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a b s t r a c t

Parkinson’s disease (PD) has been designated as one of the priority neurodegenerative disorders world-
wide. Although diagnostic biomarkers have been identified, early onset detection and targeted therapy
are still limited. An integrated systems and structural biology approach were adopted to identify thera-
peutic targets for PD. From a set of 49 PD associated genes, a densely connected interactome was con-
structed. Based on centrality indices, degree of interaction and functional enrichments, LRRK2, PARK2,
PARK7, PINK1 and SNCA were identified as the hub-genes. PARK2 (Parkin) was finalized as a potent ther-
anostic candidate marker due to its strong association (score > 0.99) with a-synuclein (SNCA), which
directly regulates PD progression. Besides, modeling and validation of Parkin structure, an extensive
virtual-screening revealed small (commercially available) inhibitors against Parkin. Molecule-258
(ZINC5022267) was selected as a potent candidate based on pharmacokinetic profiles, Density
Functional Theory (DFT) energy calculations (DE = 6.93 eV) and high binding affinity (Binding
energy = -6.57 ± 0.1 kcal/mol; Inhibition constant = 15.35 lM) against Parkin. Molecular dynamics sim-
ulation of protein-inhibitor complexes further strengthened the therapeutic propositions with stable tra-
jectories (low structural fluctuations), hydrogen bonding patterns and interactive energies (>0kJ/mol).
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Our study encourages experimental validations of the novel drug candidate to prevent the auto-
inhibition of Parkin mediated ubiquitination in PD.
� 2022 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Parkinson’s disease (PD) ranks second amongst neurodegenera-
tive disorders after Alzheimer’s, affecting millions with a higher
prevalence in males of mean age � 55 years [1,2]. Clinically, PD
is characterized by several motor (bradykinesia, tremor, muscle
rigidity) and non-motor (weight loss, anxiety, depression, sleep
dysfunction) disorders [3]. The pathological hallmarks of PD are
the loss of dopaminergic neurons in the Substantia Nigra pars com-
pacta (SNpc) and aggregation of a-synuclein (SNCA) that develops
into insoluble fibrillar aggregates called Lewy Bodies (LB) [4].
Reduction in dopamine levels results in dopaminergic cell loss
and intraneuronal inclusions leading to motor symptoms [5,6].
Early diagnosis and prophylaxis of PD remains a primary challenge
for clinicians as the long latency between first dopaminergic cell
damage to the onset of clinical symptoms (�70–80 % damaged
dopaminergic neurons) poses great challenges in its therapeutic
interventions. Hence, it is crucial to find molecular biomarkers reli-
able enough to distinguish PD from other disease conditions that
can be exploited for theranostic purposes [7]. The conventional
treatment regimen involves the usage of dopaminergic drugs
(Levodopa) that replace the action of dopamine in the body. How-
ever, these drugs stabilize the motor symptoms and not their
underlying causes [8]. Available data sources and compound data-
base screening highlighted several repurposed drugs as alternate
therapeutics against PD. However, several side-effects due to neu-
rodegeneration in brain cells upon nilotinib administration,
unclear action mechanism of simvastatin and risks of hepatocellu-
lar carcinoma from Ursodeoxycholic Acid (UDCA) over-dosage
widened the gap in designing effective treatment strategies [9].

Modern-day pharmaceutics has tremendously advanced with
the advent of artificial intelligence (AI) through machine learning
(ML) and deep learning (DL) algorithms [10–12]. DL and ML have
been a boon to physicians in designing high precision treatment
strategies in surgery, neurodegenerative disorders and can also
predict upcoming diseases thereby contributing to increased over-
all survival of patients [13–15]. Our research team has been instru-
mental in predicting alternate drug-targets/biomarkers [16–20]
and novel inhibitor molecules [21–24] against nosocomial patho-
gens through genomics, systems biology and structural biology
approaches. Direct influencers of SNCA-mediated insoluble fibrillar
aggregate formation can be efficient drug-targets for PD. The
extent of involvement of key genes/proteins in insoluble fibrillar
aggregate formation (a-synuclein aggregation) and the structural
suitability of the most suitable therapeutic target was evaluated.
The specific goals were to establish the association of the most
suitable therapeutic target in the modulation of a-synuclein aggre-
gation through gene interaction network (GIN), functional-
association studies (enrichment analyses) and network-centrality
values (hubness metrics). Subsequently, the conformational stabil-
ity and druggability of the potential target were assessed through
molecular dynamics and energy parameters. An amalgamation of
GIN, virtual-screening, structural dynamics and density functional
theory (DFT) calculations was found to be efficient while address-
ing the hypothesis. Evaluation of therapeutic targets and candi-
dates in PD is limited due to experimental tediousness using
animal models, time, cost and ethical clearance norms. The pro-
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posed integrated computational approach is hence advantageous
in all aforesaid aspects while proposing experimentally translat-
able leads against similar human disorders.
2. Materials and methods

