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Abstract

Innovations in -omics technologies have driven advances in biomedical research. However, integrating and analysing the
large volumes of data generated from different high-throughput -omics technologies remain a significant challenge to basic
and clinical scientists without bioinformatics skills or access to bioinformatics support. To address this demand, we have
significantly updated our previous O-miner analytical suite, to incorporate several new features and data types to provide
an efficient and easy-to-use Web tool for the automated analysis of data from ‘-omics’ technologies. Created from a biolo-
gist’s perspective, this tool allows for the automated analysis of large and complex transcriptomic, genomic and methylo-
mic data sets, together with biological/clinical information, to identify significantly altered pathways and prioritize novel
biomarkers/targets for biological validation. Our resource can be used to analyse both in-house data and the huge amount
of publicly available information from array and sequencing platforms. Multiple data sets can be easily combined, allowing
for meta-analyses. Here, we describe the analytical pipelines currently available in O-miner and present examples of use to
demonstrate its utility and relevance in maximizing research output. O-miner Web server is free to use and is available at
http://www.o-miner.org.
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Introduction

Large amounts of data have been generated from high-
throughput profiling platforms. Public repositories, such as the
Gene Expression Omnibus (GEO) [1], ArrayExpress [2], Sequence
Read Archive (SRA) [3] and the European Genome-phenome
Archive (EGA) [4], contain thousands of profiles from transcrip-
tomic, genomic and methylation platforms across many experi-
mental conditions and sample types. The exponential growth in
the number of available data sets has created many challenges
to data analysis and integration. The Bioconductor project
(www.bioconductor.org) provides a vast array of open-source
packages within the R programming environment for the ana-
lysis of data from both array and sequencing platforms. A typ-
ical pipeline for the analysis of array/sequencing data will
require the use of several R packages and substantial coding
skills to navigate between inputs and outputs from one package
to another. This is not a simple task for those without any pro-
gramming or data analysis experience, making the process both
difficult and time-consuming. To make these workflows more
accessible and useful to biologists and clinicians, it is necessary
to create easy-to-use online tools to perform the required bio-
informatic and statistical analyses. While several online tools
are available for the analysis of data from transcriptomic and
genomic experiments such as Babelomics 5.0, ArrayMining,
Patchwork, wANNOVAR and the Tumor Aberration Prediction
Suite [5–9], most cover just one type of data, or require bioinfor-
matics expertise to interpret the data. Consequently, the need
arises for comprehensive and easy-to-use online bioinformatics
tools that are able to process raw profiles either individually or
as a meta-analysis, while alleviating the need for researchers to
invest time and effort in setting up the necessary computational
infrastructure.

To satisfy this, we developed O-miner [10] as a solution for
the analysis and exploitation of data. All analytical pipelines are
designed to run in the R statistical environment and use well-
established statistical methods from Bioconductor packages.
Since its first publication in 2012, we have greatly improved
O-miner by adding a number of analytical and graphical fea-
tures to increase functionality and to improve the usability of
our software by the scientific community. Here, we present an
overview of O-miner and focus on its enhanced workflows and
computational features. We also illustrate examples of use for
the analysis of multiple transcriptomics data sets from breast
cancer (BC) studies and the post-processing of RNA sequencing
(RNA-Seq) data from prostate cancer (PCa) samples to extract
biologically meaningful results. Feedback from the user com-
munity has resulted in many significant additions and improve-
ments to the O-miner query system, analytical workflows and
output layers since the first release. Table 1 summarizes the
analytical workflows with corresponding input and output fea-
tures that are currently supported in O-miner. Details regarding
each of the analytical workflows are available from our compre-
hensive online user guide (http://o-miner.org/guide_2.0.html).

O-miner features
Query submission architecture and data source

The basic O-miner request–response internal architecture re-
mains the same. Following the provision of a project name and
an email address (optional), users can upload data to O-miner
via the user interface either as a zipped archive (of raw CEL files
or a normalized data matrix from in-house or public data) or via

the input of valid GEO GSE accession number(s). Users are then
presented with a tabular form, where they need to assign biolo-
gical groups to the uploaded data. While previously completed
online, the current version of O-miner facilitates the assign-
ment process by offering the option to upload a text file con-
taining the relevant information for each sample. Analysis of
individual and multiple data sets from the GEO has also been
improved. In addition, extraction of biological information re-
garding the samples from GEO has been automated, bypassing
the requirement for any manual inputting of data. Up to five
user-defined data sets from GEO (using GSE accession numbers)
can be automatically uploaded to O-miner.

An updated Perl CGI pipeline connects the data submitted
through the front-end Web interface to the back-end workflows
implemented in R. The results are displayed back to the users,
once each of the analytical steps has been completed. Users are
notified via email with the URL from where the results can be
viewed. The results generated by O-miner are accessible online
and are available for download without restrictions. Uploaded
data sets and computed results are stored on our system for a
period of 2 weeks.

Analytical workflows: updates and additions

The first version of O-miner was composed of two analytical do-
mains. These are genomics and transcriptomics, where the
latter contained just one workflow for the analysis of data
from the Affymetrix GeneChip Human Genome series only.
The updated version includes an improved workflow for tran-
scriptomic data and allows the analysis of data from the
Affymetrix GeneChip Mouse Genome. Furthermore, new work-
flows have been added for the analysis of data from the
Illumina expression array, Affymetrix exon array, Affymetrix
microRNA (miRNA) array and the downstream processing of
data from RNA-Seq experiments.

