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Kernel weighted least square 
approach for imputing missing 
values of metabolomics data
Nishith Kumar1*,                 Md. Aminul Hoque2 & Masahiro Sugimoto3,4

Mass spectrometry is a modern and sophisticated high-throughput analytical technique that 
enables large-scale metabolomic analyses. It yields a high-dimensional large-scale matrix 
(samples × metabolites) of quantified data that often contain missing cells in the data matrix as well 
as outliers that originate for several reasons, including technical and biological sources. Although 
several missing data imputation techniques are described in the literature, all conventional existing 
techniques only solve the missing value problems. They do not relieve the problems of outliers. 
Therefore, outliers in the dataset decrease the accuracy of the imputation. We developed a new kernel 
weight function-based proposed missing data imputation technique that resolves the problems 
of missing values and outliers. We evaluated the performance of the proposed method and other 
conventional and recently developed missing imputation techniques using both artificially generated 
data and experimentally measured data analysis in both the absence and presence of different rates 
of outliers. Performances based on both artificial data and real metabolomics data indicate the 
superiority of our proposed kernel weight-based missing data imputation technique to the existing 
alternatives. For user convenience, an R package of the proposed kernel weight-based missing value 
imputation technique was developed, which is available at https://​github.​com/​Nishi​thPaul/​tWLSA.

Metabolomics datasets produced by mass spectrometry (MS) often contain a wide number of missing cells in 
the data matrix that can be generated from various sources, including both technological and biological haz-
ards. Generally, there are approximately 10% to 40% missing values in metabolomics datasets1–3. The reasons 
include: (i) the metabolite concentration peak is below the analytical method’s detectable threshold; (ii) the 
metabolite concentration peak is not initially present in the chromatogram; (iii) overlapping signal separation; 
(iv) deconvolution may give false negatives during the separation of overlapping signals, (v) computational 
and/or measurement error, (vi) the concentration of the metabolite is present in the sample but vanishes dur-
ing downstream processing, and (vii) the concentration of a particular metabolite is identified in one sample, 
but does not exist at a significant concentration in another sample1,3–6. These missing values can be categorised 
as (a) missing completely at random (MCAR), (b) missing at random (MAR), and (c) missing not at random 
(MNAR). If a missing variable is not related to any observed variable or response it is MCAR. If a missing vari-
able is linked with one or more observed variables, but not to the response, it is MAR. The response associated 
with missing is MNAR. In metabolomics datasets, if the concentration of a metabolite is not seen in one group of 
samples, but is present in another group of samples, the missing values most likely occur for a biological reason 
and can be classified as MNAR. However, if the peak of metabolite concentration is smaller than the analytical 
method’s detection threshold, this missing type is a combination of biological and technological issues and can 
be considered as MNAR. Finally, MCAR is caused by only technological reasons, for example, errors related to 
peak picking software, in which the peak was evident but not included in the raw data.

The easiest and most straight forward method of dealing with missing values is the filtering method. In this 
method, variables7,8 or samples9,10 are removed. In recent times, this is applicable only when the data matrix 
includes a greater percentage of missing data. To handle the missing value problem, an alternative approach is the 
imputation technique. The conventional and widely used missing imputation techniques in different studies and 
software for imputing missing data are half of the minimum value replacement2,11, mean replacement12, median 
replacement12, k-nearest neighbour (kNN)13, Bayesian principal component analysis (BPCA)14,15, probabilistic 
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principal component analysis (PPCA)16, zero imputation17, multiple imputations with expectation maximisation 
(EM) algorithm and Monte Carlo Markov chain (MCMC) method18, expectation–maximization principal com-
ponent analysis (EM-PCA)19, and random forest (RF) imputation20. Recently developed techniques include Gibbs 
sampler-based left-censored missing value imputation approach (GSimp)21, quantile regression imputation of 
left-censored data (QRILC)2, kNN on observations with variable pre-selection (“kNN-obs-sel”)22, BayesMetab23, 
robust missing imputation using mean absolute error (rmiMAE)24, multivariate imputation by chained equations 
(MICE)25, and others. Several missing imputation techniques are described in the literature. However, the selec-
tion of the missing imputation technique has a profound impact on univariate and multivariate (unsupervised 
and supervised) data analyses and interpretation1,26–28. Therefore, the appropriate handling of missing data is 
very important according to the structure or nature of the original data for downstream analysis. The pattern 
of metabolomics datasets is very complicated because metabolomics datasets contain outliers29, non-normality, 
and inherent correlation structure30. However, the missing value imputation techniques, such as mean, kNN, 
EM-PCA, PPCA, BPCA, and RF, are sensitive to outliers25. All the aforementioned techniques can only handle 
the problem of missing values. They cannot significantly and simultaneously reduce the outlier problem. This is 
because the conventional imputation algorithms do not directly consider any outlier-robust function or any out-
lier identification and substitute algorithms. Furthermore, existing outlier resolving techniques do not consider 
missing value problems. For these reasons, we have developed a novel kernel-weight-based missing imputation 
(KMI) method that can simultaneously overcome both the missing value imputation problems and outliers. We 
compared our proposed method with widely used conventional techniques and recently developed techniques.

