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Effects of Head Motion on the Evaluation of Age-related Brain  
Network Changes Using Resting State Functional MRI

Sanae Kato1, Epifanio Bagarinao2,3*, Haruo Isoda1,2,3, Shuji Koyama1,2,3,  
Hirohisa Watanabe2,4,5, Satoshi Maesawa2,6, Daisuke Mori2,7, Kazuhiro Hara5,  

Masahisa Katsuno2,5, Minoru Hoshiyama2,3, Shinji Naganawa2,8, Norio Ozaki2,7,  
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Purpose: The estimation of functional connectivity (FC) measures using resting state functional MRI 
(fMRI) is often affected by head motion during functional imaging scans. Head motion is more common in 
the elderly than in young participants and could therefore affect the evaluation of age-related changes in 
brain networks. Thus, this study aimed to investigate the influence of head motion in FC estimation when 
evaluating age-related changes in brain networks.
Methods: This study involved 132 healthy volunteers divided into 3 groups: elderly participants with high 
motion (OldHM, mean age (±SD) = 69.6 (±5.31), N = 44), elderly participants with low motion (OldLM, 
mean age (±SD) = 68.7 (±4.59), N = 43), and young adult participants with low motion (YugLM, mean age 
(±SD) = 27.6 (±5.26), N = 45). Head motion was quantified using the mean of the framewise displacement 
of resting state fMRI data. After preprocessing all resting state fMRI datasets, several resting state networks 
(RSNs) were extracted using independent component analysis (ICA). In addition, several network metrics 
were also calculated using network analysis. These FC measures were then compared among the 3 groups.
Results: In ICA, the number of voxels with significant differences in RSNs was higher in YugLM vs. OldLM 
comparison than in YugLM vs. OldHM. In network analysis, all network metrics showed significant (P < 
0.05) differences in comparisons involving low vs. high motion groups (OldHM vs. OldLM and OldHM vs. 
YugLM). However, there was no significant (P > 0.05) difference in the comparison involving the low motion 
groups (OldLM vs. YugLM).
Conclusion: Our findings showed that head motion during functional imaging could significantly affect 
the evaluation of age-related brain network changes using resting state fMRI data.
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Introduction
Recent applications of MRI are not only limited to the acqui-
sition of morphological images, but are also being used to 
indirectly image the function of the brain. Resting state func-
tional MRI (fMRI) is a method that can be used to evaluate 
the functional connectivity (FC) of the brain at rest by 
observing synchronous fluctuations in the blood-oxygen-
level-dependent (BOLD) signal between 2 brain regions over 
time. Metrics that characterize FC obtained from the analysis 
of resting state fMRI have been proposed as new biological 
indicators.1,2

An important application of network analysis using 
resting state fMRI is in the study of normal aging. Age-
related changes in brain function, such as cognitive decline, 
could reflect various changes in large-scale brain networks.3–6 
To better understand the aging process, it is therefore critical 
to characterize alterations in brain networks with age. 



Head Motion Effects on Resting State fMRI

339Vol. 20, No. 4

However, the estimation of FC measures is often influenced 
by head movement during the examination, which could 
manifest as spurious increases in connectivity.7–9 The pur-
pose of this study was to examine the effects of head motion 
during imaging of healthy volunteers on the estimation of 
FCs in order to accurately evaluate age-related changes in FC 
during normal aging using resting state fMRI.

Materials and Methods
Study subjects
This study involved 132 healthy volunteers carefully selected 
from those enrolled in our ongoing Brain & Mind Research 
Center Aging Cohort Study.10 The volunteers were divided 
into 3 groups: the elderly group with high head motion 
(OldHM, N = 44), the elderly group with low head  
motion (OldLM, N = 43), and the young group with low head 
motion (YugLM, N = 45). The elderly participants were over 
60 years old (average age in years: 69.1 ± 1.23) and the young 
participants were under 40 years old (average age in years: 
27.6 ± 5.26). There was no significant difference (2 sample 
t-test, P = 0.41) in age between OldHM and OldLM. All par-
ticipants provided written informed consent before joining 
the study, which was approved by the Ethics Committee of 
Nagoya University Graduate School of Medicine.