Previously, the genomics layer contained one workflow for
the analysis of data from Affymetrix SNP arrays, which offered
the use of several different algorithms for the segmentation
stage of the analysis. However, in practice, when several of
these are chosen, the analysis became both time-consuming
and computationally expensive. The genomics layer has been
improved. We have now implemented an improved version of
the workflow using just one segmentation model circular binary
segmentation (CBS), which is widely used in copy number ana-
lysis. This has simplified the process for users and limited the
time and computational burden of analyses. We have also
added two new workflows to the genomics section: the allele-
specific copy number analysis of tumour (ASCAT) workflow and
the genome sequencing (post-processing) workflow to estimate
copy numbers from whole-exome sequencing (WES) and whole-
genome sequencing (WGS) data.

A third, analytical layer for the analysis of data from methy-
lation arrays has also been implemented. A list of data types
and -omics platforms currently supported by O-miner is pro-
vided in Table 2.

Transcriptomics
The core workflow comprised the following steps: quality con-
trol (QC), normalization, filtering, differential expression ana-
lysis and the identification of statistically significant gene
ontology (GO) terms. For each of the new platforms added to
O-miner, the relevant functions to perform these steps have
been implemented. In addition, we have increased the function-
ality of the existing Affymetrix transcriptomics pipeline by
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Table 1. Comparison of workflows and features between O-miner version 1.0 and version 2.0

Pipeline Feature O-miner v1.0 O-miner v2.0

Supported
platforms

Transcriptomics Affymetrix Expression Array
(Human Genome)

� Features added to this pipeline
(see below)

Affymetrix Expression Array
(Mouse Genome)

� �

Illumina Expression Array (Human
Genome)

� �

Illumina Expression Array (Mouse
Genome)

� �

Affymetrix microRNA Array
(Human Genome)

� �

Affymetrix Exon Array (Human
Genome)

� �

RNA-Seq (post-processing) � �

Genomics Affymetrix SNP Array (Human
Genome)

� Simplified

Methylation IlluminaMethylation Array
(Human Genome)

� �

Input
parameters

Transcriptomics Data type Raw CEL file, normalized/filtered
Data source User-defined, GEO repository Automated suggestion for

phenotype annotation from
GEO data set

Analysis type Paired, unpaired
Provision for technical replicate �

Provision for batch effect
correction

� �

Provision for survival data � �

Provision for estimate tumour
purity

� �

Provision for uploading target
matrix

� �

Genomics Analytical pipeline CBS ASCAT, genome sequencing
(post-processing)

Data type Raw CEL file, normalized, segmented, binary coded
Data source User-defined, GEO repository
Analysis type Paired, unpaired
Baseline User-defined, HapMap
Provision for uploading target

matrix
� �

Methylomics Data type � Raw IDAT file, normalized
Data source � User-defined, GEO repository
Analysis type � Paired, unpaired
Provision for technical replicate � �

Provision for batch effect
correction

� �

Provision for uploading target
matrix

� �

QC ArrayMvout, ArrayQualityMetrics LUMI (Illumina array)
Analysis

parameters
Transcriptomics Normalization RMA, GCRMA, TRMA RSN, SSN, VSN, Quantile

(Illumina array)
Filter method IQR, SD, intensity
Differential expression method LIMMA Edge R (RNA-Seq)
Adjustment method BH, FDR, BY, Holm
Provision for P-value threshold Yes
Provision for fold-change

threshold
Yes

Gene annotation system RefSeq, Ensembl, UCSC, Vega
Genomics Miscellaneous miRNA, Cytoband, conserved TFBS

Minimial common region finder
algorithm

CGHRegions

Provision for defining CNA region Yes
QC � ChAMP

Methylomics Normalization � BMIQ, SWAN, PBC

(continued)
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adding the option of estimating tumour purity with the algo-
rithm ESTIMATE (Estimation of Stromal and Immune cells in
Malignant Tumours using Expression data) [11]. To increase the
statistical robustness of meta-analyses, users now have the op-
tion to use the algorithm COMBAT [12] that eliminates batch ef-
fect(s) when integrating data from different studies from the
same platform. We have also included an option for survival
analysis.

Results can be viewed from a single Web page, with data
from each step of the analysis presented in a distinct tab
(Figure 1). The QC assessment for raw .CEL files is implemented
using the R package ArrayMvout [13]. These are presented as
both a summarized report and as individual plots. ArrayMvout
automatically excludes outliers from the analysis. Additional
QC checks, from ArrayQualityMetrics [14], can be applied.
Optionally, the COMBAT algorithm can be applied to a meta-
analysis, which is usually performed after the normalization
step. An estimated tumour purity report is also generated (for
Affymetrix GeneChip Human Genome series only), if the
ESTIMATE algorithm is run.

