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Abstract: Application of restriction endonuclease (REase) enzymes for specific detection of nucleic
acids provides for high assay specificity, convenience and low cost. A direct restriction assay format
is based on the specific enzymatic cleavage of a target–probe hybrid that is accompanied with the
release of a molecular marker into the solution, enabling target quantification. This format has the
detection limit in nanomolar range. The assay sensitivity is improved drastically to the attomolar level
by implementation of exponential signal amplification that is based on a cascade of self-perpetuating
restriction endonuclease reactions. The cascade is started by action of an amplification “trigger”.
The trigger is immobilized through a target-specific probe. Upon the target probe hybridization
followed with specific cleavage, the trigger is released into the reaction solution. The solution is then
added to the assay amplification stage, and the free trigger induces cleavage of amplification probes,
thus starting the self-perpetuating cascade of REase-catalyzed events. Continuous cleavage of new
amplification probes leads to the exponential release of new triggers and rapid exponential signal
amplification. The proposed formats exemplify a valid isothermal alternative to qPCR with similar
sensitivity achieved at a fraction of the associated costs, time and labor. Advantages and challenges
of the approach are discussed.
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1. Introduction

Nucleic acid assays of different formats provide a core for modern-day biotechnology and
diagnostics. The critically important parameter is the assay specificity since nucleic acid target detection
is usually performed in complex samples that contain DNA from different organisms. The detection
specificity for most nucleic acid-based assays (qPCR, LAMP, microarrays, etc.) relies on biorecognition
events of DNA strand hybridization and can be adversely affected by non-specific DNA–DNA binding.
Addition of a second biorecognition event based on Class II restriction endonucleases (REases) has
numerous advantages, first and foremost due to the nearly absolute specificity of these enzymes for
particular double-stranded (ds) DNA recognition sites. Therefore, for the enzymatic action to take
place, a hybridization event has to form a corresponding specific restriction site (usually palindromic
with the total length of 4–8 bp) within the DNA double helix [1,2]. Thus, two biorecognition events
are involved in signal generation, making it double-proof in terms of specificity and insensitivity to
non-specific binding.
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The technical principle of REase-based assays is associated with the release of an enzymatic
reaction product from solid support into the liquid phase as the result of target–probe complex cleavage.
The product quantification can then be done in various ways by transferring the product-containing
liquid phase into a separate reaction setup.

In addition to target–probe hybrid recognition, REases can also be used for exponential signal
amplification if the initial hybrid cleavage event releases a “trigger” molecule. The trigger molecule is
initially attached to the surface through an assay probe, where upon cleavage it is released into the
reaction solution. The free trigger can migrate or be transferred to another surface that is modified with
special “amplification” DNA probes. Specific trigger interaction with an amplification probe results in
enzymatic cleavage of the probe. Each amplification probe carries additional (one or multiple) trigger
molecules, thus the probe cleavage provides for the release of new triggers. This self-perpetuating
cascade of cleavage events progresses exponentially until the reaction is stopped (or amplification
probes are exhausted).

Several types of triggers can be used. Thus far, we have developed the following two approaches.
The first is based on trigger REase enzymes that are immobilized through coupling to oligonucleotides,
and can specifically cleave double-stranded oligonucleotide amplification probes. The second employs
trigger oligonucleotides that hybridize to single-stranded oligonucleotide amplification probes, thus
creating double-stranded REase restriction sites and subjecting them to cleavage by corresponding
REase present in the solution. Both approaches are discussed in detail below, and they provide for the
development of simple, low-cost, isothermal DNA hybridization assay platforms with exponential
signal amplification that can achieve sensitivity similar to PCR applications.

The isothermal nucleic acid assay format is critical for the development of point of care units and
field assays. One of the first isothermal assays called nucleic acid sequence-based amplification (NASBA)
was introduced in 1991 by J. Compton [3]. Numerous other isothermal nucleic acid assays are reviewed
in [4] including strand displacement amplification (SDA), loop-mediated amplification (LAMP),
invader assay, rolling circle amplification (RCA), signal-mediated amplification of RNA technology
(SMART), helicase-dependent amplification (HDA), recombinase polymerase amplification (RPA),
nicking endonuclease signal amplification (NESA) and nicking endonuclease-assisted nanoparticle
activation (NENNA), exonuclease-aided target recycling, junction or Y-probes, split DNAZyme and
deoxyribozyme amplification strategies, template-directed chemical reactions that lead to amplified
signals, non-covalent DNA catalytic reactions, hybridization chain reactions (HCR) and detection
via the self-assembly of DNA probes to give supramolecular structures. However, all of them have
limitations, and none are yet ready to replace PCR-based methods for the current DNA assay market.
Our REase-based isothermal DNA assays are novel and promising, and the corresponding advantages
and limitations are discussed in the current work. We are presenting our perspective on these novel
assay formats and their potential applications.