MRI
We used a 3T MR scanner (MAGNETOM Verio 3T; Sie-
mens, Erlangen, Germany) with a 32-channel head matrix 
coil. A T1-weighted (T1W) MR image was acquired using a 
3D magnetization prepared rapid acquisition gradient echo 
(MPRAGE11) with the following parameters: TR/MPRAGE 
TR = 7.4/2500 ms, TE = 2.48 ms, TI = 900 ms, FA = 8°, 192 
sagittal slices with a distance factor of 50% and 1-mm thick-
ness, FOV = 256 mm, acquisition matrix dimension = 256 × 
256, and in-plane voxel resolution of 1.0 × 1.0 mm2, with a 
total scan time of 5 min 49 s. Resting state fMRI scans were 
also acquired using a GE echo planar imaging sequence with 
the following parameters: TR = 2.5 s, TE = 30 ms, 39 trans-
verse slices with a 0.5-mm inter-slice interval and 3-mm 
thickness, FOV = 192 mm, 64 × 64 matrix dimension, FA = 
80°, 3 × 3 × 3 mm3 voxel resolution and a total of 198 vol-
umes. Participants were instructed to close their eyes during 
the scan but not to fall asleep.

Preprocessing for resting state fMRI data
All images were preprocessed using SPM12 (Wellcome 
Trust Center for Neuroimaging, London, UK) running on 
Matlab R2018a (MathWorks, Natick, MA, USA). The T1W 
images were segmented using SPM12’s segmentation 
approach12 into gray matter (GM), white matter (WM), cer-
ebrospinal fluid (CSF), and other non-brain tissue compo-
nents. Bias-corrected T1W image and the transformation 
information from subject space to the Montreal Neurolog-
ical Institute (MNI) space were also obtained. For resting 

state fMRI data, the first 5 volumes of the BOLD image 
were excluded to account for the initial scanner inhomoge-
neity. The remaining volumes were realigned to the mean 
functional image to correct for the effect of head movement 
during the scan using a two-pass approach as implemented 
in SPM12 after initially correcting for the difference in 
imaging timing of each slice within 1 volume (slice timing 
correction). The realigned images were then normalized to 
the MNI space using the transformation information 
obtained in the segmentation step. After normalization, the 
images were resampled into a 2 × 2 × 2 mm3 isotropic 
voxel resolution, and finally smoothed with an 8-mm full-
width-at-half-maximum 3D Gaussian filter. In addition, we 
also regressed out 24 motion-related regressors13 to correct 
for head motion as well as signals from WM and CSF, the 
global signal (GS), and the signals’ corresponding deriva-
tives to correct for other physiological noise. Finally, the 
data were bandpass filtered within 0.01–0.1 Hz.

Evaluation of head motion
We used the mean of the framewise displacement (FD)8 of 
the resting state fMRI data as an evaluation index of head 
movement. Using the estimated realignment parameters for 
each resting state fMRI data, the FD of the ith volume was 
computed using the following formula:8 FDi = ½Dxi½ + 
½Dyi½ + ½Dzi½ + ½Dai½ + ½Dbi½ + ½Dgi½, where Dxi = x(i−1) 
− xi represents the difference of the estimated realignment 
parameters along the x-axis for volumes i − 1 and i, and simi-
larly for the other parameters (x, y, and z for translation and 
a, b, and g for rotation). Rotational parameters were also 
converted from degrees to millimeters by computing the 
equivalent displacement on a surface of a sphere with radius 
equal to 50 mm.8 The mean FD value for each FD series was 
then computed.

Subjects with mean FD values < 0.2 mm were consid-
ered to have low head motion while those with 0.2 mm or 
more were considered to have large head motion.8 The 
average values of the mean FD across participants in each 
group are 0.114, 0.121, and 0.254 mm for YugLM, OldLM, 
and OldHM, respectively. There was significant difference 
in mean FDs between OldHM and OldLM (P < 0.000) as 
well as between OldHM and YugLM (P < 0.000), and no 
significant difference in mean FDs between OldLM and 
YugLM (P = 0.178). Raincloud plots showing the distribu-
tion, average values, and scatter plots of mean FDs for the 
3 groups are shown in Fig. 1. FD plots of representative 
participants from the OldHM and OldLM groups are also 
shown in the inset.