Normalized data matrices are derived using platform-
specific normalization methods followed by a filtering step. An
unsupervised hierarchical clustering algorithm is used on the
normalized gene expression data to generate dendrograms to
show similarity between samples. Filtering reduces the dimen-
sionality of the data using one of the three following methods:
interquartile range (IQR) (soft; intermediate; robust), intensity
(25 or 50% of samples) or SD (up to the top 40% of the most
variable probes). Differential expression analysis is then
applied to the filtered matrix of normalized expression values
using LIMMA [15] to identify significantly altered probes be-
tween the biological groups in the user-defined comparisons.
For each comparison, the differentially expressed genes
(DEGs), passing the user-imposed cut-offs of adjusted P-values

and log fold-change, are presented in a tabular format as an
annotated list or graphically as heatmap (Figure 1A). Users can
view boxplots displaying the expression of DEGs across the
predefined biological groups (Figure 1B). Optionally, Venn dia-
grams can be generated showing unique and overlapping
genes that are differentially expressed in up to four biological
comparisons (Figure 1C). The DEG lists can subsequently be
used to identify significantly under- and over-represented GO
terms using the R package GOstats [16], which includes ontolo-
gies relating to molecular function, biological process (BP) and
cellular component. For data sets where survival covariates
are supplied, three Kaplan–Meier (KM) plots are generated, to
show 5, 10 and 15 years of survival rates across different risk
groups [17].

The current version also has incorporated additional func-
tionalities to interrogate the data. Previously, users could only
visualize expression boxplots for their gene(s) of interest across
the biological groups. Users now have the option to visualize
the effect of those genes on survival as KM plots. A univariate
model is applied to the survival data, and samples are assigned
to risk groups based on the median dichotomization of mRNA
expression intensities of the respective genes. Users can also
identify genes that are co-expressed with their gene(s) of inter-
est. The top 10 genes with the highest correlation, in terms of
Pearson product-moment correlation coefficients (PPMCCs) and
associated P-values, are presented in a table.

A number of default values are set against the various ana-
lysis parameters to assist non-advanced users: ArrayMvout is
the default method for detecting outliers in the QC step; data
are normalized using Robust Multi-array Average (RMA) and fil-
tered using SD, where the top 40% of the most variable probes
on the array are used for differential expression analysis; an ad-
justed P-value threshold of 0.05 and a log2 fold-change thresh-
old of 2.0 are imposed to identify DEGs.

Table 1. (continued)

Pipeline Feature O-miner v1.0 O-miner v2.0

Filter method � IQR, SD, intensity
Differential methylation method � LIMMA
Adjustment method � BH, FDR, BY, Holm
Provision for P-value threshold � Yes
Provision for fold-change

threshold
� Yes

QC ArrayMvout report,
ArrayQualityMetrics report,
Cluster plot

LUMI report (Illumina array),
tumour purity report

Output Transcriptomics Differential expression Gene level Transcript, exon, splice level
(Affymetrix Exon array)

Miscellaneous GO, Venn diagram, Expression plot Survival plot, correlation tables
QC Density plot, cluster plot

Genomics Copy number alteration Gain, Loss Copy neutral LOH (ASCAT),
copy number from genome-
sequencing data

Visualization CNA regions (sample and group
level), MCR (group level)

QC ArrayMvout report,
ArrayQualityMetrics report,
Cluster plot

Output from ASCAT algorithm

Methylomics Differential methylation � CpG island level
Miscellaneous � GO, Venn diagram, methylation

plot, correlation table

Note: Workflows and features available in O-miner version 1.0 are compared with O-miner version 2.0
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RNA-Seq post-processing
Along with array-based transcriptomic data analysis, O-miner
now also supports the post-processing of RNA-Seq data
(Figure 2). Analytical steps covered by this pipeline include

differential expression, annotation with Ensembl Gene IDs (if
data are not already annotated) and the identification of statis-
tically significant GO terms using the R package GOseq. Users
can provide raw read counts generated from HTSEQ [18] or
Reads Per Kilobase per Million mapped reads (RPKM) values.
They can choose between LIMMA and edgeR [19] as methods for
differential expression analysis, when raw read counts are pro-
vided. However, only LIMMA is available, when a matrix of
RPKM values is uploaded. LIMMA applies the voom [20] trans-
formation to raw read counts data to generate log counts per
million with associated precision weights to be used for differ-
ential expression analysis, whereas EgdeR applies a generalized
linear model to the data to calculate differential expression.

Results are presented in the same format as those from the
other transcriptomics workflow. Further details of results generated
from this pipeline can be found in our ‘Examples of use’ section.

Genomics
O-miner offers two analytical workflows, CBS and ASCAT [21],
for the analysis of copy number data generated on Affymetrix
array platforms (Table 1, Figures 3 and 4). Both workflows can
conduct a complete genomic analysis from raw data files. In
addition, the CBS workflow can also perform analysis from mul-
tiple entry points with processed data as input. A third work-
flow is offered for the post-processing of sequencing data,
which estimates copy numbers from pre-processed WES and
WGS data using the ASCAT algorithm (Figure 4). Both CBS and
ASCAT workflows have common analytical steps, including
background correction, allelic crosstalk calibration, nucleotide-
position probe sequence effects normalization, probe-level
summarization using robust average (SNP 5.0 and SNP 6.0
arrays) or log-additive model (10K, 100K and 500K arrays), poly-
merase chain reaction fragment-length effects normalization
and calculation of raw copy number estimates (log2ratios) rela-
tive to the chosen reference. QC cluster or aberration density
plots are generated for each platform using the R package aro-
ma.affymetrix [22]. Default parameters are set to facilitate the
analytical process for non-advanced users. These include a log2-

ratio (copy number ratio) threshold of 0.2; a minimum number
of 15 consecutive SNPs to define regions of copy number aberra-
tion (CNA) as a gain/loss; and an observation percentage of 20%
that sets the minimum number of samples for which a copy
number event must be observed.