To evaluate the performance of the proposed weight-based missing imputation method compared to the 
other existing missing value imputation methods, we took into account nine widely used well-known missing 
imputation methods: zero imputation, mean imputation, median imputation, half of the minimum value imputa-
tion, kNN imputation, BPCA imputation, PPCA imputation, EM-PCA imputation, and RF imputation. We also 
considered five recently developed missing imputation techniques: GSimp, QRILC, BayesMetab, rmiMAE, and 
MICE. We measured the performances of the missing imputation methods, including the proposed technique, 
using both artificial and real data analysis in the absence and presence of different rates of outliers.

Material and methods
In this dissertation, we developed a new missing data imputation method by minimising the two-way kernel 
weighted square error loss function. To compare the competence of the proposed method, we considered nine 
widely used traditional missing imputation techniques as described above. Substituting all missing values are by 
zero is known as zero imputation. In the mean, median, and half of the minimum value imputation, missing 
data for each metabolite are substituted by the corresponding metabolite average, median, and half of the mini-
mum value, respectively. Missing data substitution using kNN, EM-PCA, and RF are found in the “impute”, 
“missMDA” and “missForest” packages, respectively of the R platform. Moreover, BPCA and PPCA imputation 
can be done using “pcaMethods” package in Bioconductor. As comparators of our proposed missing imputation 
method, we also considered five recently developed missing imputation techniques: GSimp, QRILC, BayesMetab, 
rmiMAE, and MICE. Among the techniques, rmiMAE is a comparatively more robust missing imputation 
technique which is computed by minimising the two-way mean absolute error loss function, i.e., L1 (Least 
absolute deviation) loss function like minimizing 1n

∑n
j=1

∣
∣eij

∣
∣ = 1

n

∑n
j=1 |xij − ricj| , which is more robust against 

outliers than L2 (Least square error) loss function like minimizing 
∑n

j=1 (eij)
2 =

∑n
j=1 (xij − ricj)

2 . To reduce 
the influence of outliers in the least square error loss function, here, we used the weighted squared error loss 
function, where the weight function is wj = exp

{

− �

2(mad(xj))2
(xij −median(xj))

2
}

 . The speciality of the weight 
function is that the weight will be close to zero if the corresponding observation is apart from its median and if 
the corresponding observation is the neighbour of the median, the weight will be close to one. A detailed descrip-
tion of the proposed missing value imputation method using a two-way kernel weighted square error loss func-
tion is given below.

Missing data imputation using two‑way kernel weighted least square error approach 
(proposed).  Let X =

(
xij
)
 be metabolomics data, where i = 1, 2, . . . , p represents the metabolites and 

j = 1, 2, . . . , n represents the samples. Thus, in the metabolomics data X, different rows indicate different metab-
olites, and the columns indicate different samples.

Each cell of the metabolomics data could be represented as the product of the metabolite (row) effect and the 
sample (column) effect. Mathematically, it is written in a bilinear form,

where ri and cj represent the i-th row effect (i.e. metabolite effect) and the j-th column effect (i.e. sample effect), 
respectively. The observed metabolomic data matrix usually contains missing cells and outliers. Thus, both the 
missing cell and outliers in the data matrix can be estimated by considering the effect of the corresponding row 
and column. In Eq. (1), ri and cj are both unknown. Therefore, our motive is to determine ri and cj to forecast the 
ij-th missing cell or outlying cell. To estimate ri and cj, consider model

X =








x11 x12 · · · x1n
x21 x22 · · · x2n
...

...
. . .

...
xp1 xp2 · · · xpn








(1)xij = ricj



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:11108  | https://doi.org/10.1038/s41598-021-90654-0

www.nature.com/scientificreports/

where xij is the yield corresponding to the effect of the ith metabolite (row) and jth sample (column), ri indicates 
the factors of the ith metabolite, and cj indicates the factors of the j-th sample and ∈ij indicates the error term. 
From model (2), we must estimate ri and cj simultaneously. To estimate ri and cj, we developed a weighted least 
square approach using a kernel weight function wj = exp

{

− �

2(mad(xj))2
(xij −median(xj))

2
}

 and updated ri and 
cj by an iterative procedure, where mad represents the median absolute deviation. The speciality of the kernel 
weight function is that it lies between zero and one. The weight will be close to zero if the corresponding observa-
tion is apart from its median. If the corresponding observation is the neighbour of the median, the weight will 
be close to one. In the kernel weight function, � is the tuning parameter, where the value of � is chosen by k-fold 
cross-validation. The details of the appropriate � selection procedure are given in Supplementary Information 1 
(Supplementary Fig. S1). If the data set is clean (i.e. no outliers), then � will be zero. In this condition, all the 
weights will be 1, that is, the technique will be the classical least-squares approach. The steps for estimating ri 
and cj are given below:

Step 1	�  To initialise the j-th column (sample) effect (cj), calculate the j-th column median of X. Column median 
is computed by excluding the missing values j = 1, 2, . . . , n.

Step 2	� Using the weighted least square approach, estimate the i-th row effect (i.e. metabolite effect) ri by 
minimising 

∑n
j=1

(
eij
)2

=
∑n

j=1 wij

(
xij − ricj

)2 , based on the i-th row of X, by eliminating the missing 
values, i = 1, 2, . . . , p.