Independent component analysis
In the first set of analysis, we extracted several large-scale 
resting state networks (RSNs) using independent component 
analysis (ICA). Specifically, we performed group ICA on the 
preprocessed data using multivariate exploratory linear  
optimized decomposition into independent components 
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(MELODIC),14 a component of the FMRIB Software Library 
(FSL) software package, to extract group-level RSNs. We used 
a temporal concatenation approach where all preprocessed 
resting state fMRI data from all participants were temporally 
concatenated. Following Shirer et al.,15 30 group-level inde-
pendent components (ICs) were then extracted. The extracted 
components were compared to the reported functional  
atlas of large-scale networks (http://findlab.stanford.edu/ 
functional_ROIs.html) to identify only the relevant RSNs, 
which were used in the succeeding dual regression analysis.16

In dual regression, the temporal variation of each sub-
ject’s resting state fMRI data with respect to each group-level 
IC was obtained by performing a regression analysis with the 
30 group-level ICs used as spatial regressors. Using the esti-
mated time series associated to each ICs as temporal regres-
sors, a second regression analysis was performed to extract 
participant-specific RSNs. These RSNs were then used in 
unpaired sample t-tests using a nonparametric permutation 
approach with 5000 permutations17 to identify regions that 
showed significant differences in FC. For all comparisons, a 
threshold-free cluster enhancement technique18 was used and 
the resulting statistical maps were corrected for multiple 
comparisons by controlling family-wise error (FWE) rate 
with P < 0.05.

Using the computed participant-specific RSNs, we also 
performed regression analysis for each group, with the mean 
FD as regressor, to further examine the effect of head motion 
in the FC of the different RSNs. Regions with significant 
linear association with the mean FD were identified using a 
nonparametric permutation approach with 5000 permutations. 
Statistical maps were corrected for multiple comparisons 
using FWE-correction with P < 0.05.

Network analysis
In the second set of analysis, we performed whole-brain net-
work analysis using graph theory. We used the Power tem-
plate,19 consisting of 264 functional regions, as network 
nodes. FC matrices were constructed from the preprocessed 
resting state fMRI data using Graph Theoretical Network 
Analysis Toolbox (GRETNA; Beijing Normal University, 
Beijing, China)20 with the static correlation option. To con-
struct the binary networks, the FC matrices were thresholded 
using values ranging from 0.1 to 0.4, with a 0.01 interval (31 
values in total), and thresholding was applied on the value of 
the matrix element. The choice of the range of threshold 
values was motivated by our earlier study21 where we found 
threshold-dependent association of network metrics with age 
using threshold values ranging from 0.2 to 0.4. We extended 

Fig. 1 Mean FD values. Distribution, average values, and scatter plots of the mean FD values of all participants in all groups are shown. FD plots 
of 2 representative participants, one from the OldLM group (solid line) and the other from the OldHM group (broken line) are also shown in the 
inset. FD, framewise displacement.



Head Motion Effects on Resting State fMRI

341Vol. 20, No. 4

this range from 0.1 to 0.4 as head-motion-affected FC values 
could be in the lower range. We also used GRETNA to com-
pute several global network metrics from the generated 
binary networks including clustering coefficient, character-
istic path length, global efficiency and local efficiency. For 
all network metrics, we used the area under the curve (AUC) 
value as the summary index (for all threshold values) to char-
acterize the whole-brain network. To compare the network 
metrics, we performed unpaired sample t-tests.

Results
Age-related changes in functional connectivity
We observed a large number of voxels showing significant 
differences in FC between young and elderly participants 
with low head motion (OldLM vs. YugLM) in multiple 
RSNs (Table 1). This is particularly the case in visual (pri-
mary, high, and medial), executive control (left and right), 
and auditory networks. In contrast, these numbers were sig-
nificantly lower in the comparison between young and 
elderly participants with high head motion (OldHM vs. 
YugLM). Direct comparison between elderly participants 
with low and high head motion (OldHM vs. OldLM) also 
showed several voxels with significant differences in FC in 
several RSNs such as the cerebellum, medial sensorimotor 
and auditory networks. Contrast maps for representative 
networks showing regions where significant differences in 

FC were observed for the different group comparisons are 
shown in Fig. 2.