Similar to a transcriptomic analysis, results are viewable
from a single Web page, with data from the QC step and
sample-specific CNA regions as well as recurrent CNA regions
across groups presented in distinct tabs (Figure 3). CNA regions
are reported with corresponding physical and cytogenetic (op-
tional) mapping information. Users can also customize the ana-
lyses by selecting to retrieve results from one or more data
annotation systems, e.g. Refseq, Ensembl, UCSC and Vega, in-
formation on overlapping regulatory elements, such as miRNAs
[23] or conserved transcription factor binding sites. Recurrent
CNA regions are available in both tabular and graphical formats,
and can be viewed either as summarized across all chromo-
somes simultaneously or individually for each chromosome.
Such information can be valuable for identifying putative
disease-causing genes [24].

Circular binary segmentation
Both paired (e.g. tumour–normal) and unpaired analyses are avail-
able when raw CEL files are provided. If paired normal/baseline
samples are not available, a user-defined baseline may be selected.
In this case, O-miner generates a pooled average from the unpaired

Table 2. Platforms and data types supported by O-miner

Workflow Data Manufacturer Platform

Transcriptomics R, N Affymetrix miRNA 2.0
miRNA 3.0
GeneChip Human Exon

1.0ST
GeneChip Human Gene

1.1ST & 2.0ST
GeneChip Human

Genome Array U133
Plus 2.0

GeneChip Human
Genome Array U133
set

GeneChip Human
Genome Array U95
set

GeneChip Mouse
Genome 430 2.0

N, U Illumina HumanHT-12 v3
Human HT-12 v4
MouseRef-8 v2.0

Multiple RNA-Seq (post-process-
ing only)

Genomics: CBS R, N, S, B Affymetrix 10K
50K Xba
50K Hind
100K
250K Sty
250K Nsp
500K
Genome-Wide Human

5.0 SNP array
Genome-Wide Human

6.0 SNP array
Genomics: ASCAT

(cancer-specific)
R Affymetrix 50K Xba

50K Hind
100K
250K Sty
250K Nsp
500K
Genome-Wide Human

5.0 SNP array
Genome-Wide Human

6.0 array
Genomics:

Sequencing
P Multiple Genome-sequencing

(post-processing only)
Methylation R, N Illumina Infinium

HumanMethylation
27K BeadChip

Infinium
HumanMethylation
450K BeadChip

Code: R: raw; N: normalized; U: unnormalized; S: segmented; B: binary coded;

P: processed.

Note: O-miner supports the analysis of pre-processed data from RNA-Seq experi-

ments and genomic sequencing data; raw/processed data files generated using

Affymetrix and Illumina transcriptomic and genomic arrays; and raw/processed

data files from the Illumina Infinium methylation platform.
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normal samples, against which each of the tumour samples are
compared. Alternatively, HapMap data can be used as a baseline.
O-miner has pre-compiled raw HapMap data from four human
populations: African YRI (originating from Yoruba in Ibadan,
Nigeria), Japanese JPT (from Tokyo, Japan), Han Chinese CHB (from

Beijing, China) and European CEU (from Utah, USA with ancestry
from Northern and Western Europe). The CBS workflow can also
accept partially processed text files (normalized, segmented or bin-
ary) of log2ratios along with the biological source/state specified for
each sample.

Figure 1. Transcriptomics workflow. O-miner takes as input raw array data (CEL files) from Affymetrix array-based platforms and either normalized/unnormalized

data from Illumina expression arrays. QC is performed on data from raw CEL files. Data are then normalized and filtered to remove redundant probes. Users performing

meta-analysis have the option to apply the COMBAT algorithm to correct for batch effects when combining data from different studies. Tumour purity can be esti-

mated for Affymetrix data using the ESTIMATE algorithm. Survival analysis can be run for data from all of the array-based platforms. The normalized expression ma-

trix is then subjected to differential expression analysis using LIMMA to identify significantly DEGs between biological groups. Optionally, GO terms that are

statistically over- or under-represented are identified using GOstats, and Venn diagrams may be generated. Results are displayed online in expandable tabs and easy

to download as text and excel files. (A) Heatmaps of the statistically significant DEGs identified for each of the comparisons are available to download. (B) A boxplot dis-

playing the expression profiles across the biological conditions can be viewed. (C) A Venn diagram showing common and unique genes that are differentially expressed

across the biological groups is displayed, if selected from the output options.
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O-miner conducts unsupervised hierarchical clustering for
each sample using the raw log2ratios. If users do not specify
threshold values, then the log2ratio threshold is calculated based
on the quantile distribution of segmented copy numbers. These
thresholds are then applied to the data to call copy number gains
and losses. Figures 3A and B and 4C illustrate various plots that
O-miner generates based on filtered or unfiltered log2ratio data.