Step 3	� Revise the j-th column effect cj , using the weighted least square approach by minimising 
∑p

i=1 wij

(
xij − ricj

)2 , based on the j-th column of X, by eliminating the missing values, j = 1, 2, . . . , n.
Step 4	�  Repeat Steps 2 and 3 until it satisfies the rule |rnew−rold |+|cnew−cold |

n+p ≤ ε ; here ε is a very small positive 
number, which depends on the researcher’s interest. Here, we choose ε = 0.01.

Step 5	� •	 Compute the first fitted bilinear form as X̂(1) = r̂1ĉ1 , where r̂1 = (r̂1, r̂2, . . . , r̂p)
T and 

ĉ1 = (ĉ1, ĉ2, . . . , ĉn) are obtained from Step 4.
•	 Calculate the first remainder matrix (XR1) as XR1 = X − X̂(1) = X − r̂1ĉ1 (excluding the missing cells of the 

data matrix)
•	 Using steps 1–4 on XR1, compute the second fitted bilinear form as,X̂R1 = r̂2ĉ2 and calculate the second 

remainder matrix (XR2) as, XR2 = XR1 − X̂R1 = X − r̂1ĉ1 − r̂2ĉ2  (excluding the missing cells of the data 
matrix)

•	 Similarly, calculate the r-th remainder (XRr) as, XRr = XR(r−1) − X̂R(r−1) = X −
∑r

k=1 r̂k ĉk that is, 
X = XRr +

∑r
k=1 r̂k ĉk . The number of r is selected in such a way that the total row variations of 

∑r
k=1 r̂k ĉk 

can explain (1 − α)100% variations of X (using the concept of singular value decomposition; the details of 
the r selection procedure are given in Appendix 1 of the supplementary materials), where α is chosen by the 
researcher interest. In this case, α = 0.05. Therefore, the approximation of X is:

Step 6	� Substitute the missing values and the outlying cells of X by the corresponding cells of X̂(r) that produce 
the reconstructed full and clean data matrix X̃ . Here, the inter quartile range (IQR) rule31 was used to 
detect outliers.

The application procedure of the proposed method in metabolomics data is given below. The metabolomics 
dataset may contain several groups of samples in their data structure. If a metabolomics dataset contains k groups 
of samples, then the dataset is split according to the groups as

where g1 is the column number (subjects) of group-1, g2 is the column number (subjects) of group-2, and so on 
g1 + g2 + · · · + gk = n.

Therefore, we checked whether the metabolomics data matrix X contained multiple groups in the samples. If 
X contains multiple groups, then partition matrix X as X = ( X1 X2 · · · Xk ) according to k groups of samples,

(2)xij = ricj+ ∈ij ,

(3)X ≈ X̂(r) =

r∑

k=1

r̂k ĉk

X =













group−1
� �� �

x11 x12 · · · x1g1
x21 x22 · · · x2g1
...

...
. . .

...
xp1 xp2 · · · xpg1

group−2
� �� �

x1(g1+1) x1(g1+2) · · · x1(g1+g2)

x2(g1+1) x2(g1+2) · · · x2(g1+g2)

...
...

. . .
...

xp(g1+1) xp(g1+2) · · · xp(g1+g2)

···
����

· · ·
· · ·

. . .

· · ·

group−k
� �� �

x1(g1+···+gk−1+1) x1(g1+···+gk−1+2) · · · x1(g1+···+gk)

x2(g1+···+gk−1+1) x2(g1+···+gk−1+2) · · · x2(g1+···+gk)

...
...

. . .
...

xp(g1+···+gk−1+1) xp(g1+···+gk−1+2) · · · xp(g1+···+gk)












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If X contains k groups, then apply Steps 1–6 for each partitioned data matrix and compute X̃1, X̃2, · · · X̃k . 
Thus, the reconstructed full and clean data matrix X̃ = (X̃1 X̃2 · · · X̃k ) . Otherwise, apply Steps 1–6 for the 
data matrix X and compute the reconstructed full and clean data matrix X̃.

User can install the package in R platform using the following R code

library(devtools)
install_github("NishithPaul/tWLSA")
library(tWLSA)

Artificially generated metabolomics data.  To simulate metabolomics datasets, we used the following 
additive linear model:

where xijk is the concentration of the ith metabolite, jth group, and kth sample; the average concentration for the 
i-th metabolite is µi ; gij represents the jth group effect of the ith metabolite and the random error term of the i-
th metabolite, j-th group, and k-th sample is ∈ijk . To generate the data, we considered, µi ∼ uniform(5, 10) and 
∈ijk∼ N(0, 1) . To measure the efficiency of the proposed technique, we created three types of metabolomics 
datasets: (i) without a class level in the samples, (ii) two class levels (two groups) in the samples, and (iii) three 
class levels (three groups) in the samples. In the case of two-and three-class level-based datasets, we also gener-
ated two types of metabolites: (a) equal concentration (EE) metabolites and (b) differential concentrations (DE) 
metabolites. DE metabolites were classified into two groups: upregulated and down-regulated metabolites. For 
up-concentrated metabolites, we used gij ∼ N(0, 1) the healthy group and gij ∼ N(2, 1) the disease group. Simi-
larly, for down-regulated metabolites, we used gij ∼ N(2, 1) the healthy group and gij ∼ N(0, 1) the disease group. 
For EE metabolites, gij ∼ N(0, 1) in both groups. We generated 200 metabolites and 90 samples for each dataset. 
In two-and three-class datasets, we considered 80 metabolites as DE and 120 metabolites as EE. We generated 
100 datasets for each type of dataset. We also incorporated various rates (5%, 10%, 15%, and 20%) of missing 
cells in the data matrix. Among the total missing values, 60% MAR and 40% for lower values. To investigate the 
efficiency of our proposed technique in the presence of outliers, we also included various rates (3%, 5%, 7%, and 
10%) of outliers in the artificial datasets. In the i-th metabolite, we provided N(5*μi, σi