Association between FC and mean FD
Results of the regression analyses between FC and mean FD 
for the different RSNs are summarized in Table 2. In the 
YugLM group, only a small number of voxels have connec-
tivity with the precuneus network that showed positive linear 
relationship with mean FD. In the OldLM group, some clus-
ters have FC values with the precuneus network as well as 
with other networks that also showed either positive or nega-
tive association with mean FD. However, the extent of these 
clusters are very limited. In contrast, in the OldHM group, 
large clusters have FC values with the anterior salience, audi-
tory, cerebellum, and right executive control networks that 
showed either positive or negative linear relationship with 
mean FD. Most of the positive relationship with mean FD 
where observed in regions within networks, while the  
negative relationship where observed in regions outside the 
network.

Age-related changes in network properties
Unpaired sample t-test results for each metric are shown in 
Table 3. There were significant differences (P < 0.05) in all 
network metrics between high head motion and low head 
motion groups (OldHM vs. OldLM, OldHM vs. YugLM). In 
contrast, there were no significant differences (P > 0.05) in 

Table 1 Number of voxels exhibiting significant difference in FC for different RSNs

Resting state  
networks

OldHM vs. OldLM OldHM vs. YugLM OldLM vs. YugLM

OldHM > 
OldLM

OldHM < 
OldLM

OldHM > 
YugLM

OldHM < 
YugLM

OldLM > 
YugLM

OldLM < 
YugLM

Primary visual 135 145 1206 290 16126 8031

Dorsal default mode 0 1 106 231 597 198

Right executive control 0 0 887 366 4451 2009

Cerebellum 7173 86 802 806 260 3366

Anterior salience 164 370 512 149 979 1100

Higher visual 91 90 127 783 9110 13467

Left executive control 0 0 2594 981 7237 2632

Visuospatial 556 443 162 581 5408 6842

Language 0 0 138 563 1140 1808

Precuneus 290 66 855 1407 1529 3087

Ventral default mode 0 258 1684 332 462 2756

Medial visual 634 107 0 0 3471 7121

Posterior salience 0 0 447 1917 847 1507

Basal ganglia 0 0 1977 563 255 1285

Medial sensorimotor 2042 174 140 28 1828 3989

Auditory 1222 4874 5049 592 5560 7105

Sensorimotor 34 0 1887 4656 1692 6439

FC, functional connectivity; fMRI, functional magnetic resonance imaging; OldHM, old participants with high motion group; OldLM, old par-
ticipants with low motion group; RSNs, resting state networks; YugLM, young participants with low motion group.
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Fig. 2 Voxels showing significant connectivity changes for some representative large-scale resting state networks. Voxels in which signif-
icant differences in functional connectivity were observed for the different comparisons in the auditory, primary visual and visuospatial 
networks are shown. Green regions indicate resting state networks, red regions for left group > right group contrast, while blue regions 
for left group < right group contrast. OldHM, old participants with high motion group; OldLM, old participants with low motion group; 
YugLM, young participants with low motion group.

Table 2 Number of voxels with FC showing significant linear relationship with mean FD for different RSNs

Resting state networks
YugLM OldLM OldHM

Positive Negative Positive Negative Positive Negative

Primary visual 0 0 0 0 0 16

Dorsal default mode 0 0 0 0 271 0

Right executive control 0 0 0 0 28 600

Cerebellum 0 0 42 0 787 202

Anterior salience 0 0 0 0 3657 582

High visual 0 0 51 4 0 0

Left executive control 0 0 1 0 17 86

Language 0 0 0 0 0 26

Precuneus 109 0 175 196 0 0

Visuospatial 0 0 0 0 29 74

Basal ganglia 0 0 0 0 121 0

Medial sensorimotor 0 0 17 0 0 0

Auditory 0 0 13 0 1 3009

Sensorimotor 0 0 0 0 7 67

FC, functional connectivity; FD, framewise displacement; OldHM, old participants with high motion group; OldLM, old participants with low 
motion group; RSNs, resting state networks; YugLM, young participants with low motion group.