Allele-specific copy number analysis of tumour
The ASCAT workflow is useful to study diseases caused by som-
atic mutations (Figure 4). O-miner accepts only raw .CEL files for
this workflow, where both paired and unpaired analyses are
available. CalMaTe [25] is used to calculate the log2ratios and B-
allele frequencies (BAFs) between samples. These values are
then processed with the allele-specific piecewise constant fit-
ting (ASPCF) algorithm. For each sample, ASCAT profiles (Figure
4A) are generated with aberrant cell fraction and tumour ploidy
information. Absolute allele-specific copy number calls are

estimated with annotated regions of gain, loss or copy neutral
loss of heterozygosity (LOH) (Figure 4B). Frequency and aberra-
tion plots are also generated (Figure 4C), using the R package
DNAcopy [26].

Estimation of copy number from WES and WGS data
The workflow to generate copy number information from WES
and WGS data takes as input the pre-processed files containing

Figure 2. RNA-Seq post-processing workflow. O-miner provides a workflow for

the post-processing of data from RNA-Seq experiments. After the pre-process-

ing stage, comprising QC and alignment steps, a matrix of either raw read

counts or RPKM values for each sample are submitted to O-miner. A choice of

differential expression analysis methods is available—LIMMA for raw read

counts and RPKM values, and edgeR for raw read counts. Like the transcriptom-

ics workflow, users can then select the output options that they wish to imple-

ment. These include GO analysis and Venn diagrams. All the results are

available as text and excel files and are available for download. The result op-

tions and presentation are identical to those generated by the transcriptomics

workflow. (A) Unsupervised hierarchical clustering plot from raw read counts

data, displaying similarity between gene expression profiles. (B) Venn diagram

showing the number of unique and common DEGs between the biological

groups.

Figure 3. Workflow for CBS analysis. The CBS pipeline generates information

about regions of gain and loss. Several steps comprise the CBS workflow, with

the steps conducted being dependent on the input type. Raw image CEL files,

log2ratios, segmented or binary coded data for a number of Affymetrix SNP

arrays are used as input for the workflow. Aroma.affymetrix is applied to the

raw CEL files to estimate copy numbers, data normalization and QC.

Segmentation is applied using the CBS model. The quartile regression frame-

work is applied to calculate the threshold used to call gains and losses. Regions

of gain and loss are annotated from multiple sources. Minimal common regions

can be generated using the CGHregions algorithm. (A) The results from each

sample are displayed in expandable tabs. These tabs can be expanded further to

obtain information about regions of loss and gain, with all findings available to

download as an excel file by clicking on the ‘xls’ link. Log2ratio plots based on fil-

tered and unfiltered data are displayed and can be downloaded as PDFs by click-

ing on the ‘PDF’ icon. (B). For each of the biological groups, frequency plots from

both filtered and unfiltered data can be viewed either across all chromosomes or

for individual chromosomes. All the filtered frequency plots are available for

download as a zipped file by clicking on the arrow on the right-hand side of the

window displaying chromosome number. Unfiltered frequency plots can be

downloaded as PDFs by clicking on the ‘PDF’ icon. Results shown are from the

analysis of data set GSE42525.
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summary information of reads from the comparison between
each tumour–normal pair. Pre-processing steps to analyse these
data comprise: QC, alignment and the generation of SNP and
indel-variant genotyping information. Based on the numbers of
reads supporting the reference and altered alleles for each vari-
ant between tumour and normal samples, log2ratios (LRR) and
BAF values are calculated for each tumour–normal pair with the
depth information normalized by dividing the depth of each
variant by the median depth across all variants. These files are
then used as input to the ASCAT algorithm to estimate copy

number calls, annotate the regions of CNA as well as generating
frequency and aberration plots.

Methylomics
O-miner now offers an analytical workflow to analyse data gen-
erated on Illumina Infinium methylation arrays (Table 1,
Figure 5). Similar to the transcriptomics workflow, the general
structure of the methylomics workflow comprises key steps:
QC, normalization and filtering, followed by differential

Figure 4. Workflow for ASCAT analysis. Raw data files are accepted as input. Log2ratios (LRR) and BAFs are calculated using the the R package CalMaTe. These are fitted

to an ASPCF model. The ASCAT algorithm is used to estimate aberrant cell fraction, tumour ploidy and absolute allele-specific copy number calls. The results presented

are from the analysis of the GSE7130 data set. (A) Raw LRR and BAF plots generated from ASCAT are shown for each sample. (B) Frequency plots of CNAs are also dis-

played for each biological group, with all frequency plots available for download as a zipped file. Frequency plots are shown across all the chromosomes and also for

each individual chromosome. (C) Aberration plots are generated, showing regions of gain (red) and loss (blue) across each of the samples in the data set.
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methylation analysis and identification of statistically signifi-
cant GO terms.

Input data can be provided as either raw files or normalized
data. When raw files are provided, red and green IDAT files are
uploaded for each sample. O-miner automatically combines the
two files and extracts the sample name. Users then need to spe-
cify the biological state/source for the sample. Paired or un-
paired analyses can be performed, and technical replicates can
be flagged. QC analysis on the input data is performed using the
R package ChAMP [27], which calculates the proportion of failed
probes in each sample. A variety of quality assessment plots are
also generated alongside a hierarchical cluster diagram
(Figure 5A).

