21 custom and orthokeratology contact
lenses,22 and head-mounted displays.23

An essential consideration when studying magni-
fication as a function of field angle is retinal shape,
especially given potential associations between retinal
shape and refractive errors24 and how velocities of
retinal images change across different retinal shapes
during eye movements.25 Popular methods14,26 of
projecting object space across the retina assume that
the retina is spherical. The shortcoming of this assump-
tion is illustrated in Figure 1B, where circular and ellip-
tical profiles are plotted that represent three anatomi-
cally plausible retinal shapes.1,27 These three eyes have
the same theoretical on-axis axial lengths (24 mm), but,
due to their different retinal shapes, magnification as a
function of field angle differs substantially across the
three retinas (Fig. 1C).

Popular methods of calculating magnification, such
as that of Drasdo and Fowler,26 are not readily
customizable for the calculation of magnification in
individual eyes. One goal of the present paper was
to provide a tool for these calculations that could
be implemented in spreadsheet software (see Supple-
mentary Material). Given increased accessibility of
technologies that quantify retina shape,1,2,27–29 this
tool allows magnification to be calculated over the

retina for individual eye shapes analogous to the
common presentation of relative peripheral refrac-
tion.24

The tool calculates retinal magnification as a
function of (1) field angle, (2) nodal point position
relative to the retina, and (3) retinal shape, where retinal
shape is defined1,27 as a circle, prolate ellipse, or oblate
ellipse by a radius of curvature r and an aspheric conic
constant Q. To demonstrate the calculations, we artic-
ulate monocular magnification patterns resulting from
the interaction of the three variables and emphasize the
effect of retinal shape. Changes in magnification across
the retinas are also discussed in the context of classical
concepts such as barrel and pincushion distortions, as
well as applications such as ocular imaging, aniseiko-
nia, chromatic differences in magnification, and binoc-
ular vision. Across these applications, we ask which
errors would result (1) if peripheral magnification
was assumed to equal magnification at the fovea, and
(2) if the retina was assumed to be spherical when it is
aspheric? A detailed derivation of the calculations and
instructive methods for monitoring anatomical plausi-
bility when performing the calculations are included in
the Appendix.

Methods

We sought calculations of retinal magnification that
could be performed in spreadsheet software. Although
integrals and derivatives are employed in deriving
the magnification equations, the resulting functions
ultimately require only algebra and trigonometry. Here,
methods are summarized; a full derivation of calcu-
lations and logic is provided in the Appendix. The
methods are automated in a Microsoft Excel spread-
sheet in the Supplementary Material.

Definitions, Conventions, and Assumptions

Retinal magnification is studied using an ocular
nodal point convention. Although nodal points are
strictly a paraxial concept, they are broadly employed
inwide-angle applications 5,6,30,31 and have been shown
to be in good agreement with real ray tracing over large
field angles.32 Using a nodal point convention simplifies
the optical contributions of the refracting surfaces and
media of an eye into a pair of locations. The classical
concept is that a ray that travels at a particular angle
toward the first (anterior) nodal point emerges from
the optical system in the same direction, along a line
that includes the second (posterior) nodal point. The
conceptual path through both nodal points and the
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fovea is known as the visual axis,33,34 and field angle
is described as the angle formed between a ray and the
visual axis (θ in Fig. 1).We use the term fixation to refer
to the object location conjugate to the retinal fovea, and
nodal point (N′) to refer to the posterior nodal point.

We consider the fovea as the origin (0,0,0) of
a coordinate space with dimensions in millimeters
(Figs. 1A, 1B). Field angles (θ ) are plotted in degrees
(calculations use radians); when an object is at fixation,
the angle is 0°. Magnification is modeled up to a
field angle of 105°, which covers the maximum extent
of a healthy monocular visual field.35 In this coordi-
nate space, a two-dimensional section of retina can be
described1,27 using the conic section equation36

0 = y2 − 2rz + (Q + 1) z2 (1)

where y and z are Cartesian coordinates (Figs. 1A, 1B),
r is the vertex radius of curvature (at the fovea), and Q
is the conic constant that defines oblate (Q > 0; blue
in Fig. 1B), spherical (Q = 0; green), prolate (0 > Q
> –1; red), parabolic (Q = –1), and hyperbolic (Q <

–1) profiles. Note that defining retinal shape with an
elliptical conic section in Equation 1 is the general case,
within which circular or spherical retinas are included.

Checking Anatomical Plausibility and Nodal
Point Position

There are various methods of measuring retinal
shape,1,2,27–29 each of which visualizes a different
angular extent of retina. The representation used
in Figure 1B is similar to MRI studies1,2 where a
section of the entire eye globe is described by a
single ellipse; this approach ensures that the fit ellipse
is anatomically plausible. Virtues and limitations of
different approaches are considered in the Discussion
and Appendix.