all network metrics between young and elderly participants 
with low motion. To investigate further the reason of the 
absence of any significant differences between the OldLM 
and the YugLM groups, the values of each metric were 
plotted as a function of the FC threshold used to construct the 
binary networks, and the shapes of the graphs were examined 
(Fig. 3). For clustering coefficient (Fig. 3a), global efficiency 
(Fig. 3c), and local efficiency (Fig. 3d), the OldHM group 
has significantly higher values compared to the other two 
groups for all threshold values. On the other hand, for the 

characteristic path length (Fig. 3b), the OldHM group has 
significantly lower values compared to the low motion 
groups for all threshold values. For comparisons involving 
low motion groups (OldLM vs. YugLM), no significant dif-
ferences were observed in the AUCs of all network metrics, 
but the within-group mean values of these metrics changed 
as a function of the threshold used to generate the binary net-
works. The rate of change differed between YugLM and 
OldLM groups resulting in the plots of the mean values to 
intersect at some threshold value.
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Discussion
In this study, we examined the effect of head motion in 
estimating age-related changes in FC measures. As a base-
line, we evaluated changes in large-scale RSNs as well as 
several network metrics using resting state fMRI data 
from young and elderly participants with low head motion. 
We then performed similar comparisons using data from 
elderly participants with high head motion. Our findings 
showed that head motion can (1) significantly reduced the 
number of voxels exhibiting significant differences in FC 
in multiple RSNs and (2) significantly biased the estima-
tion of network metrics that could lead to a likely spurious 
significant difference in these metrics when comparing 
young and elderly participants. These findings clearly 
demonstrated the significant effect of head motion in the 
evaluation of age-related changes in FC measures and 
should therefore be carefully taken into consideration 
when evaluating such changes.

Fig. 3 Network metrics evaluated at different threshold values. Mean values (solid lines) and SD (shaded portion) of the different network 
metrics evaluated with increasing connectivity threshold value for the 3 groups: OldHM (red), OldLM (blue), and YugLM (black) are 
shown. For clustering coefficient (a), global efficiency (c), and local efficiency (d), the OldHM group has the highest mean values across 
all thresholds as compared to the other two groups. Moreover, the graphs of the mean of the network metrics of OldLM and the YugLM 
groups intersect as the threshold value increases. For the characteristic path length (b), only the OldHM group has significantly low mean 
values across thresholds, while the graphs of the OldLM and the YugLM also intersect with increasing threshold. OldHM, old participants 
with high motion group; OldLM, old participants with low motion group; SD, standard deviations; YugLM, young participants with low 
motion group.

Table 3 Unpaired-sample t-test results for network metrics

t P

AUC of 
clustering 
coefficient

OldHM vs. OldLM 3.17 0.00215

OldHM vs. YugLM 3.41 0.000981

OldLM vs. YugLM 0.478 0.634

AUC of 
characteristic 
path length

OldHM vs. OldLM −4.28 0.0000493

OldHM vs. YugLM −4.46 0.0000243

OldLM vs. YugLM 0.0816 0.935

AUC of  
global 
efficiency

OldHM vs. OldLM 4.44 0.0000265

OldHM vs. YugLM 4.28 0.0000480

OldLM vs. YugLM −0.273 0.786

AUC of  
local 
efficiency

OldHM vs. OldLM 3.40 0.00104

OldHM vs. YugLM 3.85 0.000228

OldLM vs. YugLM 0.684 0.496

AUC, area under the curve; OldHM, old participants with high mo-
tion group; OldLM, old participants with low motion group; YugLM, 
young participants with low motion group.
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Effects of head motion in the estimation of age-
related changes in functional connectivity
Many studies have reported age-related changes in many 
large-scale RSNs that occur with normal aging. The major 
changes commonly reported involved significant reduction 
in connections within large functional networks. Specifically, 
significant decreases in FC were frequently observed within 
the default mode, salience, and executive control/attention 
networks with age.22–29 On the other hand, the aging brain 
has also been shown to have increased connections with 
areas outside these RSNs.26,30,31 Together, these findings sug-
gest that the connectivity within brain networks tends to 
decrease, while the connectivity between networks tends to 
increase with aging.

Our findings comparing young and elderly participants 
with low head motion are mostly consistent with existing 
results. As shown in Table 1 (OldLM vs. YugLM), wide-
spread FC differences can be observed in all RSNs investi-
gated. Significantly lower FC values in elderly participants 
were mostly observed within networks, while higher  
FC values were observed with connections outside the  
network (Fig. 2).