Raw data can be normalized into a matrix of beta values by
selecting one of the following methods: BMIQ [28], SWAN [29]
and PBC [30]. More information on each of these methods can
be found in our online user guide. Normalized data generated
by O-miner or user-provided normalized data are then used for
filtering and subsequent differential methylation analysis to
identify significantly altered probes. An annotated list of the
differentially methylated regions is generated. Information is
provided regarding the chromosomal location, corresponding
hyper- or hypo-methylated genes and whether the probe region
overlaps with a known region of differential methylation and/or
a CpG island. Boxplots are also generated showing differences
in methylation levels between biological groups. Users can also
opt for generating Venn diagrams showing the number of
probes exclusive or common to each of the biological groups.

GO terms found to be over- or under-represented amongst
the differentially methylated probes can also be generated
(Figure 5C). O-miner also allows users to interrogate the correl-
ation between a probe of interest and others present on the
array using the PMCC value.

Elaborate documentation

To ensure that first-time users are able to understand all the
available parameters for -omics analyses and customize their
analysis accordingly, a comprehensive user guide describing
each workflow is available online (http://o-miner.org/guide_2.0.
html).

Additionally, an ‘Examples of use’ section is available (http://
o-miner.org/examples_2.0.html), so that users can familiarize
themselves with the analytical workflows, input file formats
and structure of the output before analysing their own data.
Examples are provided for each of the analytical pipelines with
various parameter settings. The user interface also contains
pop-up help buttons for selected fields to provide additional
information.

Examples of use

This section presents how the RNA-Seq and transcriptomics
workflows can be applied to biological data to conduct independ-
ent and meta-analyses and to draw meaningful conclusions.

Case study 1: Meta-analysis of BC transcriptomics data
to investigate the relationship between triple-negative
BC and basality

Background
BC is one of the leading causes of cancer-associated deaths
among women worldwide. It is a heterogeneous disease exhibit-
ing distinct histological and biological characteristics, diversity
in clinical behaviour and variability in response to treatment.
The ability to reliably classify and address these entities inde-
pendently has important diagnostic, prognostic and therapeutic
implications and is a major step towards a more personalized
approach to the treatment of BC.

Seminal studies applying microarray-based technology to BC
research demonstrated the phenotypic heterogeneity of BC to
be accompanied by a parallelized diversity in transcriptomic
profiles, and segregated BCs into five primary molecular sub-
types—luminal A, luminal B, basal-like (BL), Her2þ and normal
breast-like—each with distinct transcriptomic signatures.

The BL subtype represents 10–25% of all BC and is of particu-
lar interest to the cancer research community because of its

Figure 5. Methylation workflow. Raw (IDAT) files and normalized data from

Illumina methylation array platforms are accepted as input to the methylation

workflow. QC analysis is performed, using the Champ R package. One of the fol-

lowing normalization methods: BMIQ, SWAN and PBC can be chosen to normal-

ize the data. After filtering of the normalized data, differentially methylated

probes are identified using LIMMA, with user-defined thresholds for the delta

beta value and adjusted P-values applied. Differentially methylated regions are

annotated and users can choose to identify statistically significant GO terms

from the list of differentially methylated probes. Results shown are from the

analysis of data set GSE69118. (A) Sample quality, QC plots and cluster diagrams

are presented. Sample quality displays a table showing the sample name and %

of failed probes for each sample. QC plots consist of four plots that are available

for display and download. These are raw density plot, normalized density plot,

raw MDS plot and normalized MDS plot. Cluster diagram displays an unsuper-

vised hierarchical cluster based on normalized methylation data. (B) Each com-

parison is displayed within an expandable tab alongside information about

probeset ID, chromosomal location, HGNC symbol, gene description, whether

the region is differentially methylated, location of CpG island, delta beta value

and adjusted P-values. A boxplot, showing the difference in methylation values

across biological groups, can be also viewed for each probeset ID. (C) Individual

comparisons are displayed as separate tabs. Each of the probes reported as dif-

ferentially methylated are mapped to GO terms, with those that were found to

be statistically over- and under-represented listed in tabular format.
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aggressive clinical behaviour, lower overall survival relative to
the other molecular subtypes and lack of targeted therapy.
Clinically, this subtype is characterized by a high prevalence in
premenopausal women, particularly those of African descent,
large tumour size at diagnosis and specific metastatic patterns
favouring dissemination to the brain and lungs. For Basal-Like
Breast Cancer (BLBC) patients, the first-line treatment would be
conventional chemotherapy.

This molecular subtype shares many features with the
immunohistochemically defined triple-negative (TN) subgroup,
which is characterized by a lack of clinically significant
oestrogen receptor (ER), progesterone receptor (PR) and Her2 ex-
pression. The terms BLBC and Triple-Negative Breast Cancer
(TNBC) have been used interchangeably in the past but, with
discordance rates of �30% reported between tumours with the
TN phenotype and those with the BL molecular phenotype, it is
important that researchers address these definitions as distinct
entities.