However, if only a segment of retina has been fit
and those fit parameters are extrapolated to define
an entire eyeball, it is possible that an anatomically
implausible ellipse could result, and the nodal point
might be farther from the fovea than the hypothetical
axial length (see Appendix). In such cases, we need to
limit the calculation of magnification to the maximum
y-value (immediately before the retina begins to curve
back toward the visual axis). To check this plausibility,
we begin by calculating axial length from the parame-
ters that define the eye shape:

Axial length = −2r
(Q + 1)

(2)

Recall that r is measured from the vertex to the
center of curvature and is a negative distance. If the

calculated axial length (Equation 2) is greater in magni-
tude than the distance from the nodal point (N′) to
the retina, then any ray will reach the retina irrespec-
tive of the angle at which it emerges from the nodal
point, and magnification calculations do not have to
be constrained. However, if the nodal point is farther
from the retina than the hypothetical axial length, the
maximum valid field angle where a ray from the poste-
rior nodal point will intersect with the retinal asymp-
tote is

θm = arctan

(
ygeo(

zgeo − N ′)
)

(3)

where zgeo is half of the axial length from Equation 2
and ygeo is

ygeo =
√

r2

(1 + Q)
(4)

Calculation of Radial and Tangential Local
Retinal Magnifications

As derived in the Appendix, radial magnification as
function of field angle (θ ) is calculated as the product
of three values: (1) local relative magnification derived
from the perimeter equation of an ellipse; (2) the size
of the angle subtended at the geometric center (ɸ) by
an angle subtending 1° at the nodal point (N′), which is
calculated using classical geometry; and (3) the magni-
fication relative to the geometric center at the ellipse
vertex (fovea), calculated as

mag (0◦) = π |zgeo|
180

(5)

where π /180 is the conversion of 1° to radians.
Tangential magnification is calculated using

Equation 5 and substituting the path length of the
ray (from the nodal point to the retina) in the place of
zgeo. The logic behind this calculation is also articulated
in the Appendix.

Results

Using the methods summarized above, monocu-
lar radial and tangential retinal magnifications were
calculated as a function of field angle for combina-
tions of each category of retinal shape and nodal point
position. These are reported in order of increasing
complexity.
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Figure 2. Local radial and tangential retinal magnifications (solid and dotted lines, respectively) as a function of field angle (θ ) for different
combinations of spherical retinal radii of curvature (r) and nodal point positions (N′). (A) Magnification at the fovea (θ = 0°) is determined by
the distance from N′ to the retina irrespective of r. (B) As field angle increases, both magnifications decrease monotonically if N′ is anterior
to r (barrel distortion) and increase monotonically when N′ is posterior (pincushion distortion). At the fovea, magnification is proportional
to the distance from N′ to the retina; it is constant (blue trace) when N′ and (spherical) r are coincident, and all radial magnification curves
converge to that constant value when θ = 90°.

Spherical Retinas

Nodal Point at Spherical Retinal Center of Curvature
This simplest case is worth articulating because it

is used in the classical geometric horopter.33 When
the retina is spherical and the nodal point is at the
retinal center of curvature, local radial and tangential
magnifications are constant as a function of field angle.
Below, we show that these constant values depend on
the radius of curvature of the spherical retina and not
on the nodal point position. As the radius of curva-
ture increases (flattens), the (constant) magnification
increases. The ratio between (respectively constant)
magnifications for different radii of curvature is the
ratio between those radii of curvatures.

Because, here, the nodal point position and spherical
retinal center of curvature coincide, the constant value
of local magnification equals the length (in millimeters)
of retinal arc subtended by 1° and can alternatively be
calculated by the classical equation from circle geome-
try:

mag (θ ) = π |r|
180

(6)

which is equivalent to Equation 5. Thus, for spherical
retinas with radii of curvature of 11, 12, and 13 mm

and respective nodal points at their centers of curva-
tures, local radial and tangential magnifications are
constant as functions of field angle at 0.192, 0.209, and
0.227 mm/deg, respectively. The example for 12 mm is
included in Figure 2B.

Nodal Point Anterior or Posterior to Spherical Retinal
Center of Curvature

In most eye models that assume a spherical retina,
the nodal point is located anterior to the retinal center
of curvature. For consistency with the aspheric retina
examples that follow (where center of curvature refers
to vertex radius of curvature), we include cases inwhich
the nodal point is posterior to the retinal center of
curvature.

When the nodal point is not coincident with the
center of curvature of a spherical retina, local magni-
fications are no longer constant across field angles. At
the fovea (θ = 0°), radial and tangential magnifications
are equal and determined by the nodal point position
irrespective of retinal radius of curvature (Fig. 2A).
This value can be calculated using Equation 6 and
substituting r with the distance from N′ to the retina.
As field angle increases, both radial and tangential
magnifications change monotonically: decreasing with
eccentricity if the nodal point is anterior to the retinal
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center of curvature (barrel distortion) and increasing
with eccentricity when the nodal point is posterior
(pincushion distortion). Tangential magnification is
always less than radial magnification. At an angle of
90°, local radialmagnification equals the constant value
determined by the spherical retinal radius of curvature
(see above) irrespective of the nodal point position.
This is a consequence of circle geometry; a more
general solution is provided for any retinal shape below.

The greater the difference between the nodal point
position and the spherical retinal center of curvature,
the greater the changes in both magnifications with
field angle, which range from zero, when the points
coincided, to up to 43% and 50% changes in radial and
tangential magnifications, respectively, for the condi-
tions modeled here (Fig. 2). Eyes that are mathemat-
ically similar (scaled versions of each other) have the
same relative patterns of radial and tangential magnifi-
cations as a function of field angle.