2) as outliers, where μi 
and σi

2 are the mean and variance of the i-th metabolite; these outliers were distributed randomly in the dataset; 
thus, outliers may occur anywhere in the dataset.

Real metabolomics data.  To measure the performance of our proposed missing imputation method, we 
first considered two publicly available fully defined real metabolomics data matrices. One is the Human Cachexia 
dataset32, collected from 1H-NMR profiles of urinary metabolites that are available in the R-specmine library. The 
other is the treated dataset33, which is also available in the R-metabolomics library. Since, these two data matrices 
did not contain any missing values, to investigate the efficiency of the proposed technique compared to the other 
techniques we randomly incorporated different rates (5%, 10%, 15% and 20%) of missing values and also com-
puted the mean square error (MSE) between the reconstructed data and original data. We also considered two 
datasets: hepatocellular carcinoma (HCC) with 26.52% missing values/cells34 and MDA-MB-231 breast cancer 
dataset with 15.81% missing values35 to evaluate the performance of the proposed missing value imputation 
method. The HCC and MDA-MB-231 datasets were also modified by artificially including various rates (3%, 
5%, 7%, and 10%) of outliers to investigate the performance of the proposed method. Outliers are distributed 
randomly and follow N(5*μi, σi

2), where μi and σi
2 are the mean and variance of the i-th metabolite, respectively.

Results
To demonstrate the performance of the proposed missing imputation technique compared to the extensively 
used conventional techniques and recently developed missing imputation techniques, we analysed both artificial 
and experimentally measured metabolomics datasets.

where X1 =








x11 x12 · · · x1g1
x21 x22 · · · x2g1
...

...
. . .

...
xp1 xp2 · · · xpg1







, X2 =








x1(g1+1) x1(g1+2) · · · x1(g1+g2)

x2(g1+1) x2(g1+2) · · · x2(g1+g2)

...
...

. . .
...

xp(g1+1) xp(g1+2) · · · xp(g1+g2)








and

Xk =








x1(g1+···+gk−1+1) x1(g1+···+gk−1+2) · · · x1(g1+···+gk)

x2(g1+···+gk−1+1) x2(g1+···+gk−1+2) · · · x2(g1+···+gk)

...
...

. . .
...

xp(g1+···+gk−1+1) xp(g1+···+gk−1+2) · · · xp(g1+···+gk)







;

otherwise, X =








x11 x12 · · · x1n
x21 x22 · · · x2n
...

...
. . .

...
xp1 xp2 · · · xpn








(4)xijk = µi + gij+ ∈ijk



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:11108  | https://doi.org/10.1038/s41598-021-90654-0

www.nature.com/scientificreports/

Artificial data analysis results.  In simulation studies, we first measured the performance of the proposed 
missing imputation technique compared to the other ten missing imputation methods (zero, mean, median, half 
of the minimum value, kNN, BPCA, PPCA, EM-PCA, RF imputations and rmiMAE) using the distance-based 
measurement. We computed the MSE between the original simulated dataset and the reconstructed missing 
imputed dataset in both the presence and absence of outliers. We generated three types of simulated metabo-
lomics datasets and 100 datasets for each type and calculated the average MSE from 100 MSEs for each type of 
dataset for different rates of outliers (0%, 3%, 5%, 7%, and 10%) and different rates (5%, 10%, 15%, and 20%) of 
missing values. For the datasets with no class level in the samples, the results of the above calculation are shown 
in Fig. 1. Similarly, for two class levels (two groups) in the sample datasets and three class levels (three groups) in 
the sample datasets, the results of the aforementioned calculation are given in the Supplementary Information in 
Fig. S1 and Fig. S2. In the same way, a comparison of the performance of our proposed method with the recently 
developed techniques (GSimp, QRILC, BayesMetab, rmiMAE, and MICE) using the datasets with no class level 
in the samples are given in the Supplementary Information in Fig. S3. In all these figures, the proposed missing 
value imputation technique produced lower average MSEs for various rates (0%, 3%, 5%, 7%, and 10%) of outli-
ers, as well as for various rates (5%, 10%, 15%, and 20%) of missing values. Therefore, our missing imputation 
method was better than the other existing techniques.

Second, we evaluated the performance of our developed KMI method using the misclassification error rate 
(MER), receiver operating characteristic (ROC) curve, and area under the ROC curve (AUC) through DE metab-
olite identification for two groups and three groups of datasets. To calculate the performance indices (MER, ROC 
curve, and AUC values), we identified the DE metabolites from the different reconstructed datasets (missing were 

Figure 1.   Performance investigation of different missing imputation techniques using average MSE for without 
class level data.
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imputed by different methods) using a t-test for the two class level dataset and analysis of variance (ANOVA) for 
the multiclass level dataset. Since the DE and EE metabolites were known in the simulated dataset, we computed 
the MER, ROC curve, and AUC for different missing imputed datasets in both the absence and presence of vari-
ous rates of outliers. The above calculation procedures are provided in Supplementary Information in Fig. S4.