2. Direct Restriction Assay (DRA)

We introduced DRA in 2014 [5], and the principle schematic is depicted in Figure 1. A detection
probe labeled with a molecular marker is attached to a solid phase carrier (microplate, beads,
resin, etc.) via streptavidin (SA)-biotin binding (Figure 1A). A single-stranded (ss) target DNA (i.e.,
dsDNA denatured to ssDNA, or cDNA) is added to the reaction solution and hybridizes to the
probe forming dsDNA helix (Figure 1B). The probe–target hybrid carries a specific restriction site,
thus the corresponding specific REase added to the reaction solution cleaves the helix. (Figure 1C).
Upon cleavage, a part of the probe labeled with the molecular marker is released from the solid
carrier into the reaction solution (Figure 1C). The solution is then transferred to a separate detection
compartment and quantified (Figure 1D). Previously [5], we used horseradish peroxidase (HRP) as the
molecular marker and quantified the signal optically by TMB (3,3',5,5'-Tetramethylbenzidine) oxidation
at 655 nm. However, a variety of molecular markers can be used for this assay together with a wide
range of detection techniques including fluorescent and electrochemical ones.
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Figure 1. General schematic of the direct restriction assay (DRA). (A) A molecular marker/label is 

conjugated to an oligonucleotide probe that is specific for a target gene of interest and immobilized 

on a solid surface through biotin-SA binding. (B) Target DNA (an oligonucleotide or denatured 

dsDNA) is hybridized to the immobilized probe. (C) A restriction enzyme recognizes and cleaves the 

target–probe dsDNA hybrid, resulting in the release of the molecular marker into the reaction 

solution. (D) The reaction solution is transferred into a new well to quantify the molecular marker. 

For each target DNA molecule, one molecular marker is released, resulting in linear dependence 

between the assay signal and the target DNA concentration. 

The developed DRA demonstrated the limit of detection of 1 nM with the dynamic range up to 

30 nM [5]. The first assay was used for detection of methicillin-resistant Staphylococcus aureus, a 

bacterium with antibiotic resistance (MRSA). The assay was designed to detect a fragment of the mecA 

gene that has very high conservation (nearly 100% identity over 2 kb length) among various MRSA 

strains. A 40-mer probe MCA-BG (CAATTAAGTTTGCATAAGATCTATAAATATCTTCTTTATG) 

was designed from the mecA sequence commonly used for qPCR [6]. The central part of the probe 

had the specific recognition sequence (AGATCT) for BglII REase. 

The assay was used to analyze (i) REase requirements for minimum target–probe helix sufficient 

for cleavage and signal generation, and (ii) the enzyme tolerance of mismatches and insertions. Our 

data showed a significant decrease in the assay signal when the probe–target length was reduced to 

20-mer, with drastic reduction to nearly zero at the length of 16-mer. This length requirement 

suggested very high specificity, since on average in a random DNA sequence, a cognate 16-mer 

would be observed only once every 4.3 Gbp. We further analyzed the effects of mutations and 

showed that even a single mismatch within the restriction site eliminated the assay signal completely. 

In contrast, small (up to 3) target–probe mismatches and insertions (ssDNA loops) outside of the 

restriction site in the flanking sequences did not produce strong effects [5]. 

We concluded that the REase enzymatic cleavage in the process of DRA requires: (i) perfect 

probe–target match within a restriction site and (ii) at least 16-mer (preferably >20) of a hybridized 

dsDNA target–probe sequence around the restriction site. This study has been performed using BglII 

REase [5], with the caveat that other enzymes may be different in terms of mismatch and insertion 

tolerance. 

The developed DRA method requires the ssDNA targets. In our previous work with dsDNA 

amplicons [5], heat denaturation of 95 °C was applied, followed with incubation on ice and addition 

to SA-coated microplate wells carrying pre-attached biotinylated probes. Alternatively (Figure 2), the 

same heat denaturation can be applied to a mixture of probe and target DNA in solution. The probe 

used in this approach contains the biotinylated target-specific part, and an oligonucleotide tag. The 

Figure 1. General schematic of the direct restriction assay (DRA). (A) A molecular marker/label is
conjugated to an oligonucleotide probe that is specific for a target gene of interest and immobilized
on a solid surface through biotin-SA binding. (B) Target DNA (an oligonucleotide or denatured
dsDNA) is hybridized to the immobilized probe. (C) A restriction enzyme recognizes and cleaves the
target–probe dsDNA hybrid, resulting in the release of the molecular marker into the reaction solution.
(D) The reaction solution is transferred into a new well to quantify the molecular marker. For each
target DNA molecule, one molecular marker is released, resulting in linear dependence between the
assay signal and the target DNA concentration.