2.1. Data curation, GIN construction and functional enrichment
analysis

GIN analysis was performed to identify the key functional influ-
encers (genes/proteins) of SNCA-mediated insoluble fibrillar aggre-
gate formation which is the hallmark of PD. The network
associated annotation data was also used for determining suitable
drug-target in the interactome. PD specific human genes identified
from several literary sources were subjected for GIN analysis from
the Search Tool for the Retrieval of Interacting Genes/Proteins
(STRING v11.5) database, which is a comprehensive data reposi-
tory for both experimentally validated and computationally pre-
dicted interactions. STRING retrieves interaction data from
several low and high throughput experiments, co-expression anal-
yses, curated pathway databases, computational predictions (gene
fusion, phylogenetic co-occurrence, chromosomal neighborhood)
and text mining [25]. The interactions from these seven channels
are scored that ranges from zero to one based on the probability
of the association being true. STRING integrates these scores into
a final confidence score (CS) imparting a meaningful biological
association. The CS is further categorized (based on the level of
experimentation) into four classes of highest confidence (1.0 � CS
� 0.9), high confidence (0.9 > CS � 0.7), medium confidence (0.7
> CS � 0.4) and low confidence (0.4 > CS � 0) scores [26–28].
STRING designates each interacting entities (genes/proteins/
metabolites) as ’node(s)’ while the interactions are coined as
’edge(s)’. In the present study, interactions from experimentally
evident (highest CS) to computationally predicted (low CS) were
considered with statistical significance of P-value < 0.05.

To study the functional association of the interacting genes in
the network, STRING possesses an inbuilt plug-in for performing
functional enrichment analysis (FEA). To decipher the role(s) of
each interacting entities imparting specific biochemical and phys-
iological functions in the respective pathway(s), FEA is further seg-
regated into gene ontology (GO) terms, domain descriptors
(InterPro, Pfam, SMART and UniProt keywords) and pathway
enrichments (KEGG and Reactome). GO terms are further classified
into three independent ontologies namely Biological Process (BP),
Molecular Functions (MF) and Cellular Components (CC). BP high-
lights the physico-chemical transformation of gene or gene prod-
ucts (expressed protein) while the intervening biochemical
activities are defined by MF and CC refers to the sub-cellular com-
partments where the gene/protein is active.
2.2. Clustering and topological analysis

The interactome retrieved from STRING was further visualized
in an user-friendly open-source visualization software Cytoscape
v3.9.1 [29] which is used extensively for data integration, biologi-
cal network modeling and construction. Cytoscape offers diverse
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inbuilt plug-ins that aids in better understanding of the network
characteristics and analysis [30,31].

Clustering analysis was performed using molecular complex
detection (MCODE) algorithm which detects highly efficient and
densely interconnected nodes in the GIN. The clustering is per-
formed based on the three stages of vertex weighting, complex
prediction and optionally post-processing. The MCODE algorithm
calculates local neighbourhood density for each node that traces
the densely interconnected gene/protein (seed protein) from the
network. The tool thereby extrapolates from the seed in all direc-
tion to encapsulate the dense region and finally represent it graph-
ically in the form of clusters. Genes/proteins presumably function
as a group (operon or regulon) rather than individually. Therefore,
each nodes in a cluster is likely to impart similar functionality and
plays active roles in disease progression and virulence. Each cluster
is designated with a score based on the density, size and connectiv-
ity of the nodes in the respective cluster [32].