The ROC curve of DE calculation for two-class datasets with 5% missing data and various rates of outliers 
are depicted in Fig. 2. Similarly, for three classes of simulated datasets, the ROC curve of the DE calculation is 
also shown in the Supplementary Information in Fig. S5. Similarly, for 10%, 15%, and 20% missing values, the 
ROC curves are given in the Supplementary Information (Fig. S6–S11). In addition, Table 1 presents the MER 
and AUC values of the DE calculation for two-class datasets with 5% missing as well as various rates of outli-
ers. Moreover, for the two classes of datasets with 5% missing as well as various rates of outliers, the MER and 
AUC values of DE identification are also presented in the Supplementary Information in Table S1. Similarly, for 

Figure 2.   Performance investigation of different missing value imputation techniques using receiver operating 
characteristic curve of DE calculation for two class level dataset with 5% missing values in absence and presence 
of outliers.

Table 1.   Average misclassification error rate (MER) and area under the receiver operating characteristic curve 
(AUC) of DE calculation for two class simulated data with 5% missing values and different rates of outliers. 
Bold indicates the lower MER and Higher AUC throughout the column.

Methods
Without outliers MER 
(AUC)

3% outliers MER 
(AUC)

5% outliers MER 
(AUC)

7% outliers MER 
(AUC)

10% outliers MER 
(AUC)

RF 4.23 (0.956) 19.76 (0.797) 27.41 (0.720) 31.39 (0.679) 35.52 (0.638)

PPCA 3.77 (0.964) 18.59 (0.811) 26.03 (0.737) 30.06 (0.698) 34.48 (0.652)

kNN 4.83 (0.952) 20.41 (0.794) 27.85 (0.719) 31.83 (0.678) 35.93 (0.637)

BPCA 3.45 (0.967) 21.31 (0.788) 28.65 (0.703) 32.34 (0.675) 36.45 (0.641)

EM-PCA 3.38 (0.969) 18.76 (0.829) 26.08 (0.733) 30.09 (0.707) 36.03 (0.649)

Zero 16.57 (0.829) 28.88 (0.709) 34.15 (0.651) 37.13 (0.623) 39.95 (0.598)

Mean 5.23 (0.949) 21.29 (0.789) 28.62 (0.719) 32.37 (0.672) 36.41 (0.642)

Median 5.12 (0.951) 20.99 (0.791) 28.36 (0.706) 32.18 (0.676) 36.25 (0.643)

Minimum 12.44 (0.867) 26.45 (0.728) 32.26 (0.673) 35.52 (0.640) 38.75 (0.604)

rmiMAE 2.94 (0.971) 4.21 (0.958) 4.77 (0.951) 4.98 (0.948) 5.13 (0.964)

Proposed 2.73 (0.973) 2.93 (0.971) 2.98 (0.970) 3.03 (0.969) 3.05 (0.969)
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10%, 15%, and 20% missing values, the MER and AUC values of the DE calculation are also given in the Sup-
plementary Information (Tables S2 to S7). The results of the performance measures of Fig. 2, Table 1, Fig. S5 to 
S11, and Tables S1 to S7 show that the proposed missing imputation method produced lower average MER and 
higher average AUC values for different rates (5%, 10%, 15%, and 20%) of missing values and various rates (0%, 
3%, 5%, 7%, and 10%) of outliers. Therefore, the proposed KMI technique was better than the existing missing 
value imputation techniques.

Finally, we measured the performance of our proposed KMI technique through sample classification using 
only DE metabolites. Although taking only the differentially expressed variables may give over-optimistic values 
for prediction performance, however, to increase accuracy, it is often used as the feature selection approach. 
To overcome this problem we used the cross-validation approach. The performance measure calculation pro-
cedure of different imputation methods based on sample classification (using a SVM classifier) is given in the 
Supplementary Information in Fig. S12. The ROC curve based on sample classification using a test dataset for 
two-class simulated datasets with 5% and 10% missing values and various rates (3%, 5%, 7%, and 10%) of outliers 
are presented in Fig. 3 and Supplementary Fig. S13, respectively. Figure 3 and Fig. S13 show that our proposed 
KMI technique gave a higher average true positive rate at any point of average false positive rate compared to 
the other missing imputation methods in the presence of different rates of outliers (3%, 5%, 7%, and 10%). We 
also computed the average MER and AUC in the appearance of 5% missing data as well as the different percent-
ages of outliers using two-and three class level datasets, which are presented in Tables 2 and 3. Similarly, for 10% 
missing data, as well as different percentages of outliers using two-and three class level datasets, the average MER 
and AUC are given in Supplementary Tables S8 and S9. Tables 2 and 3 show that the proposed KMI technique 
produced lower average MER and higher average AUC values at various rates of missing values and different 
rates of outliers for two-and three class level simulated metabolomics data. Therefore, in simulation studies, our 
proposed KMI technique was better than the existing missing value imputation methods.