The developed DRA demonstrated the limit of detection of 1 nM with the dynamic range up
to 30 nM [5]. The first assay was used for detection of methicillin-resistant Staphylococcus aureus, a
bacterium with antibiotic resistance (MRSA). The assay was designed to detect a fragment of the mecA
gene that has very high conservation (nearly 100% identity over 2 kb length) among various MRSA
strains. A 40-mer probe MCA-BG (CAATTAAGTTTGCATAAGATCTATAAATATCTTCTTTATG) was
designed from the mecA sequence commonly used for qPCR [6]. The central part of the probe had the
specific recognition sequence (AGATCT) for BglII REase.

The assay was used to analyze (i) REase requirements for minimum target–probe helix sufficient for
cleavage and signal generation, and (ii) the enzyme tolerance of mismatches and insertions. Our data
showed a significant decrease in the assay signal when the probe–target length was reduced to 20-mer,
with drastic reduction to nearly zero at the length of 16-mer. This length requirement suggested very
high specificity, since on average in a random DNA sequence, a cognate 16-mer would be observed
only once every 4.3 Gbp. We further analyzed the effects of mutations and showed that even a single
mismatch within the restriction site eliminated the assay signal completely. In contrast, small (up to 3)
target–probe mismatches and insertions (ssDNA loops) outside of the restriction site in the flanking
sequences did not produce strong effects [5].

We concluded that the REase enzymatic cleavage in the process of DRA requires: (i) perfect
probe–target match within a restriction site and (ii) at least 16-mer (preferably >20) of a hybridized
dsDNA target–probe sequence around the restriction site. This study has been performed using
BglII REase [5], with the caveat that other enzymes may be different in terms of mismatch and
insertion tolerance.

The developed DRA method requires the ssDNA targets. In our previous work with dsDNA
amplicons [5], heat denaturation of 95 ◦C was applied, followed with incubation on ice and addition to
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SA-coated microplate wells carrying pre-attached biotinylated probes. Alternatively (Figure 2), the
same heat denaturation can be applied to a mixture of probe and target DNA in solution. The probe
used in this approach contains the biotinylated target-specific part, and an oligonucleotide tag. The tag
is used for subsequent attachment of the molecular marker HRP. HRP is covalently linked to an
oligonucleotide complementary to the tag and is attached through DNA–DNA hybridization (Figure 2).
Thus, after the probe–target reaction solution has been denatured and cooled down, it is mixed with
the tagged HRP and added to the SA-coated solid carrier (Figure 2). This leads to the quick binding of
the biotinylated probe to surface SA that occurs simultaneously with the probe–target and probe–HRP
tag hybridization (Figure 2). After washing to remove unbound molecules, a specific corresponding
REase is added to perform enzymatic cleavage (Figure 2). The resultant cleaved HRP released into the
reaction solution is then quantified colorimetrically.
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5–6 h and used for total DNA extraction. The resultant DNA samples were directly used for DRA 

without PCR amplification. Thus, the full assay time was below 1 h including probe–target 
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results of the Eae and Stx gene detection in sample sets precultured for 5 and 6 h, respectively. In 

both cases, the signal obtained for inoculated samples was significantly higher than that for a negative 
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molecular detection of foodborne pathogens in precultured samples that can be carried out with 

minimum equipment requirements in field laboratories. 

Figure 2. General schematic of the new approach to probe–target hybridization for DRA. A sample
containing dsDNA targets is supplemented with a specific biotinylated probe and subjected to DNA
denaturation at 95 ◦C followed by quick incubation on ice. The denatured probe and target mixture
are supplemented with horseradish peroxidase (HRP) covalently attached to an oligonucleotide tag
for hybridization to the probe. The mixture is added to the streptavidin (SA)-coated solid carrier for
attachment and hybridization of the specific targets and tagged HRP to the probes. After washing to
remove the unbound molecules, the specific REase is added, catalyzing enzymatic cleavage and HRP
release. The free HRP is transferred to a detection cell.

Since no signal amplification is employed for the DRA platform, it provides for the nanomolar
range sensitivity. The resultant practical applications are limited to analysis of amplicons for a simple
and inexpensive version of semi-quantitative PCR, and to detection of precultured microbial pathogens.
The former is described in [5], and the latter is currently being developed in cooperation with Paradigm
Diagnostics, Inc. (http://pdx-inc.com). Paradigm Diagnostics has a technology for the detection of
numerous pathogens based on culturing food industry samples in media that change color in the
presence of growing microorganisms. This approach permits to detect samples with live microbes;
however, the pathogen presence needs to be confirmed by an independent molecular method.