Aspheric Retinas

In the preceding section with spherical retinas,
modeled axial length could be estimated as 2r; however,
for aspheric retinas it is not that simple, and Equation 2
should be used. From Equation 2 one also notes the
inverse linear relationship between the conic constant
Q and axial length. Recall that the notion of radius of
curvature is not as intuitive with aspheric shapes as for
spherical retinas, and here it refers to the vertex radius
of curvature (that is, at the fovea).

Nodal Point at the Aspheric Retinal Vertex Center of
Curvature

This case isolates the effects of retinal asphericity on
magnification. At the fovea (θ = 0°), radial and tangen-
tial magnifications are equal and are determined by the
distance from the nodal point to the retina irrespec-
tive of the retinal vertex radius of curvature and/or
asphericity. For any (coincident) aspheric vertex center
of curvature and nodal point, prolate asphericity (0
> Q > –1) causes an increase in local magnification
with increasing field angle (pincushion distortion), and
oblate asphericity (Q > 0) causes a decrease in local
magnification (barrel distortion) (Fig. 3). Tangential
magnification is less than radial magnification. If the
underlying vertex radius of curvature is changed, all
magnification curves shift by a proportional amount.

Nodal Point Anterior or Posterior to Aspheric Retinal
Vertex Center of Curvature

Again, at the fovea (θ = 0°), radial and tangen-
tial magnifications are equal and determined by the
distance from the nodal point to the retina irrespec-

Figure 3. Isolated effect of retinal asphericity on radial and tangen-
tial magnifications (solid and dashed lines, respectively) as a function
of field angle (θ ). Across all traces, the retinal vertex center of curva-
ture (r) and nodal point (N′) are coincident at –12 mm. Note that, for
the same magnitude of Q, prolate asphericities (0 > Q > –1) have a
greater change in magnification than oblate asphericities (Q > 0).

tive of the retinal vertex radius of curvature and/or
asphericity. As field angle increases (Fig. 4), both the
nodal point position and asphericity affect the change
in magnification. Nodal point positions anterior to
the vertex center of curvature and oblate aspheric-
ity both cause a relative reduction in magnification
with increasing field angle (barrel distortion), whereas
nodal points posterior to the vertex center of curva-
ture and prolate asphericity cause the opposite. Radial
magnification curves (Fig. 4) converge to values (at θ

= 90°) determined by retinal shape (r and Q) irrespec-
tive of nodal point position. The dashed horizontal
lines (constant magnification) through these conver-
gence points in Figure 4 are empirically determined as
the radial magnification values of equivalent spherical
retinas with radii of curvature

res = 2r
(Q + 2)

(7)

where r and Q relate to the aspheric retina and r and
res are negative distances. These equivalent spherical
retinas intersect the aspheric retinas (in our coordinate
space) at the point on the aspheric retinas where z = y.
The magnifications for each res (dashed lines in Fig. 4)
are calculated by substituting res for r in Equation 6.
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Figure 4. Local radial and tangential retinal magnifications (solid and dashed lines, respectively) as functions of field angle (θ ) and the
distance from the nodal point (N′) to the retina for (A) prolate and (B) oblate asphericities. Across both panels, radial and tangential magni-
fications are equal at the fovea (θ = 0°) and determined by the position of N′ regardless of vertex radius of curvature (r) and/or asphericity
(Q). Change in magnification with field angle depends on both Q and the position of N′ relative to r. Magnification values to which all radial
curves in each panel converge at θ = 90° are determined by r and Q and calculated using Equations 6 and 7.

The magnifications modeled in Figure 4 can be
related to well-known clinical findings. If the prolate
retina in Figure 4A was myopic24 and corrected using
spectacles, the nodal point position would be relatively
nearer to the retina (lesser magnitudes of N′ in the
legend) than if that eye was corrected with contact
lenses (or uncorrected) where the nodal point would
be relatively nearer to the cornea.37 The magnifica-
tion curves echo the well-known minification caused
by negative-power spectacles compared with contact
lenses.

Although Figure 4 shows the effects of different
nodal point positions when vertex radius of curva-
ture and asphericity are held constant, it is also useful
to refer to Figure 1 for examples where axial length
and nodal point position are held constant. Figure
1C complements the patterns of magnification shown
in Figure 4: Magnifications at fixation (θ = 0°) are
the same for the three curves because the nodal point
positions are the same, and the decrease in local magni-
fication with increasing field angle (barrel distortion) is
influenced by the combination of radius of curvature
and asphericity. Figure 1D shows the proportions of
radial magnification/tangential magnification (aspect
ratio) as a function of field angle. There is asymme-
try between the radial and tangential dimensions in all
eye shapes, which increases more rapidly for the prolate
profile as a function of field angle away from the fovea.

Binocular Application

Figures 1 to 4 illustrate how retinal shape can affect
monocular magnifications as a function of field angle.
Subjectively, differences in magnification and retinal
image size (aniseikonia) experienced between the two
eyes when viewing binocularly also depend on retinal
shape. Figure 5 shows how the present methods can
be used to model aniseikonia as a function of field
angle and object space for various combinations of
retinal shapes. In these simulations, the interpupil-
lary distance38 is 63 mm. Symmetric convergence is
modeled at 114 cm from the eyes, which was themedian
fixation distance for a collection of tasks39; changing
this parameter has a small effect compared to that of
eye shape.