Real data analysis results.  Here, we used four real metabolomics datasets to evaluate the efficiency of our 
newly developed KMI technique compared to other missing imputation methods for real data analysis. Since the 
Human Cachexia and treated datasets are fully defined, to explore the performance of our proposed technique 
we artificially incorporated various percentage of missing values (5%, 10%, 15% and 20%) and reconstructed the 
data matrix using several missing value imputation methods including the proposed one. We measured the MSE 
between the original and reconstructed datasets. We also repeated the aforementioned calculation 100 times and 

Figure 3.   Performance investigation of different missing value imputation techniques using receiver operating 
characteristic curve of sample classification for two class level dataset with 5% missing values in presence of 
outliers.
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computed the average MSE for different rates of missing values, as presented in Fig. 4. The figure shows that the 
proposed missing value imputation technique produced a lower average MSE for different rates of missing values 
for the Human Cachexia dataset (Fig. 4a) and the treated dataset (Fig. 4b). Therefore, our proposed imputation 
method displayed comparatively better performance than the other ten conventional missing value imputation 
methods. Moreover, we conducted a comparative study of the efficiency of our proposed missing imputation 
technique and five recently developed techniques (GSimp, QRILC, BayesMetab, rmiMAE, and MICE) using 

Table 2.   Average misclassification error rate(MER) and area under the receiver operating characteristic curve 
(AUC) for two class simulated data with 5% missing values and different rates of outliers. Bold indicates the 
lower MER and Higher AUC throughout the column.

Methods 3% Outliers MER (AUC) 5% Outliers MER (AUC) 7% Outliers MER (AUC) 10% Outliers MER (AUC)

RF 4.10 (0.9516) 8.67 (0.9143) 16.17 (0.8395) 17 (0.8332)

PPCA 5.67 (0.9408) 7.37 (0.9276) 15.53 (0.8454) 19.37 (0.8048)

kNN 5.53 (0.9412) 9.27 (0.9054) 16.57 (0.83885) 19.6 (0.8042)

BPCA 5.77 (0.9391) 8.50 (0.9149) 16.27 (0.84025) 21.2 (0.7882)

EM-PCA 5.03 (0.9460) 7.43 (0.9270) 15.33 (0.8475) 15.77 (0.8385)

Zero 7.73 (0.9224) 12.70 (0.8759) 19 (0.8068) 18.9 (0.8114)

Mean 5.93 (0.9371) 9.30 (0.9059) 16.5 (0.8358) 21.37 (0.7858)

Median 6.17 (0.9353) 9.67 (0.9021) 16.43 (0.8366) 19.87 (0.8021)

Minimum 8.67 (0.9088) 13.70 (0.8675) 18.87 (0.8088) 19.27 (0.8073)

rmiMAE 1.69 (0.9831) 1.81 (0.9819) 2.36 (0.9764) 2.82 ( 0.9718)

Proposed 1.27 (0.9882) 1.30 (0.9878) 1.30 (0.9876) 1.32 (0.9872)

Table 3.   Average misclassification error rate and area under the receiver operating characteristic curve (AUC) 
for three class simulated data with 5% missing values and different rates of outliers. Bold indicates the lower 
MER and Higher AUC throughout the column.

Methods 3% Outliers MER (AUC) 5% Outliers MER (AUC) 7% Outliers MER (AUC) 10% Outliers MER (AUC)

RF 5.60 (0.9661) 10.60 (0.9122) 12.97 (0.8631) 21.63 (0.7687)

PPCA 4.33 (0.9718) 7.73 (0.9375) 11.03 (0.8797) 21.47 (0.7734)

kNN 3.67 (0.9783) 9.40 (0.9251) 13.80 (0.8634) 18.60 (0.7785)

BPCA 4.00 (0.9735) 10.17 (0.9131) 13.37 (0.8688) 21.77 (0.7562)

EM-PCA 5.20 (0.9645) 8.93 (0.9302) 11.07 (0.8799) 21.67 (0.7674)

Zero 4.67 (0.9696) 8.67 (0.9172) 15.80 (0.8546) 15.20 (0.8054)

Mean 4.13 (0.9724) 10.97 (0.8995) 13.93 (0.8620) 18.23 (0.7924)

Median 4.20 (0.9721) 10.03 (0.9152) 13.50 (0.8673) 17.93 (0.7948)

Minimum 5.23 (0.9626) 8.30 (0.9193) 12.13 (0.8913) 14.33 (0.8214)

rmiMAE 1.82 (0.9816) 2.21 (0.9783) 2.57 (0.9721) 3.29 (0.9672)

Proposed 1.28 (0.9892) 1.32 (0.9877) 1.39 (0.9862) 1.48 (0.9835)

Figure 4.   Performance investigation of different missing value imputation techniques using MSE calculation 
for different rates of missing values of (a) Human Cachexia dataset and (b) treated dataset.
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MSE on the Cachexia dataset with various rates of missing values. This is presented in the Supplementary Infor-
mation in Fig. S14.