Triple-negative tumours assigned to the basal-like molecu-
lar subgroup (TNBL) have been associated with lower median
age at presentation, higher pathological grade, increased tu-
mour size and distinct differences in clinical outcome relative
to TN tumours allocated to one of the other molecular subtypes
(TNnonBL).

We used O-miner to conduct a multi-cohort meta-analysis
of publicly available data to gain a deeper understanding of the
relationship between TNBL and TNnonBL tumours.

Data
Subsets of BC samples profiled using the Affymetrix Human
Genome U133 Plus 2.0 Array (GSE48390 [31], GSE21653 [32]) were
downloaded from GEO.

The ER, PR and Her2 receptor status of each sample were
defined by implementing functions within the MCLUST R li-
brary. The MCLUST algorithm was set to calculate the Bayesian
information criterion for a two-component Gaussian distribu-
tion model. In addition, the PAM50 classifier was applied to de-
termine the subtype calls of each sample. The TN samples were
then isolated and grouped based on their basality, i.e. TNBL and
TNnonBL.

These samples were uploaded to O-miner, and in-depth ana-
lyses of their transcriptomic profiles and survival characteris-
tics were conducted.

Interpretation of output
Unsupervised hierarchical clustering to view the underlying
structure of the data indicated that the gene expression profiles
of TNBL BCs are more similar to each other than to those of
TNnonBL BCs (Figure 6A).

The most DEGs between the two groups included GABRP,
ABCA8 and DARC, as well as various cytokeratins, which is in ac-
cordance with previous work. By focusing on a given gene, such
as GABRP, O-miner presents its expression across the biological
groups (Figure 6A and B). From this, we can examine the behav-
iour of the gene more clearly. For example, expression of GABRP
is higher in TNBL tumours than in TNnonBL tumours, support-
ing previous research suggesting that GABRP is involved in the
initiation and progression of BL tumours. Key GO terms identi-
fied as disrupted between TNBL and TNnonBL include antigen
processing, cytokine activity and immune response, indicating
that multiple immune processing pathways are affected in
TNBL relative to TNnonBL [33] (Figure 6D).

The 5-year KM plot displays a trend for the Basal-Like Triple
Negative (BLTN) group to have a poorer overall survival relative

to BLnonTN; however, this relationship is not significant
(P> 0.05) (Figure 6C) and disappears >10 and 15 years.

The results from this analysis suggest that TNBL and
TNnonBL tumours exhibit unique transcriptomic profiles, with
genes and pathways associated with immunological processes
and cell signalling being reported as significantly disrupted be-
tween the two groups. This not only serves to confirm the
‘uniqueness’ of each group but also could indicate potential tar-
gets that warrant further investigation.

Case study 2: Analysis of PCa sequencing data from The
Cancer Genome Atlas

Background
PCa is the second most common male cancer and the fifth lead-
ing cause of cancer-related death in men [34]. It has long natural
history and can initiate from disrupted prostate epithelium and
progressively develop over many decades [35]. While PCa pa-
tients present remarkable diversity both in terms of pathology
and clinical presentation [36], which can be partially explained
by underlying genetic heterogeneity, in most cases, it is an indo-
lent disease that is unlikely to ever become symptomatic during
patients’ lifetime [37].

Many studies and collaborative efforts investigated PCa mo-
lecular make-up resulting in the identification of key alterations
and associated molecular processes involved in the disease de-
velopment. Therefore, we used PCa as proof of concept to test
the robustness of the O-miner RNA-Seq post-processing pipe-
line for detecting genuine aberrantly expressed genes and also
to search for novel gene associations with PCa.

Samples
RNA-Seq data from The Cancer Genome Atlas (TCGA) prostate
adenocarcinoma (PRAD) project were downloaded and subjected
to QC and alignments steps. These pre-processed data were
uploaded to O-miner, and genes/GO terms differentially altered
between PCa and normal samples were identified (Figure 7).

Interpretation of output
Several genes identified as differentially expressed by O-miner
have previously been identified as PCa biomarkers including
PCA3, DLX1, single-minded homolog 2 (SIM2), hepsin (HPN),
HOXC6, AMACR (Figure 7A) as well as MYC, forkhead box O1
(FOXO1), PTEN, RUNX2, MET, RB1, EGF, ERG, EZH2, FOXA1 and
SPINK. The most significantly DEG PCA3 encodes prostate can-
cer gene 3, which is a widely used urine biomarker for PCa [38].
SIM2 encodes a transcription factor involved in PCa onset and
progression [39]. HPN is one of the most consistently over-ex-
pressed genes in PCa and is associated with disease progression
and metastasis [40]. Other top-ranked genes by O-miner and
implicated in PCa are the homeobox genes HOXC6 and DLX1, re-
cently proposed as urine-based biomarkers for early disease
diagnosis [41], as well as diagnostic marker AMACR [42], which
encodes alpha-methylacyl-CoA. Moreover, we noted strong evi-
dence for differential expression for MYC, a well-known onco-
gene [43] located in frequently amplified region 8q24 in PCa, and
FOXO1, a key downstream effector of the tumour suppressor
PTEN and critical gene in negative regulation of transcription
factor RUNX2, which are also significantly deregulated accord-
ing to results derived from O-miner.