We used DRA to develop a technique to detect pre-cultured Shiga toxin-producing E.coli strains.
Typically, USDA recommends qPCR testing of these strains using two genes, Eae and Stx, with a
well-characterized set of corresponding primers and probes [7]. We used the qPCR probe sequences
to develop DRA probes, namely Stx: CTGGATGATCTCAGTGGGCGTTCTTATGTAA and Eae:
ATAGTCTCGCCAGTATTCGCCACCAATACC. The probes contain the restriction sites CTCAG and
CCAGT for specific cleavage with BspCNI and BsrI REases, respectively.

The developed assay technique is based on the scheme shown in Figure 2. The SA-coated
microplates were used as a solid carrier for the probes. Inoculated food samples were precultured
for 5–6 h and used for total DNA extraction. The resultant DNA samples were directly used for
DRA without PCR amplification. Thus, the full assay time was below 1 h including probe–target
hybridization and binding to the plate (20 min) and REase cleavage (20 min). Figure 3A,B shows the
results of the Eae and Stx gene detection in sample sets precultured for 5 and 6 h, respectively. In both

http://pdx-inc.com
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cases, the signal obtained for inoculated samples was significantly higher than that for a negative
control. Thus, the DRA technique can provide a simple, low-cost and fast alternative to PCR-based
molecular detection of foodborne pathogens in precultured samples that can be carried out with
minimum equipment requirements in field laboratories.Sensors 2020, 20, x 5 of 14 
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Figure 3. DRA data obtained sets of samples inoculated with Shiga toxin-producing E.coli. (A) Eae
gene detection for samples precultured for 5 h. Data for Eae gene detection were obtained in singlicate.
(B) Stx gene detection for samples precultured for 6 h. The dash lines indicate the signal level for
negative control (non-inoculated samples).

3. Restriction Cascade Exponential Amplification (RCEA)

Restriction cascade exponential amplification (RCEA) has been introduced in 2015 [8]. A principle
schematic of the assay is shown in Figure 4. It starts with the initial recognition stage that involves a
target-specific probe modified with biotin at one end and an “amplification REase” molecule at the
other end. The probe is attached to a solid carrier via SA–biotin interaction (Figure 4A). When the
probe hybridizes with the corresponding target, the added free “recognition REase” cleaves the
target–probe hybrid, releasing the amplification REase from the surface into the reaction solution and
thus completing the first recognition stage (Figure 4B,C).

The reaction solution containing the released amplification REase is then transferred to the next
amplification stage (Figure 4D). The corresponding setup contains amplification probes immobilized
on a solid surface through biotin–SA interaction. The solution end of each probe is attached to the same
amplification REase, as employed at the initial stage. In addition, an HRP molecule is attached to the
solution probe end through complementary oligonucleotide tag hybridization (Figure 4D). The dsDNA
amplification probes carry the specific restriction sites for cleavage with the attached amplification
REases. However, the surface immobilization and double helix structure limit the attached REases’
mobility, making them incapable to bend and cut at the restriction site.

Addition of the reaction solution from the recognition stage that contains free molecules of
amplification REase results in cleavage of the immobilized amplification probes and release of an
additional molecule of amplification REases into the reaction solution (Figure 4D,E). Thus, each
cleavage event doubles the amount of free amplification REases, resulting in a cascade of cleavage
reactions. In addition, each cleavage event releases immobilized HRP markers into the reaction
solution (Figure 4F). The released HRP can be measured, i.e., by transferring the reaction solution to a
detection cell. The described amplification setup can be common for all RCEA assays, with the target
specificity determined during the initial recognition step by using the specific recognition probe and
recognition REase.
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Figure 4. General schematic of the restriction cascade exponential amplification (RCEA) assay. (A) An
oligonucleotide probe specific for a target of interest is conjugated to an REase for amplification and
attached to a solid substrate using biotin. A test sample containing the target of interest is added.
(B) The target in the test sample hybridizes to the probe. (C) The hybrid is specifically cleaved by a
recognition REase. amplification REase is subsequently released into the solution. (D) The reaction
solution is transferred to an amplification cell that contains an excess of immobilized amplification
REase attached to the surface through an oligonucleotide linker. The linker contains the restriction
site corresponding to the amplification REase, and it is double-stranded, with the second strand
conjugated with HRP. All amplification REase molecules in the amplification cell are immobilized
and thus incapable of cleaving their own or neighboring linkers. Addition of the free amplification
REase generated in (C) triggers linker cleavage, releasing additional amplification REase, which in
turn cleaves new linkers. (E) Each step of this exponential cascade of cleavage reactions doubles the
amount of free amplification REase molecules in the reaction solution. (F) The linker cleavage releases
HRP, which is quantified colorimetrically. Each initial target–probe hybridization event produces an
exponentially amplified number of HRP molecules, with the value dependent on the amplification time.