Figures 5A and 5B illustrate the field angles
subtended at each eye (θL and θR) by all points (e.g.,
point x) in a transverse plane in visual space spanning
400 × 400 mm. For each point in the plane, Figure 5C
plots the unsigned difference in field angle (horizon-
tal disparity) subtended at the two eyes (|θL – θR|).
The angular data in Figures 5A, 5B, and 5C apply
to all eye shapes. Figures 5D and 5E plot local radial
retinal magnification corresponding to the subtended
field angles (Figs. 5A, 5B) for left and right prolate
retinas like the one in Figure 1. For each point in the
plane, Figure 5F plots the difference in magnification
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Figure 5. Differences in field angles and local retinal magnifications during binocular viewing. (A, B) Field angles subtended at the visual
axis of left (θ L) and right (θR) eyes by points in a transverse plane of visual space spanning 400 × 400 mmwhen the eyes are symmetrically
converged (solid white lines) to 114 cm.39 A representative point in the space is labeled X. (C) Unsigned differences (horizontal disparity)
in angles formed at each eye across the plane (|θ L – θR|). (A), (B), and (C) are common to all eye shapes. (D, E) Radial retinal magnification
across the plane of visual space calculated from the angles in (A) and (B) for identical left and right prolate retinas (from Fig. 1; r = –9,
Q = –0.25). (F) Percentage difference in magnification between right and left prolate retinas for each point in the plane [(right – left)/left *
100]. Gray bars indicate locations of data extracted at 25 cm and 10 cm from the eyes. (G, H) Solid lines are sections through surface plots of
radialmagnification like that in (F) for eyes of the same axial length (fromFig. 1)when right and left eyes have the same shape; dotted lines are
for tangentialmagnificationdifferences. (I) Plotswhere right and left eyesdiffer in shape (bothprolatebydifferent amounts) andaxial lengths
differ by 0.5mm. Consequently, magnification also differs along themedian plane of the head (x= 0).Dashed curves are aftermagnifications
and aremodified for neural aniseikonia (relative proportions of globe perimeters); this has only a small effect on themagnification difference
between the eyes because the majority is optical in origin.
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between the eyes as a percentage of the left eye
values: Positive values indicate magnification relative
to the left eye, and negative values indicate minifi-
cation. Because Figures 5A to 5F model symmetric
convergence of identical right and left eyes, there is no
difference in magnification at the fixation point (not
shown). The difference in magnification between right
and left eyes increases the nearer that a point is to
the eyes and illustrates, for example, the substantial
differences in magnification that the optics of near-
eye displays are engineered to overcome by placing
the virtual image of the displays farther from the
eyes than the actual displays. The application of these
magnification methods to virtual reality head-mounted
displays is a subset of the free-viewing case illus-
trated in Figure 5. The virtual image plane is typically
at a distance roughly 65 cm to 2 m from the eyes,
and accommodation posture—which impacts nodal
point position—is expected to be relatively constant
around that virtual image plane. Disparity render-
ing will drive convergence posture—which impacts the
field angle relative to the nodal point. Although the
optics of high-powered display lenses might distort
virtual object space, geometric rendering calibrations
should compensate for these distortions, and the three-
dimensional space represented in Figure 5 becomes a
plane at the virtual image distance from which light
originates and projects across the retinas.

Figures 5G and 5H show one-dimensional sections
through surfaces such as that plotted in Figure 5F.
These illustrate the differences in magnification experi-
enced between right and left eyes across the plane in
visual space and are conceptually the converse of iso-
magnification curves.40,41 Whereas Figures 5D to 5F
show radial magnification corresponding to the one
condition where both eyes are prolate in shape, Figures
5G to 5I illustrate radial and tangential magnifications
for many pairings of eye shapes at 25 cm and 10 cm
from the eyes. Figures 5G and 5H treat right and left
eyes as identical in shape (both prolate or both spher-
ical or both oblate); Figure 5I models right and left
eyes that are both prolate but by different amounts and
consequently also have different axial lengths. Parame-
ters of that left eye are like the prolate retinas in Figure
1 (r = –9; Q = –0.25; axial length = 24 mm) and
parameters of the right eye are r = –11.025, Q = –0.1,
and axial length = 24.5 mm. The nodal point of both
eyes in Figure 5I was 7 mm from the cornea, mimick-
ing vitreous chamber elongation that is common in
anisometropia and aniseikonia.9

A neural component of aniseikonia was suggested
when it was shown that equating the optical image sizes
in both eyes (say, by following Knapp’s law) did not
resolve perceived aniseikonia in anismetropia.9 Neural
aniseikonia relates to the relative proportions of the

retinas covered by the images, where, in a longer eye, an
image of a given size covers a relatively smaller propor-
tion of that retina than the same image size covers in a
shorter eye. A simple account of this neural aniseiko-
nia was incorporated into the dashed curves in Figure
5I by multiplying the radial magnification as a function
of field angle in one eye by the ratio of the perimeters
of the two globes (see Equation A15 and the below
section, Extension of Data to Calculate Retinal Arc
Length) and using the classical assumption of corre-
sponding retinal points.42 This has only a small effect
on the difference in magnification experienced between
the two eyes (Fig. 5I); the majority is caused by the
differences in optical magnification described through-
out this paper.