Comparisons in FC between young and elderly partici-
pants with high head motion still show regions with signifi-
cant differences in FC, but the spatial extent of these regions 
was significantly reduced (OldHM vs. YugLM, Table 1). 
This can be clearly seen, for example, in the visual network 
(primary, higher, and medial), which showed a significant 
drop in the number of voxels exhibiting age-related FC 
changes in OldHM vs. YugLM comparison as compared to 
the OldLM vs. YugLM (Table 1 and Fig. 2). A direct com-
parison between elderly groups (OldHM vs. OldLM) showed 
that participants with high motion had FC values that signifi-
cantly differed from those with low head motion in a number 
of RSNs, which would explain the observed difference in the 
spatial extent of the obtained age-related FC changes between 
OldLM vs. YugLM and OldHM vs. YugLM comparisons.

The observed differences in FC values between OldHM 
and OldLM groups are consistent with the effect of head 
motion. Head motion has been shown to be one of the critical 
factors that could significantly influence the results of resting 
state fMRI analysis.7–9 The changes in BOLD signal due to 
head motion are complex, vary in form, but are often similar 
across voxels. Changes caused by head movements could 
result in increased spatial correlations because adjacent 
voxels move in the same way as well as increased in tem-
poral correlations because the movement could take some 
time. As a result, motion-related changes in the BOLD signal 
could lead to an increase in the estimated FC in a  
distance-dependent manner, both during and after motion.13 
Power et al.8 has also reported that movement increases cor-
relation in neighboring regions while decreases correlation at 
distant regions, although overall, head motion mainly 
increases FC.7–9 This is further supported by the results of the 
additional within-group regression analyses with mean FD. 

Our findings showed a considerably larger number of voxels 
with FC to several RSNs exhibiting significant association 
with the amount of head motion in the high motion group 
(OldHM) as compared to the low motion groups (YugLM, 
OldLM). Positive linear relationships were mostly observed 
with regions within network, while negative associations 
were observed with regions outside the network. We do note 
that regression only captures the linear association with mean 
FD but the overall effect of head motion could be more com-
plex. These findings do suggest that the effects of head 
motion are becoming more prominent as the amount of head 
motion increases. Considering the distance-dependent effect 
of head motion, the results of the comparison between 
OldHM and YugLM suggest that head motion could lead to 
the underestimation of age-related changes in FC due to the 
motion-related increases in within-network connectivity 
(neighboring regions) as well as decreases in between- 
network connections (distant regions), which is opposite to 
that of aging.

Effects of head motion in the estimation of age-
related changes in network metrics
In terms of network analysis, results from previous studies 
have shown that the whole-brain network tends to progress 
towards a more integrated network with age.21 This parallels 
the results of voxel-level connectivity studies showing 
increase connectivity with regions outside the network in the 
aging brain. For example, the characteristic path length, 
which is an index of functional integration, has been shown 
to decrease with age21,32,33 indicating a more connected brain 
network with shorter paths in-between nodes in the 
aging brain.

Using AUC as the index for comparison, we observed 
significant differences in all metrics investigated between 
OldHM and OldLM as well as between OldHM and YugLM 
(Table 3). In contrast, no significant difference was observed 
between OldLM and YugLM. This suggests that head motion 
has a significant effect on the evaluation of network changes 
with aging. Intriguingly, the direction of change points 
toward a more integrated network with lower path length, 
higher global and local efficiencies, and higher clustering 
coefficient in elderly participants with high head motion as 
compared to young and elderly participants with low head 
motion (Fig. 3). This is again consistent with the effect of 
head motion, which tends to increase connectivity across dif-
ferent brain regions. This finding therefore suggests that head 
motion could lead to an overestimation of network metrics 
associated with network integration.

Finally, we note that although no significant difference 
was observed in the AUC of the different network metrics 
between YugLM and OldLM, the within-group mean values 
of these metrics changed as a function of the connectivity 
threshold value used to construct the binary networks 
(Fig. 3). The rate of change differed that at some threshold 
value, the plots of the mean values intersected. For instance, 
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the mean value of the clustering coefficient is higher in 
YugLM compared to that in OldLM for lower connectivity 
threshold values, while the opposite is true for higher values. 
This indicates that the characteristics of the generated binary 
network showed some dependences with the threshold used 
to generate the binary networks. Considering that the brain 
consists of several large-scale RSNs,14 high threshold values 
could be influenced more by connections within these large 
networks while low threshold values by the connections with 
regions outside of these networks. Since aging affects differ-
ently for within- and between-network connections, age-
related changes in network metrics could therefore be 
influenced by the used threshold value. This may explain 
conflicting results observed in previous studies for network 
metrics that changed with age. For example, modularity, a 
network metric indicating functional separation, has been 
shown to decrease with age,30 but opposite findings have also 
been reported.34 This suggests that careful consideration 
should be exercised when investigating age-related changes 
in network properties as the estimation of the network met-
rics could be affected by both head motion as well as the 
threshold value used to form the binary networks.