Our published study [8] demonstrated highly sensitive detection of the target mecA gene related
to MRSA infections. We used the same combination of recognition probe and REase: 40-mer MCA-BG
and BglII, as for DRA [5]. The amplification stage was designed using two amplification REases:
BamHI (restriction site GGATCC) and EcoRI (restriction site GAATTC). The most serious challenge in
the RCEA assay development was associated with conjugation of REase molecules with oligonucleotide
probes. All commercially available enzymes lost their enzymatic activity during standard conjugation
via amino groups. Similar results were reported in the literature [9]. Successful conjugation could
only be achieved by using mutant enzymes (BamHI and EcoRI) that had been engineered for ligand
attachment by replacing some surface “non-essential” amino acid residues with cysteines [9].

The MRSA RCEA assay was tested using a specific target oligonucleotide complementary to the
MCA-BG. As shown in Figure 5, both amplification REases, BamHI and EcoRI, demonstrated similar
performance with the lower detection limit of 10 aM concentration, and the linear dynamic range
(at the logarithmic scale) up to 1 nM. The plot obtained for the same target oligonucleotide without
amplification using DRA is shown at the right side of the Figure 5. The data show that the RCEA assay
format gained the detection limit improvement of approximately eight orders of magnitude over the
DRA. The data were obtained for non-optimized assay conditions, and we could still detect as little as
200 target molecules per sample. This performance is similar to the detection limit of PCR applications
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and can likely be further improved by RCEA assay optimization. However, the main goal of such
optimization should be the overall assay time that currently stays at about 2 h and can be significantly
reduced to less than 1 h by improvement of mass transfer in the two-phase (liquid and solid) system.
The improvement of mass transfer can be achieved by agitation and mixing, optimization of cell
geometry, increase of surface to volume ratio, etc.
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Figure 5. From [8] (Creative Commons CC-BY-NC-ND license). The RCEA limit of detection evaluated
using the oligonucleotide target AMC-BG. The X-axis shows the target concentrations (M) and the Y-axis
shows the background-subtracted HRP signal values (with the background calculated as the mean
signal generated for zero target concentrations). For normalization and comparison of sample series,
the HRP signal values were expressed as the percentages of the maximum background-subtracted
OD655, corresponding to each series. Open circles show the data generated using the direct restriction
assay (DRA) with no amplification. The other two series were generated using the RCEA assays with
the mutant S17C BamHI (closed diamonds) and K249C EcoRI (open triangles) as amplification REases.
Error bars show standard deviations.

4. Tandem Oligonucleotide Repeat Cascade Amplification (TORCA)

An attractive alternative format for REase-based signal amplification employs another type of a
trigger that is an unmodified oligonucleotide rather than an REase enzyme molecule. The obvious
advantage is the omission of the REase conjugation step, enabling the use of standard commercially
available enzymes at all stages of the assay. The first developed assay used two species of amplification
trigger oligonucleotides, Tr1 and Tr2, that can start a self-perpetuating cascade of REase-catalyzed
events based on trigger hybridization with each other single-stranded linker.

The assay based on this principle, tandem oligonucleotide repeat cascade amplification (TORCA),
was introduced in 2019 [10]. This format employs standard REases that are suspended in the reaction
solutions without immobilization. To prevent cleavage events, the restriction sites of amplification
probes are kept single-stranded, and the reaction cascade is started by addition of a free trigger
oligonucleotide released during the initial recognition reaction. The exponential amplification is then
achieved by usage of several tandem repeats of the same trigger oligonucleotide within each probe.