Discussion

Nodal Points

Although nodal points are theoretically a paraxial
property of stigmatic systems, they have been gener-
alized to astigmatic systems34 and have been shown
to be a good approximation of real ray tracing over
wide field angles.32 Despite that, at large field angles,
the ray path through the entrance pupil (line of sight)
can differ from the path modeled through the nodal
points (visual axis),43,44 we treat this difference as negli-
gible, given that the main effects of the magnifica-
tion results arise at angles larger than 5°. Although
being a classic concept in optics, nodal points maintain
modern applications such as in widefield6 and ultra-
widefield5 optical coherence tomography, the design
and troubleshooting of intraocular lens complications
(such as farfield negative dysphotopsia31), determin-
ing posterior vitreous chamber dimensions,30 modeling
peripheral field loss,45 and studying retinal structure–
function relations dependent on field eccentricity.18

The baseline nodal point position of 7 mm from
the cornea, which in most cases here is 17 mm
from the retina (Figs. 1, 2, 5), is common in eye
models26,46 and instrumentation assumptions.47 Multi-
ple nodal point positions were modeled to illustrate
the suitability of these methods for applications where
the nodal point position changes, such as across differ-
ent refractive errors37 and during accommodation.46
Nodal point positions also change when correcting
ametropia with spectacle or trial lenses. Compensat-
ing hyperopia with a positive lens moves the nodal
point anteriorly (toward the cornea), whereas compen-
sating myopia with negative-powered spectacles moves
the nodal points posteriorly (toward the retina).48,49
Although changes to the nodal point position are
minimally impacted by contact lens corrections37 and
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Figure 6. Effect of retina shape on radial and tangential magnifications and retinal image location. (A) Relative image proportions (aspect
ratios) formed by a 1° diameter circular object on prolate and oblate retinas (from Fig. 1) across eight field angles, flattened into two dimen-
sions. Only for 0° are the two images circular (radial and tangential are equal). (B) Location from the fovea (0 on the abscissa) where the retinal
image is formed.Only for 0° do images format the samedistance (0mm) from the fovea in both eyes. Note howvisual space isminified across
the prolate retina relative to the oblate retina.

can be completely avoided by using a Badal optometer,
the compensation of ametropia with spectacle or trial
lenses might complicate other imaging applications
where assumptions have been made about nodal point
positions. Nodal point positions for these magnifica-
tion calculations either can be sensibly selected from the
above-mentioned literature or can be estimated using
customized or semi-customized biometric eye models
in optical design software,3,4 which can also include any
corrective lenses.

Extent of Retina That Is Fit

An assumption that we employed was that one
meridian of the entire retinal globe can be described
by the fitting of a single ellipse. Although smaller
angular segments27 of retina could be more accurately
fit, those methods can result in a larger range of values
across individuals and implausible axial lengths if the
fit parameters of the retinal segment are extrapolated
to describe the entire globe. By beginning with a fit
of the whole globe,1,2 we are able to estimate and
evaluate the anatomical plausibility of axial length and
limit field angles to those that will reach the retina
(Equations 2–4).

Radial and Tangential Magnifications

Both radial and tangential magnifications are cycli-
cal as functions of the angle at the nodal point.
Over the range of field angles (0°–105°) modeled here

(Figs. 1–4), tangential magnification is less than radial
and changes at a faster rate. Consequently, the differ-
ence plots (dotted lines) in Figures 5G to 5I are more
pronounced for tangential than for radial magnifica-
tion. Proportions of radial and tangential magnifica-
tions were shown for three eyes in Figure 1D. Figure
6A illustrates the relative effects of radial and tangen-
tial magnifications by superimposing images of a 1°-
diameter circular object for prolate and oblate retinas
from Figure 1 across eight field angles. In objective
applications, such as retinal imaging, these differences
affect the estimated sizes of retinal features and calcu-
lations of cell densities. This is the well-known motiva-
tion behind classical foveal estimates of retinal magni-
fication factors.14,26

Extension of Data to Calculate Retinal Arc
Length

Some classical models, when extended beyond the
fovea, have treated the projected retinal image as flat14
rather than projected across the curved retinal surface.
In reality, different retinal shapes also result in differ-
ent locations where a ray will intersect with (form an
image on) the retina. The length along the retina from
the fovea to the retinal image could be calculated using
Equation A15 (perimeter of an ellipse) by modifying
the integral (and coefficient factor) from π /2 to the
desired field angle; it could be equivalently calculated
(as was done for validation of this subanalysis) using
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elliptic integrals.50 Alternatively, that length along the
retina from the fovea (θ = 0°) to the retinal image for
a ray emerging from the nodal point at θ = h° is the
cumulative sum of magnifications (mm/deg) for angles
from 0° to h° (essentially a discrete integral). Figure
6B plots retinal images of a 1°-diameter circle at the
locations where they form on the retinas. One can
appreciate how visual space is minified across the
prolate retina relative to the oblate retina.

Practical Context of Magnification
Differences

Monocular changes in magnification with field
angle are discussed using the two questions from
the Introduction: What magnification errors (differ-
ences) would result if (1) peripheral magnification was
assumed to equal that of the fovea, and (2) if the retina
was assumed to be spherical when it is aspheric? For
each question, the magnification error at 30° and the
maximum error in magnification at any field angle are
considered.