Conclusion
In this study, we examined the effect of head motion in evalu-
ating age-related changes in FC measures using resting state 
fMRI. Our findings showed that head motion could lead to 
the underestimation of FC changes in large-scale RSNs as 
well as overestimation of network metrics in the elderly as 
compared to the young participants. These findings clearly 
demonstrate the significant effect of head motion during 
imaging in the evaluation of age-related brain network 
changes using resting state fMRI data and should therefore 
be carefully taken into consideration when evaluating such 
changes.

Acknowledgments
This work was supported by Grants-in-Aid from the Research 
Committee of Central Nervous System Degenerative Dis-
eases by the Ministry of Health, Labor and Welfare and from 
the Integrated Research on Neuropsychiatric Disorders pro-
ject carried out under the Strategic Research for Brain Sci-
ences by the Ministry of Education, Culture, Sports, Science 
and Technology of Japan. This work was also supported by a 
Grant-in-Aid for Scientific Research from the Ministry of 
Education, Culture, Sports, Science and Technology (MEXT) 
of Japan (grant number 80569781), and a Grant-in-Aid for 
Scientific Research on Innovative Areas (Brain Protein 
Aging and Dementia Control; 26117002) from MEXT. This 
work was also supported by the Management Expenses 
Grants from the Ministry of Education, Culture, Sports, Sci-
ence, and Technology (MEXT) of Japan.

Conf licts of Interest
The authors declare that they have no conflicts of interest.

References
1. Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional 

connectivity in the motor cortex of resting human brain using 
echo-planar MRI. Magn Reson Med 1995; 34:537–541.

2. Friston KJ. Functional and effective connectivity in neuroimaging: 
a synthesis. Hum Brain Mapp 1994; 2:56–78.

3. Hedden T, Gabrieli JDE. Insights into the ageing mind: a view 
from cognitive neuroscience. Nat Rev Neurosci 2004; 5:87–96.

4.  Grady C. The cognitive neuroscience of ageing. Nat Rev 
Neurosci 2012; 13:491–505.

5.  Sala-Llonch R, Bartrés-Faz D, Junqué C. Reorganization of 
brain networks in aging: a review of functional connectivity 
studies. Front Psychol 2015; 6:663.

6.  Ferreira LK, Busatto GF. Resting-state functional connectivity 
in normal brain aging. Neurosci Biobehav Rev 2013; 37:384–
400.

7.  Van Dijk KRA, Sabuncu MR, Buckner RL. The influence 
of head motion on intrinsic functional connectivity MRI. 
Neuroimage 2012; 59:431–438.

8.  Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. 
Spurious but systematic correlations in functional connectivity 
MRI networks arise from subject motion. Neuroimage 2012; 
59:2142–2154.

9.  Satterthwaite TD, Wolf DH, Loughead J, et al. Impact of in-
scanner head motion on multiple measures of functional 
connectivity: relevance for studies of neurodevelopment in 
youth. Neuroimage 2012; 60:623–632.

10.  Bagarinao E, Watanabe H, Maesawa S, et al. An unbiased 
data-driven age-related structural brain parcellation for the 
identification of intrinsic brain volume changes over the adult 
lifespan. Neuroimage 2018; 169:134–144.

11. Mugler JP, Brookeman JR. Three-dimensional magnetization-
prepared rapid gradient-echo imaging (3D MP RAGE). Magn 
Reson Med 1990; 15:152–157.

12.  Ashburner J, Friston KJ. Unified segmentation. Neuroimage 
2005; 26:839–851.

13.  Power JD, Mitra A, Laumann TO, Snyder AZ, Schlaggar BL, 
Petersen SE. Methods to detect, characterize, and remove 
motion artifact in resting state fMRI. Neuroimage 2014; 
84:320–341.