The principle schematic of the TORCA assay is shown in Figure 6. It starts with the recognition
step involving an oligonucleotide recognition probe specific for a target of interest that is extended
with the “trigger” oligonucleotide unit Tr1 (Figure 6A). The probe is immobilized on a solid surface
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through biotin–SA interaction. Upon the target–probe hybridization (Figure 6B), the resultant dsDNA
is cleaved with the corresponding recognition REase that is present in the reaction solution (Figure 6C).
This cleavage releases the trigger Tr1 into the reaction solution at the amount proportional (ideally,
equal) to the amount of the target added.
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Figure 6. General schematic of tandem oligonucleotide repeat cascade amplification (TORCA).
(A–C) The recognition stage: An oligonucleotide probe specific for a target of interest is extended with
a “trigger” unit (Tr1) and attached to surface using biotin. A test sample containing the target of interest
is added (A). The target in the test sample hybridizes to the probe (B), and the hybrid is specifically
cleaved by a specific recognition REase (C). The Tr1 unit is subsequently released into the reaction
solution. (D–F) The amplification stage: The reaction cell carries two types of amplification probes.
The first contains a single unit complementary to the trigger sequence Tr1 (antisense Tr1, aTr1), and
multiple identical units of a trigger sequence Tr2. The second contains multiple identical Tr1 units, and
a single unit complementary to the Tr2 unit (antisense Tr2, aTr2). Both probe types are surface-attached
and contain a molecular marker HRP on their solution-facing end (D). The reaction solution in the
amplification chamber contains two common REases, specific to Tr1 and Tr2, that recognize and cleave
dsDNA hybrids of Tr1-aTr1 and Tr2-aTr2, respectively. When the recognition reaction solution is
transferred to the amplification cell, the free trigger Tr1 hybridizes to an aTr1 unit of the first probe
leading to the probe cleavage by Tr1-REase (D) and release of Tr2 into the reaction solution (E). In turn,
the released Tr2 hybridize to an aTr2 of the second probe type (E), causing cleavage of Tr2 and further
release of additional Tr1 units. This cascade of events also results in the release of the HRP molecular
marker that can be used for signal quantification (F).

At the next amplification stage, the recognition reaction solution is transferred to an amplification
chamber that contains two types of amplification probes immobilized on a solid carrier (Figure 6D).
Each probe has HRP attached to the solution end. The amplification probe AP1 consists of a sequence
complementary to the trigger Tr1 (aTr1) attached to the carrier surface and multiple tandem repeat
sequences of trigger Tr2 at the solution end. The amplification probe AP2 has a sequence complementary
to Tr2 (aTr2) at the surface and multiple Tr1 sequences at the solution end (Figure 6D). The amplification
chamber also contains two free amplification REases that specifically cleave the dsDNA hybrids of
Tr1-aTr1 and Tr2-aTr2. Since initially all probes are present in the chamber as single-stranded, no
enzymatic cleavage is observed. Addition of the recognition reaction solution containing free Tr1
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results in hybridization with the complementary aTr1 part of AP1, followed by the cleavage and release
of multiple Tr2 into the solution (Figure 6 D,E). In turn, the released Tr2 molecules hybridize to the
immobilized complementary aTr2 within AP2, resulting in the further cleavage and release of numerous
Tr1 units. Since each cleavage event is accompanied with the release of multiple trigger units and thus
initiates the cleavage of the next amplification probes (Figure 6F), this process is self-perpetuating and
provides for exponential accumulation of unbound HRP and thus the exponential assay signal increase
over time.

Unlike RCEA, the TORCA assay format does not require REase conjugation, regular commercially
available enzymes can be used at all stages. Moreover, the recognition probes do not contain the
attached enzyme, thus they can be safely subjected to denaturation at high temperature. This is an
important advantage to streamlining the initial recognition step: instead of separate denaturation of
dsDNA targets before mixing and hybridization with recognition probes, the targets and probes can be
mixed, denatured and hybridized in a single step (similar to the DRA scheme shown in Figure 2).

The main challenge for TORCA assay development is associated with prevention of physical
contacts between the amplification probes AP1 and AP2. Any contact will lead to hybridization of the
complementary Tr and aTr units followed by cleavage, and thus initiation of the amplification cascade
without addition of a free trigger. Indeed, two types of beads, modified with either AP1 or AP2, when
mixed in the presence of both amplification REases, immediately start releasing some HRP signal [10].
At the same time, if only one amplification REase is present, the HRP release does not occur. One
possible solution is membrane separation, and our data showed that such physical separation of the
beads with AP1 and AP2 prevents the HRP release in the presence of both amplification REases [10].

Based on these data, we designed two types of amplification chambers for the TORCA assays.
The first type employs a mixture of two probe carriers without physical separation. In this chamber,
addition of a trigger from the recognition step enhances the rate of HRP signal generation over a rather
prominent background of the trigger-independent HRP release. The obvious disadvantage is high
background values that need to be carefully measured with negative controls. The main advantage
of this approach is the short assay time, approximately 15 min for the whole amplification stage [10].
The second type of amplification chamber provides for the physical separation of two different probe
carriers with a membrane permeable for DNA molecules but not for carrier particles. This type is
associated with a low background; however, it requires a considerably longer time for the completion
of the amplification stage (over 1 h).