Several top-ranked genes, which have not been linked with
PCa, have been previously associated with other malignancies.
For instance, DNAH5 (dynein axonemal heavy chain 5) has an
important role in the development of colorectal cancer [44],
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Figure 6. Application of the transcriptomics workflow for the multi-cohort analysis of BC data. Data Collection: A meta-analysis was conducted using O-miner to investi-

gate the effect of basality on TN BCs. Two Affymetrix data sets GSE48390 and GSE21653 were downloaded using GEO data set as the data source option. The subset of

samples defined as triple negative, were selected from the File Organiser window. Analysis Parameters: Once all the sample characteristics and survival covariates were

provided, the raw data were normalized using RMA and filtered using SD (top 10%). Samples belonging to each of the data sets were specified and the COMBAT algo-

rithm applied to adjust for batch effects. The resulting normalized matrix was subjected to differential expression and survival analyses. All the results are available

and easy to download as text and excel files. Results: (A) Unsupervised hierarchical clustering of the gene expression profiles suggests that TNBL BCs are more similar

to each other than to TNnonBL BCs. The cluster is annotated with the sample names and biological groups. Each biological group has its own colour. (B) The GABRP

gene was reported differentially expressed between the two biological groups. The expression of GABRP between the TNBL and TNnonBL groups can be displayed by

boxplots. (C) Survival, the 5-year KM survival plot suggests that the BLTN group has poorer overall survival relative to the BLnonTN group but this relationship is not

significant (P>0.05). (D) Statistically significant GO terms between BLTN and BLnonTN groups are displayed, with hyperlinks to external resources provided.
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Figure 7. Application of O-miner to the analysis of PCa sequencing data. Data collection: Sequencing data from the TCGA PRAD project were downloaded and subjected

to the O-miner RNA-Seq post-processing workflow. Analysis parameters: Following pre-processing of data (QC and alignment steps), a matrix of raw read counts was

generated. The matrix of normalized read counts was submitted to O-miner. LIMMA was used to identify DEGs, and statistically significant GO terms were identified.

Users can choose to generate Venn diagrams. All of the results are available as text and excel files and are available to download. Results: (A) Significantly DEGs are dis-

played together with Ensembl gene ID, chromosomal location, fold-change and adjusted P-values. (B) Results of GO analysis of DEGs are displayed in tabular format.

Over- and under-represented GO terms are listed and GO IDs, P-values and GO term annotations are present.
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whereas COMP (cartilage oligomeric matrix protein) has been re-
cently reported as a novel biomarker contributing to the sever-
ity of BC [45].

Results of GO analysis using DEGs are displayed (Figure 7B).
Over- and under-represented GO terms are listed and GO IDs, P-
values and GO term annotations are presented. Among the
most enriched GO terms is steroid hormone metabolic proc-
esses (GO:0008207) associated with biosynthesis of cholesterol,
whose increased level in the blood was previously linked with
an increased risk of PCa and its aggressiveness [46]. Two other
highly enriched GO terms (GO:0007411 and GO:0008045) are
related to axon guidance, whose associated genes were previ-
ously linked with PCa [47] suggesting that these BPs may have
important role in prostate tumourigenesis.

Several established PCa biomarkers were identified using
O-miner. Moreover, many genes not previously reported in the
context of PCa were identified from this analysis. Given the pub-
lished evidence of their association with other malignancies,
they are promising candidates for experimental validation and
further exploration to characterize their functional role in PCa.
This example illustrates that O-miner provides researchers
with the tools required to conduct powerful analyses of publicly
available sequencing data.

Limitations and future directions

O-miner is an analytical suite that has filled an existing void for
biologists to be able to perform increasingly complex -omics
analyses without the need for bioinformatics support or a com-
plex IT infrastructure.

Currently, a key limitation to O-miner is that it requires Next
Generation Sequencing (NGS) inputs to be pre-processed. This
means that the user needs to conduct QC and sequence align-
ment on sequencing data. Another limitation is the lack of work-
flows for Agilent arrays or non-Affymetrix copy number arrays
starting from raw data. While O-miner provides links to gene
ontologies, we appreciate that the utility of this resource would
be greatly enhanced if links to pathway databases, such as KEGG
[48] or Reactome [49], were also provided. Finally, O-miner is not
yet able to integrate results from the different analytical layers,
for example correlating gene expression with copy number infor-
mation on matched samples.

The flexible design of the analytical modules comprising
O-miner allows for the easy addition of further analytical processes
to existing pipelines as well as new workflows. In that respect, our
future plans include expanding on the analytical, computational
and visualization capabilities of the tool and making it even more
informative and useful for the research community.

Availability and requirements

Project name: O-miner
Project home page: www.o-miner.org
Operating system(s): Platform independent; Standard WWW
browser (Google Chrome, Safari and Mozilla Firefox).

Key Points

• O-miner provides a number of extensive analytical
workflows for the analysis of high-throughput data.

• Data from transcriptomic arrays, pre-processed RNA-
Seq, SNP array, WES and WGS data as well as
methylation arrays can be analysed with ease.

• Raw data from GEO (multiple projects) or summarized
data from TCGA can also be submitted and analysed.

• Results can be viewed online or downloaded in text,
graphical and excel format.
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