First, across the eyes presented here with a 17-mm
distance from nodal point to retina, assuming that
peripheral magnification equals foveal magnification
could result in radial and tangential errors (differences)
at 30° of 4% and 11% (Fig. 1), respectively. Maximum
errors (at larger angles) can approach 50% (Fig. 1) and
75% (Fig. 4B), respectively. Second, assuming that the
retina is spherical when it is an anatomically plausi-
ble ellipse can result in radial and tangential magni-
fication errors at 30° of 2% and 6% (Fig. 1), respec-
tively. Maximum errors can surpass 20% (Fig. 3) and
60% (Fig. 4b), respectively.

These differences in magnification can be contexted
in terms of transverse chromatic aberration (also
known as chromatic difference inmagnification), which
is on the order of 1% difference between images at 400
and 700 nm.51,52 Although differing spectral sensitiv-
ities play a role, the percentage of chromatic magni-
fication differences with which the visual system is
equipped to deal is substantially smaller than the effects
demonstrated here from different retinal profiles.

Bilateral differences in magnification can cause
diplopia and perceptual illusions, such as slant or
curvature of a flat surface. Aniseikonia literature can
help inform the question of what is a clinically signif-
icant subjective difference in binocular magnifications.
These thresholds differ across visual orientations and
are generally taken to refer to the most sensitive (that
is, the vertical) meridian.53

The methods and data presented throughout most
of this manuscript relate to the optical component of

aniseikonia. This is comparable with data collected on
instruments such as the space eikonometer,54 which
allows modification of monocular optical magnifica-
tion to balance aniseikonia. Foveal data are plenti-
ful and generally in agreement that typical levels of
aniseikonia are less than a 2% difference in image size
between the eyes and that a substantial impairment
of binocular vision occurs at approximately 3% to 5%
difference.10,55

It is expected that aniseikonia thresholds will change
as a function of field angle away from the foveas;
however, literature on the topic is not definitive. Ames
and Ogle56 summarized three studies and concluded
that Panum’s area (of single vision) grows relatively
smaller with peripheral eccentricity. Crone and Leuri-
dan53 measured diplopia thresholds in degrees (asking
whether two line targets appeared merged as single
or distinct as double) and found a gradual increase
in those diplopia thresholds as field angle increased
beyond 10°. They believed that aniseikonia thresholds
will also increase with field angle. Magnification differ-
ences between right and left eyes (Fig. 5) are substan-
tially dependent on the distance of a point or plane
from the eyes. For the examples presented, objects
25 cm from the eyes (Fig. 5G) resulted in magnifi-
cation differences similar to the thresholds of Ames
and Ogle56 and Crone and Leuridan.53 For objects
nearer to the eyes (Figs. 5F and 5H) binocular magni-
fication differences increased substantially and varied
dependent on eye shape: In prolate retinas, these were
considerably larger than the thresholds from the litera-
ture,53,56 but oblate retinas shapes mitigated binocular
magnification differences (Fig. 5).

Usage and Conclusions

The methods derived and demonstrated here are
provided in a spreadsheet in the Supplementary
Materials, where measured retinal shape1,2,27–29 can
be input or a selection of retinal shapes can be itera-
tively modeled, and local radial and tangential retinal
magnifications as functions of field angle can be calcu-
lated. Again, nodal point position can be selected
from the known assumptions of instrumentation,47
literature,37,46 generic eye models,26,46 or custom eye
models3,4 and optical design software. The effects of
retinal shape on local magnification across the retina
are substantial and are important to consider in objec-
tive applications such as imaging retinal structures,
subjective patient experiences such as aniseikonia and
diplopia, and as an additional ocular property to
bolster the multifactorial study of the effect of optics
across eye shapes and refractive errors.
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Appendix

Here we articulate the derivation of, and the logic
behind, the magnification calculations. Among these
elaborations, some text and equations are repeated
from the Methods for continuity of the derivation.

Definitions, Conventions, and Assumptions

We consider the fovea as the origin (0,0,0) of a
coordinate space with dimensions in millimeters, and
distances along the visual axis from the retina to the
nodal point are negative in sign (Fig. 1B). For ease of
interpretation, field angles (θ ) in radians are plotted
in degrees, and when an object is at fixation the angle
is 0°. Magnification is modeled up to a field angle of
105°, which covers the maximum extent of a healthy
monocular visual field.35 In this coordinate space, a
two-dimensional section of retina can be described1,27
using the conic section equation:36

0 = y2 − 2rz + (Q + 1) z2 (A1)

where y and z are coordinates in a Cartesian sense
(Fig. 1), r is the vertex radius of curvature (that is,
radius of curvature of the retina at the fovea), and Q
is the conic constant that defines oblate (Q > 0; blue
in Fig. 1B), spherical (Q = 0; green), prolate (0 > Q >

–1; red), parabolic (Q = –1), and hyperbolic (Q < –1)
profiles. Note that defining retinal shape with an ellip-
tical conic section in Equation A1 is the general case,
within which the specific case of a circular or spher-
ical retina is included. Literature36 contains an alter-
nate definition of the conic constant using the symbol
P, where P = Q + 1.