The two approaches have been tested in [10] using SspI (restriction site AATATT) and EcoRV
(restriction site GATATC) as amplification REases. The amplification probes had seven repeats of Tr1
and Tr2. Figure 7 shows the TORCA data obtained for trigger detection using the two amplification
formats: mixture of non-separated probes (Curve b) and membrane-separated probes (Curve c) [10].
They are compared to curve “a” obtained for the same trigger without amplification by using DRA.

Both TORCA formats had the same detection limit of 10 aM concentration similar to RCEA and
to PCR applications. The format with the mixture of non-separated probes demonstrated a little less
sensitivity as compared with the membrane-separated probes, however, it used a shorter amplification
time and showed better linearity. Thus, the probe mixture assay format was chosen for further
development of an assay to detect malaria P. falciparum parasites by using RNA as a target.

This RNA-based approach was a step toward the goal to distinguish between past and ongoing
malaria infections. Such discrimination performed directly at point-of-care facilities is essential to
direct drug therapy at only those patients who can benefit from it, and to conduct new drug clinical
trials in malaria-endemic areas [10]. RNA stability is known to be significantly lower than stability of
DNA and protein malaria markers, thus RNA detection is likely to better correlate with the presence
of a live parasite as compared with stable DNA. Since REase enzymes can only cleave DNA–DNA
hybrids, RNA was reverse-transcribed into cDNA.

The developed TORCA assay format was compared to PCR detection [10]. The TORCA assay
sensitivity toward three different malaria RNA targets had the detection limit of about 7.5 IE per
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100 µL of blood sample. This is almost two orders of magnitude better than the malaria detection limit
recommended by WHO [11]. The observed linear dynamic range for the assay spanned approximately
three orders of magnitude.
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Figure 7. From [10] (Creative Commons CC-BY license). The dependence of the HRP-generated signal
on the concentration of the amplification trigger added to the single (non-amplified DRA format) REase
(a) or the two REases EcoRV and SspI (b-c) systems. The curves a and b are generated for mixtures of
the two bead types, one modified with the amplification probe AP1-HRP and the other with AP2-HRP.
The curve c was obtained for the same two bead types separated by a filter barrier. The X-axis shows
the target concentrations (M), and the Y-axis shows the background-subtracted and normalized HRP
signal values. The background was calculated as the mean signal generated for the triplicate no-trigger
added negative controls. For normalization and comparison of the sample series, the HRP signal values
are expressed as the percentages of the maximum background-subtracted OD655 corresponding to each
series. Error bars show standard deviations. The data for (non-amplified DRA format) REase (a) were
obtained without replicates.

Direct comparison of the TORCA assay versus common RT PCR is presented in Figure 8.
Both methods successfully detected the P. falciparum parasite RNA targets at different times after
initiation of the drug treatment of a patient [10]. The decrease of parasite RNA directly correlated with
the post-treatment time, and both methods showed considerable consistency (Figure 8). The described
method of distinguishing between past and ongoing infections is based on observations showing much
lower stability of pathogen RNA as compared with DNA. However, for each particular infection, an
independent study is needed to establish a correlation between target RNA content and disease state.
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Figure 8. From [10] (Creative Commons CC-BY license). The dependence of the TORCA signal (a) and
the calculated infected erythrocyte concentration (b) on the time after initiation of the patient drug
treatment (X-axis, days). (a) The Y-axis shows the background-subtracted and normalized HRP signal
values. The background was calculated as the mean signal generated for the triplicate no-trigger
added negative controls. For normalization and comparison of the sample series, the HRP signal
values are expressed as the percentages of the background-subtracted signal obtained for the positive
control containing an equimolar mixture of targets at 10 nM concentrations. (b) The Y-axis shows the
IE (Infected Erythrocytes) concentrations calculated using the standard calibration curve obtained
separately. The inset shows mean data for IE concentrations measured using TORCA and reverse
transcription-PCR methods and calculated according to corresponding calibration curves. Error bars in
both graphs show standard deviations. Error bars for 7-day treatment are smaller than the marker.

An important feature of the TORCA assay is the ability to simultaneously detect multiple targets
in the same chamber, generating an integrated signal to enhance assay sensitivity and to provide for
mutation tolerance. For malaria detection, we successfully employed three different RNA targets, and
thus three recognition probes in the same assay [10].

The TORCA optimization efforts are currently focused on finding a middle ground in the design
of the amplification chamber: to combine the separation membrane to reduce backgrounds with
the enhanced mass transfer to shorten the assay time. The latter can be done by using an increased
membrane surface and physical agitation of the carrier particles.