14.  Beckmann CF, DeLuca M, Devlin JT, Smith SM. Investigations 
into resting-state connectivity using independent component 
analysis. Philos Trans R Soc Lond, B, Biol Sci 2005; 360:1001–
1013.

15.  Shirer WR, Ryali S, Rykhlevskaia E, Menon V, Greicius MD. 
Decoding subject-driven cognitive states with whole-brain 
connectivity patterns. Cereb Cortex 2012; 22:158–165.

16.  Filippini N, MacIntosh BJ, Hough MG, et al. Distinct patterns 
of brain activity in young carriers of the APOE-epsilon4 allele. 
Proc Natl Acad Sci USA 2009; 106:7209–7214.

17.  Nichols TE, Holmes AP. Nonparametric permutation tests for 
functional neuroimaging: a primer with examples. Hum Brain 
Mapp 2002; 15:1–25.



S. Kato et al.

346 Magnetic Resonance in Medical Sciences

18.  Smith SM, Nichols TE. Threshold-free cluster enhancement: 
addressing problems of smoothing, threshold dependence and 
localisation in cluster inference. Neuroimage 2009; 44:83–98.

19.  Power JD, Cohen AL, Nelson SM, et al. Functional network 
organization of the human brain. Neuron 2011; 72:665–678.

20.  Wang J, Wang X, Xia M, Liao X, Evans A, He Y. GRETNA: 
a graph theoretical network analysis toolbox for imaging 
connectomics. Front Hum Neurosci 2015; 9:386.

21.  Bagarinao E, Watanabe H, Maesawa S, et al. Reorganization 
of brain networks and its association with general cognitive 
performance over the adult lifespan. Sci Rep 2019; 9:11352.

22.  Andrews-Hanna JR, Snyder AZ, Vincent JL, et al. Disruption 
of large-scale brain systems in advanced aging. Neuron 2007; 
56:924–935.

23.  Jones DT, Machulda MM, Vemuri P, et al. Age-related changes 
in the default mode network are more advanced in Alzheimer 
disease. Neurology 2011; 77:1524–1531.

24.  Onoda K, Ishihara M, Yamaguchi S. Decreased functional 
connectivity by aging is associated with cognitive decline. J 
Cogn Neurosci 2012; 24:2186–2198.

25.  Tomasi D, Volkow ND. Aging and functional brain networks. Mol 
Psychiatry 2012; 17:471, 549–558.

26. Betzel RF, Byrge L, He Y, Goñi J, Zuo XN, Sporns O. Changes 
in structural and functional connectivity among resting-state 
networks across the human lifespan. Neuroimage 2014; 102 Pt 
2:345–357.

27.  Damoiseaux JS, Beckmann CF, Arigita EJ, et al. Reduced 
resting-state brain activity in the “default network” in normal 
aging. Cereb Cortex 2008; 18:1856–1864.

28.  Geerligs L, Renken RJ, Saliasi E, Maurits NM, Lorist MM. 
A brain-wide study of age-related changes in functional 
connectivity. Cereb Cortex 2015; 25:1987–1999.

29. Song J, Birn RM, Boly M, et al. Age-related reorganizational 
changes in modularity and functional connectivity of human 
brain networks. Brain Connect 2014; 4:662–676.

30.  Chan MY, Park DC, Savalia NK, Petersen SE, Wig GS. 
Decreased segregation of brain systems across the healthy 
adult lifespan. Proc Natl Acad Sci USA 2014; 111:E4997–
E5006.

31.  Meier TB, Desphande AS, Vergun S, et al. Support vector 
machine classification and characterization of age-related 
reorganization of functional brain networks. Neuroimage 
2012; 60:601–613.

32.  Achard S, Bullmore E. Efficiency and cost of economical 
brain functional networks. PLoS Comput Biol 2007; 3:e17.

33.  Sala-Llonch R, Junqué C, Arenaza-Urquijo EM, et al. 
Changes in whole-brain functional networks and memory 
performance in aging. Neurobiol Aging 2014; 35:2193–
2202.

34.  Meunier D, Achard S, Morcom A, Bullmore E. Age-
related changes in modular organization of human brain 
functional networks. Neuroimage 2009; 44:715–723.