We also measured the competency of our proposed KMI technique using MER and AUC of sample clas-
sification for both the two-class hepatocellular carcinoma dataset and the three-class MDA-MB-231 dataset. 
To evaluate the performance of all well-known missing value imputation methods in the presence of outliers, 
we modified both datasets by artificially incorporating different rates of outliers (3%, 5%, 7%, and 10%). The 
performance measure calculation procedure for different missing imputation techniques is shown in Fig. 5. The 
calculation of performance measures (MER and AUC) using the HCC dataset and the MDA-MB-231 dataset 
are shown in Tables 4 and 5, respectively. The data indicated that our proposed KMI technique produced a lower 
average MER and higher AUC values compared to other missing imputation methods in the appearance of vari-
ous rates of outliers. Therefore, both simulation studies and real data analysis showed that our proposed missing 
value imputation method performed better than the existing missing value imputation methods.

Figure 5.   Performance measures calculation procedure for real dataset on the basis of sample classification.

Table 4.   Average misclassification error rate and area under the receiver operating characteristic curve (AUC) 
of sample classification for two class real dataset (hepatocellular carcinoma) with 26.52% missing values and 
artificially imputed different rates of outliers. Bold indicates the lower MER and Higher AUC throughout the 
column.

Methods
Without outliers MER 
(AUC)

3% outliers MER 
(AUC)

5% outliers MER 
(AUC)

7% outliers MER 
(AUC)

10% outliers MER 
(AUC)

RF 10.67 (0.8903) 13.61 (0.8642) 20.16 (0.8001) 21.18 (0.7883) 22.61 (0.7751)

PPCA 15.22 (0.8495) 16.45 (0.8365) 26.44 (0.7364) 26.56 (0.7355) 26.67 (0.7323)

kNN 13.53 (0.8795) 13.94 (0.8676) 25.56 (0.7484) 25.97 (0.7402) 26.33 (0.7375)

BPCA 14.61 (0.8571) 16.28 (0.8342) 21.67 (0.7882) 23.38 (0.7679) 25.45 (0.7452)

EM-PCA 11.44 (0.8894) 11.58 (0.8813) 23.72 (0.7665) 23.70 (0.7648) 23.69 (0.7618)

Zero 11.55 (0.8874) 12.39 (0.8747) 15.58 (0.8433) 17.51 (0.8246) 19.44 (0.8026)

Mean 10.56 (0.8914) 13.61 (0.8644) 20.73 (0.7947) 22.69 (0.7723) 24.89 (0.7502)

Median 9.94 (0.9068) 12.38 (0.8783) 17.61 (0.8276) 20.17 (0.7975) 23.54 (0.7637)

Minimum 10.56 (0.8937) 11.24 (0.8894) 13.57 (0.8646) 15.67 (0.8427) 17.44 (0.8265)

rmiMAE 0.78 (0.9922) 1.84 (0.9815) 2.36 (0.9773) 2.97 (0.9701) 3.65 (0.9644)

Proposed 0.00 (1.00) 0.32 (0.9972) 0.75 (0.9929) 1.18 (0.9895) 1.87 (0.9837)
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Discussion
We examined the performance of each missing imputation technique by optimising the parameter settings using 
a trial-and-error basis to avoid biased comparisons. For example, in the case of kNN imputation, we chose k, for 
which the MSE and MER were smaller and the accuracy was maximum. The performance of different missing 
imputation techniques may depend on the structure and the value/intensity of data. Therefore, we presently 
generated three types of simulated metabolomics datasets and 100 datasets for each type and calculated the 
average MSE from 100 MSEs for each type of dataset at different rates of outliers (0%, 3%, 5%, 7%, and 10%) 
and different rates (5%, 10%, 15%, and 20%) of missing values.

MAR may occur at any position in the data matrix, thus, we generated 100 modified real datasets, includ-
ing different MAR positions of the data matrix, to measure the performance of different missing imputation 
techniques. To compute the performance of various missing imputation methods through MER and AUC using 
the classification technique, we divided the dataset into two parts: the test dataset and the training dataset. To 
reduce the sampling error during the calculation of MER and AUC, we generated 100 training datasets and 100 
test datasets for each case and computed the average MER and AUC for measuring the performance of different 
missing imputation methods. The detailed calculation procedure of different performance measures calculated 
by different missing imputation methods for the artificial dataset is shown in the Supplementary Information in 
Fig. S4 and Fig. S12. As well, information for the artificial dataset is presented in Fig. 5. We calculated the execu-
tion time (speed of execution) for different methods, including the proposed method, for different numbers of 
metabolites and samples (Supplementary Information Table S10). The URL of the R package and the user manual 
of our proposed method are https://​github.​com/​Nishi​thPaul/​tWLSA.

Conclusion
The Selection of the missing imputation method affects consecutive metabolomics data analysis. Moreover, 
metabolomics data generated from different platforms often contain missing values and outliers. Thus, in 
this study, we developed a new outlier-robust kernel-weight-based two-way alternating weighted least square 
approach for imputing missing values. We also measured the performance of our proposed KMI technique 
compared to the existing conventional methods (zero, mean, median, half of the minimum value, kNN, BPCA, 
PPCA, EM-PCA, and RF imputations) and recently developed missing imputation methods (GSimp, QRILC, 
BayesMetab, rmiMAE, and MICE) through both artificial and real metabolomics data analysis. Based on our 
computational results, the presently developed missing value imputation method is better than the existing miss-
ing value imputation methods in both the absence and presence of outliers. For this reason, our recommendation 
is to apply our proposed two-way kernel weighted least square-based missing value imputation method instead 
of existing missing imputation methods to substitute the missing values in metabolomics datasets for consecutive 
univariate, multivariate, and exploratory metabolomics data analysis.