An important advantage of the TORCA and RCEA formats is associated with their high tolerance
of various target sizes. In contrast to PCR-based assays that normally require at least 70 bp fragments,
the TORCA and RCEA minimum size requirement is 20 bp. Since the assay can be used for recognition
of very short fragments, the potential applications include working with partially degraded nucleic
acids in FFPE material and in liquid biopsies containing cell-free DNA and RNA from serum and
plasma. Archived FFPE tissues are subjected to formalin-induced crosslinking of nucleic acids to
proteins, base purination and strand breaks. As a result, the proportion of RNA fragments <200 bases
is typically >50%, and can be as high as 90%, making these samples unsuitable for standard assays
that require templates >150 bases. In contrast, REase-based assays do not have the 150-base size
limitation [12].

In contrast to the RCEA technology, TORCA does not require enzyme engineering and complex
conjugation. All required components, including custom oligonucleotides, are commercially available
at low cost with a fast turn-around time, thus ensuring great flexibility towards the development of
new assays towards emerging targets of interest.
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5. REase Based Assays: Advantages and Limitations

All REase-based assays described above [5,8,10] have several common advantages associated with
high specificity due to the “double-proof” combination of two biorecognition events. They are nearly
insensitive to (i) non-specific and partially complementary DNA binding, (ii) excess foreign DNA
background and (iii) various non-nucleic acid contaminants (such as proteins, PCR inhibitors, etc.).

The isothermal nature of REase-driven assays, their simplicity and flexibility provide opportunities
for the development of assay cartridges with all components included. The assays can utilize various
molecular markers of different nature and use colorimetric, fluorescent and electrochemical detection
formats without the need of complex instrumentation, and at much lower costs as compared with other
nucleic acid assays. Both fluorescent and electrochemical detection formats would allow for the direct
detection of the released molecular label in the amplification chamber in real time, without the need to
transfer the reaction solution to a special detection chamber. To get rid of this end-point fluid transfer,
and to switch to a kinetic assay mode, one needs to place an electrode or optical detection probe into
the amplification chamber and physically separate it from the solid carrier with immobilized assay
reagents. This can be achieved by various engineering approaches, providing for design flexibility, and
enabling the development of devices for field and point-of-care applications.

The REase-based assays provide for easy adaptation to new analytes of interest. This adaptation
involves a single design step to develop a pair of a 20–30 bp recognition probes with a corresponding
recognition REase. This simplicity provides for a great advantage over another isothermal assay,
LAMP, that requires the use of 4–6 carefully optimized primers for each new DNA target. The current
selection of commercially available REases with different restriction site sequences is expanding
continuously. New England Biolabs alone offers over 285 restriction enzymes. In our experience,
any sufficiently diverse 100–200 bp coding DNA sequence typically contains at least one option for a
possible recognition probe with an REase restriction site. Further, in contrast to the design of recognition
stage components, the same amplification stage reagents can be used for all targets of interest.

The two highly sensitive exponential amplification assay formats, RCEA and TORCA, achieve the
attomolar detection limit similar to the golden standard of PCR. However, in contrast to PCR, they
amplify the assay signal rather than the DNA template. The main issue of template DNA amplification
is a possible sequence-dependent bias that is widely observed in PCR, when certain sequences have
much higher amplification efficiency than the other [13]. The REase-based signal amplification does
not employ the production of multiple new DNA copies, thus it is free of sequence-dependent bias
and mis-priming issues.

The biggest challenge in the development of REase-based exponential signal amplification assays
is the engineering of automated fluid transfer. Currently, reaction solutions are transferred manually,
however, the operator involvement needs to be minimized for point-of-care and field applications.
This will provide a competitive edge for the REase-based assays that can serve as a valid alternative to
PCR due to their simplicity, low cost, high specificity and sensitivity of detection.

6. Conclusions

Our perspectives on applications of the REase-based nucleic acid assays are associated with
their versatility, low cost, simplicity, specificity, isothermal nature and potential for the development
of portable automated instrumentation formats. The two highly sensitive assay formats based on
exponential amplification are valid alternatives to PCR-based assays. They can be performed at a
fraction of the PCR cost in low-resource settings, including point-of-care laboratories, and field facilities.
We believe that the described formats have high potential for biosensors development, since they can
use both fluorometric and electrochemical detection. The detection of a released molecular label can be
done in real time, directly in the amplification chamber during the amplification stage, with no extra
fluid transfer steps, and employing a kinetic assay mode. This allows for substantial simplification
of the assay setup and supporting instrumentation along with a reduction in the assay time. In our
perspective, the REase-based platforms also overcome the very serious limitation of nucleic acid
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assays, namely the minimum target length requirement that is important for both PCR and isothermal
formats such as LAMP. Thus, the novel platforms have potential for considerable expansion into new
niches involving the analysis of highly fragmented nucleic acids, including liquid biopsies. However,
further development of the described technologies requires optimization in terms of simplification,
automation, robustness and short assay time.
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