For some of the methods that follow, it is useful to
manipulate Equation A1 to be in the form of the classi-
cal sagitta equation:

z = Cy2

(1 +
√
1 − (1 + Q)C2y2)

(A2)

where C is the retinal vertex curvature and C = 1/r.
Following optical convention, light is considered to

travel in a straight line from left to right. We can, there-
fore, describe the path of a ray emerging from the nodal

point (N′) at angle θ and traveling toward the retina
(such as in Fig. 1B) using the familiar straight-line
equation:

y = (slope) z + yint (A3)

where

slope = tan(θ ) (A4)

and θ is positive if measured counterclockwise from the
visual axis to the ray. The y-intercept of the straight line
is

yint = (−1) (slope)
(
N ′ to retina

)
(A5)

Checking Anatomical Plausibility and Nodal
Point Position

There are various methods of measuring retinal
shape,1,2,27–29 each of which visualizes a different
angular extent of retina. The representation in Figure
1B is similar to MRI studies1,2 where a section
through the entire eye globe is described by a single
ellipse. Although fitting smaller angular portions of
the retina27 might provide more accurate fitting over
those segments, if the fit parameters are extrapolated
to describe an entire eye globe it opens the possibility
of anatomically implausible eye shapes. For example,
if a posterior section of retina is best fit by a parabolic
conic section, the anterior part of that hypothetical eye
will never close at all, and axial length (Equations 2
and A6) in the magnification calculations is undefined.
Alternatively—at the other extreme of asphericity—if
a segment of posterior retina is described by a substan-
tially oblate ellipse, it is possible that the extrapolated
full ellipse will be too short to plausibly define an
anatomically typically axial length. Therefore, if only a
segment of the retina has been fit, it is prudent to deter-
mine whether an elliptical fit to that segment can be
meaningfully extended to define an entire eye. To check
this plausibility, we begin by calculating axial length
from the parameters that define the eye shape:

Axial length = −2r
(Q + 1)

(A6)

Recall, in our representation, r is measured from
the vertex to the center of curvature and is a negative
distance. For segments of posterior retinal profiles that
are fit with parabolic ellipses (Q = –1) (and will not
converge to form an anterior portion of an eye), the
denominator of Equation A6 becomes zero and axial
length is undefined.



Wide-Field Retinal Magnification Factor TVST | September 2022 | Vol. 11 | No. 9 | Article 10 | 15

Figure A1. Limiting the field angles over which magnification is
calculated when only a segment of the retina has been fit. Here, a
retinal segment has been fit with an oblate ellipse (r = –12 mm,
Q = 0.5, N′ = –17 mm from the retina). If the fit parameters are
extrapolated to define an entire eyeball, the modeled axial length
is 16 mm, which is nearer to the retina than the nodal point. In this
case, the extent of field angles over which magnification is calcu-
lated is limited to the angle (θm) where a ray from N′ intersects at
the maximum y-extent of the retina (xgeo, ygeo). The gray triangle is
the geometric center of the fitted ellipse.

If the calculated axial length (Equation A6) is
greater in magnitude than the distance from the nodal
point (N′) to the retina, then any ray will reach the
retina irrespective of the angle at which it emerges from
the nodal point, and the magnification calculations do
not need to be restricted. However, if only a segment
of retina has been fit with an oblate ellipse and those fit
parameters are extrapolated to define an entire eyeball,
it is possible that the nodal point may be farther from
the fovea than the hypothetical axial length (Fig. A1).
In such cases, we limit that calculation of magnifica-
tion to the maximum y-value (immediately before the
retina begins to curve back towards the visual axis). For
any ellipse (or circle), the z-value at which that happens
is the midpoint of the theoretical axial length, which
corresponds to the z-value of the geometric center (zgeo)
of the ellipse and half of the value determined by
Equation A6 (illustrated in Fig. A1). Here, zgeo is a
negative distance relative to the fovea. The maximum
y-value (ygeo) can be calculated by substituting zgeo into
Equation A1 and solving for y. Alternatively, a simpler
calculation of ygeo is possible by noting that the point
where the retinal shape begins curving back toward the

visual axis is when the square root in the denominator
of Equation A2 is not real; thus, when

(1 + Q)C2y2 > 1 (A7)

and the point immediately before the retina begins
curving back (that is, the maximum y-value) is when

(1 + Q)C2y2 = 1 (A8)

Equation A8 can be easily manipulated such that

ygeo =
√

1
(1 + Q)C2 (A9)

Then, in the case where the nodal point is farther
from the fovea than the hypothetical axial length given
by Equation A6, the maximum valid field angle where
a ray from the posterior nodal point will intersect with
the retinal asymptote is

θm = arctan

(
ygeo(

zgeo − N ′)
)

(A10)

where ygeo is positive and zgeo and N′ are negative.

Mapping an Angle at the Nodal Point to the
Geometric Center of an Ellipse

Now that we understand the position of the nodal
point relative to the theoretical axial length, as well as
the maximum valid field angle, we can begin to calcu-
late local retinal magnification in the radial meridian.
First, we find the intersection point k (zint,yint) on the
retina of a ray emerging from the nodal point at angle θ .
This is accomplished by formulating Equations A1 and
A3 in terms of y, setting them equal to each other, and
solving for the roots of z using the classical quadratic
formula:√

2rz − (Q + 1) z2 = (slope) z + yint (A11)

which reduces to

0 = (−1 − Q − (
slope2

)
z2

+ (2r − 2 (slope) (yint )) z − y2int (A12)

The roots of z from the general quadratic formula
are

zr = −B ± √
B2 − 4AC
2A

(A13)

where, from Equation A12,A and B are the coefficients
of z2 and z, respectively, and C is the constant term;
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that is,

A = (−1 − Q − (
slope2

))
B = (2r − 2 (slope) (yint ))

C = − y2int
The y-coordinates corresponding to each z-root are

calculated by substituting each zr (Equation A13) into
either Equation A1 or Equation A3. Because θ is
measured counterclockwise, we select the z-root that
corresponds to a positive y-coordinate.