Data availability
Comparisons were evaluated using R language. To identify the DE metabolites in R we used ‘t.test’ function 
(for two groups) and ‘anova’ function (for more than two groups) from “stats” package. “ROCR” and “pROC” 
packages have been used to draw receiver operating characteristic (ROC) curve as well as to calculate the area 
under the ROC curve. We also used the support vector machine ‘svm’ function from “e1071” package to calcu-
late the misclassification error rate (MER) for sample classification. Moreover, The source code and packages 
of different missing imputation techniques are given below, Proposed: R package and the user manual of our 
proposed method are available at https://​github.​com/​Nishi​thPaul/​tWLSA. rmiMAE: The R code for rmiMAE is 
available at https://​github.​com/​Nishi​thPaul/​missi​ngImp​utati​on/​blob/​main/​rmiMAE.R. GSimp: The R code for 
GSimp is available at https://​github.​com/​Wande​Rum/​GSimp. kNN: Here, kNN imputation technique has been 
implemented using "impute" package from bioconductor. The reference manual of this package can be found 

Table 5.   Average misclassification error rate and area under the receiver operating characteristic curve (AUC) 
of sample classification for three class real dataset (MDA-MB-231) with 15.81% missing values and artificially 
imputed different rates of outliers. Bold indicates the lower MER and Higher AUC throughout the column.

Methods
Without outliers MER 
(AUC)

3% outliers MER 
(AUC)

5% outliers MER 
(AUC)

7% outliers MER 
(AUC)

10% outliers MER 
(AUC)

RF 4.23 (0.9635) 21.57 (0.7996) 23.53 (0.7771) 31.96 (0.6951) 34.70 (0.6777)

PPCA 4.33 (0.9629) 18.27 (0.8288) 25.13 (0.7564) 21.83 (0.7938) 30.63 (0.7238)

kNN 3.43 (0.9759) 18.63 (0.8296) 21.80 (0.7940) 24.56 (0.7646) 43.56 (0.6672)

BPCA 8.07 (0.9267) 18.77 (0.8207) 22.06 (0.7836) 26.43 (0.7475) 33.70 (0.6858)

EM-PCA 4.46 (0.9619) 19.76 (0.8101) 19.63 (0.8161) 21.66 (0.7938) 34.93 (0.6741)

Zero 3.45 (0.9755) 12.20 (0.8843) 25.86 (0.7554) 27.40 (0.7347) 38.53 (0.6374)

Mean 3.73 (0.9728) 11.73 (0.8858) 25.30 (0.7597) 26.2 (0.7452) 35.90 (0.6668)

Median 3.67 (0.9732) 11.36 (0.8861) 22.73 (0.7874) 23.16 (0.7753) 34.90 (0.6748)

Minimum 3.43 (0.9758) 13.10 (0.8774) 24.64 (0.7647) 27.16 (0.7457) 37.10 (0.6457)

rmiMAE 1.45 (0.9854) 2.47 (0.9757) 3.04 (0.9753) 3.56 (0.9668) 4.01 (0.9611)

Proposed 0.17 (0.9992) 0.25 (0.9983) 0.30 (0.9975) 0.52 (0.9951) 1.13 (0.9892)

https://github.com/NishithPaul/tWLSA
https://github.com/NishithPaul/tWLSA
https://github.com/NishithPaul/missingImputation/blob/main/rmiMAE.R
https://github.com/WandeRum/GSimp
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at https://​www.​bioco​nduct​or.​org/​packa​ges/​relea​se/​bioc/​manua​ls/​impute/​man/​impute.​pdf. EM-PCA: We used 
"missMDA" package in R to impute missing values by EM-PCA method. The reference manual of this package 
can be found at https://​cran.r-​proje​ct.​org/​web/​packa​ges/​missM​DA/​missM​DA.​pdf. RF: "missForest" package has 
been used to impute the missing values by Random Forest (RF) method. The reference manual of this package 
can be found at https://​cran.r-​proje​ct.​org/​web/​packa​ges/​missF​orest/​missF​orest.​pdf. BPCA and PPCA: BPCA 
and PPCA imputation techniques have been implemented using "pcaMethods" package from bioconductor. The 
reference manual is available at https://​www.​bioco​nduct​or.​org/​packa​ges/​relea​se/​bioc/​manua​ls/​pcaMe​thods/​man/​
pcaMe​thods.​pdf. QRILC: Here QRILC imputation technique has been implemented using “imputeLCMD” pack-
age in R. The reference manual can be found at https://​cran.r-​proje​ct.​org/​web/​packa​ges/​imput​eLCMD/​imput​
eLCMD.​pdf. BayesMetab: R code for BayesMetab method is available at https://​bmcbi​oinfo​rmati​cs.​biome​dcent​
ral.​com/​artic​les/​10.​1186/​s12859-​019-​3250-2. MICE: Here, “missCompare” package in R has been used to impute 
the missing values by MICE method. The reference manual of the package can be found at https://​cran.r-​proje​
ct.​org/​web/​packa​ges/​missC​ompare/​missC​ompare.​pdf
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