The angle subtended by the intersection point (zint,
yint) at the nodal point is θ ; in the next section, we
will require the angle (ɸ) subtended by the same retinal
point at the geometric center of the ellipse (Fig. 1B).
The quadrant-specific arctangent formulation is

� = ATAN2
(
(zint − zgeo), (yint − 0)

)
(A14)

where yint is positive and zint and zgeo are negative.

Calculation of Radial Local Retinal
Magnification

The derivation of the radial magnification
equations begins with the classical geometric defini-
tion of the perimeter (circumference) of an ellipse
(Equation A15).57 Calculation of tangential magnifi-
cation will follow from the radial method.

Perimeter = 4a
∫ π/2

0

√
1 − e2sin2�d� (A15)

where ɑ is the length of the semi-major axis of the
ellipse, ɸ is the angle subtended at the geometric center
of the ellipse (not at the nodal point; see Fig. 1B), and
e is the ellipse eccentricity defined as

e =
√
1 − (b2/a2) (A16)

where b is the length of the semi-minor axis of the
ellipse. For the spherical or circular case, ɑ = b and e
= 0. For all retinal shapes, we have already calculated
magnitudes of ɑ and b under other names above:

a = ∣∣zgeo∣∣ =
∣∣∣∣ r
(−Q − 1)

∣∣∣∣ (A17)

b = |ygeo| =
∣∣∣∣∣
√

1
(1 + Q)C2

∣∣∣∣∣ (A18)

Note that ellipse eccentricity captures only the
relative lengths (proportionality) of the major and
minor semi-axes; hence, infinitelymanymathematically
similar ellipses can all have identical eccentricity. Also
note that ɑ is always for the major (longer) axis and

b is always the minor (shorter) axis; therefore, ellipse
eccentricity is insensitive to prolate or oblate orienta-
tions (conic constant Q).

Local magnification (mm/deg) at angle ɸ is the
first derivative of the perimeter function (mm). Hence,
differentiating Equation A15 gives

Magni f ication = 4a
√
1 − e2sin2� (A19)

Because, at this point, we desire only the relative
pattern of radial magnification as function of field
angle, and magnification will be scaled to the parame-
ters of a particular eye and nodal point in the next step,
the constant factors that scaled the integral are omitted:

Local relativemagni f ication

= magrel (�) =
√
1 − e2sin2� (A20)

From Equation A20 we have determined local magni-
fication as a function of angle (ɸ) for a retina with ellip-
tical eccentricity of e.

Finally, local radial magnification as function of
field angle θ and specific to the dimensions of the given
retina and the location of the nodal point is calcu-
lated as the product of three values described below:
(1) local relative magnification, (2) the size of the angle
subtended at the geometric center by an angle subtend-
ing 1° at the nodal point (N′), (3) and the magnifica-
tion relative to the geometric center at the ellipse vertex
(fovea). These methods are automated in a spreadsheet
in the Supplementary Materials. First, local relative
magnification is from Equation A20. Second, if an
angle subtending 1° is projected from the nodal point
and centered around the ray at the angle of interest
θ , then the angle subtended at the geometric center is
calculated using Equations A3, A4, A5, A12, A13, and
A14. Third, when the field angle (θ ) is zero, magnifica-
tion is determined by the distance along the visual axis
to the vertex. Here, that distance is from the geometric
center and

mag (0◦) = π |zgeo|
180

(A21)

where π /180 is the conversion of 1° to radians.

Calculation of Tangential Local Retinal
Magnification

Calculations of tangential magnification assume the
eye globe to be an ellipsoid of rotation about the axial
z-axis (Fig. 1A). Tangential magnification is ultimately
calculated using Equation A21 and substituting the
path length of the ray (from the nodal point to the
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retina) in the place of zgeo. Briefly, we articulate the
logic leading to that conclusion.

By definition, tangential magnification is along
a meridian orthogonal to the radial fit—that is, in
the cyan plane in Figure 1C. The intersection of a
plane and an ellipsoid is an ellipse (dotted red ellipse
in Fig. 1A). That ellipse can be remapped from three
dimensions into two dimensions (into the cyan plane),
and the original intersection point of the ray and
retina (k) can be defined as the new origin of this
new two-dimensional space. Having an ellipse with the
vertex at the new origin of this coordinate space, we
can again apply the magnification method described

above. Because instantaneous tangential magnifica-
tion relates to the path length of ray from the
nodal point to the retina, tangential magnification
is determined by substituting that path length into
Equation A21.

The geometry of the calculations was visualized and
the magnification values verified using The Geometer’s
Sketchpad (McGraw-Hill). During other work by our
group,58 good agreement was found between Zemax,
which defines and traces rays with reference to the
entrance pupil, and the present method that uses the
nodal point, echoing other widefield findings.32