A wide array of topological network metrics are computed
using NetworkAnalyzer an inbuilt plug-in of Cytoscape which com-
putes various simple to complex topological parameters aiding in
better understanding of a biological network. The topological
parameters are calculated for both directed and undirected net-
works which include the number of edges, nodes, degree of distri-
bution, betweenness and closeness centralities, average shortest
path length, density, radius and diameter of the network [33].
Identifying central/hub-genes in an interactome can be best estab-
lished by betweenness centrality as this topological parameter
measures the influence of each node on other nodes in the interac-
tome. The parameter also computes the flow of information from
one node to another, detecting the node that acts as a bridge
between other nodes. This clearly highlights the importance of
the node as well as loss of functionality in its absence. The param-
eter hence identifies hubs that connect functionally significant
genes in the interactome. Clustering coefficient signifies the aver-
age degree of node neighborhoods. The nodes thus identified tend
to form tightly interconnected clusters characterized by high
degree of edge counts [34–38]. Hence, these topological parame-
ters are prioritized for identification of the hub-genes playing cru-
cial roles in influencing the entire interactome.

2.3. Protein structure modeling, secondary and tertiary structure
validations

The 3D coordinates of potential therapeutic target were either
retrieved from RCSB-PDB or else modeled by extensive dual-step
modeling approach integrating both knowledge based (homology,
threading and iterative) and molecular dynamics algorithms as
previously described [19]. In the present study, uncharacterized
protein stretches in template were cured using automated tem-
plate based modeling platform SWISS-MODEL and python script
based standalone software MODELLER 10.0 [39,40]. MODELLER
executes comparative protein structure modeling upon satisfying
the spatial restraints (stereochemical, homology-derived, manu-
ally curated and statistical preferences) using combination of con-
jugate gradients and molecular dynamics with simulated
annealing algorithm. This model building algorithm of MODELLER
generates 3D conformers analogous to NMR spectrometry derived
structures [40].

The Ramachandran outliers, poor rotamers, steric clashes and
torsions of the target protein were refined by furnishing and
repacking the side chains through GalaxyRefine server [41]. The
overall structure relaxation was performed by short molecular
dynamics simulation for 0.6 ps under CHARM22 force-field with
Coulomb potential energy, FACTS solvation free energy and
Lennard-Jones interaction energy. Later, the overall energy of the
protein target was minimized in-vacou by carrying out 2000 steps
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each for steepest-descents and conjugate-gradients algorithms
with GROMOS96-43B1 force-field mechanics using standalone
Swiss-PDB Viewer v4.1.0 software [42].

Secondary structural assessments were performed using
PSIPRED protein structure prediction server [43] while the tertiary
structure was characterized using ProSA-web [44], HARMONY [45]
and ProTSAV [46] servers. Protein Structure Analysis (ProSA)-web
is a dynamic server that predicts erroneous 3D protein structures
by assessing the protein backbone (Ca-atoms) potentials in terms
of Z-score and energy plots. Z-score signify the overall model qual-
ity upon calculating the deviations amongst the most stable con-
former and random conformers of the protein. The energy plot
reveals local model quality by considering each amino acid resi-
dues with energy functions, where the positive values signify erro-
neous conformations and negative values indicate proper folding
with minimal errors [44]. For further assessment of protein struc-
ture quality, HARMONY was deployed which scrutinizes the
sequence-structure compatibility based on their solvent accessibil-
ity, backbone, and hydrogen bonds at the residue-level and pre-
dicts misfolds through propensity-calibration curve while local
errors are assessed through substitution curve [45]. Protein Ter-
tiary Structure Analysis and Validation (ProTSAV) is a robust server
that integrates ten online tools (Procheck, ProSA-web, ERRAT, Ver-
ify3D, dDFire, Naccess, MolProbity, D2N, ProQ, PSN-QA) to assess
various Ramachandran plot parameters, side chain conformations,
planar peptide bonds, polarity of residues and several atom–atom
outliers. ProTSAV combines the results from all these servers and
provides a statistically significant unified quality assessment Z-
score ranging from 0 to 1. Structures with lower Z-scores are suit-
able for post analysis while higher Z-scores signifies misfolded/er-
roneous structures; therefore misfits for further analyses [46].

Delving deeper, the functional domains retrieved from FEA
were further validated using the InterPro [47,48] and Pfam
[49,50] databases. The native disorders in protein domains and
their functional dynamicity were predicted through the DIS-
OPRED3 server, which screens the PSI-BLAST profile to predict
the probability of disorderness of each residue [51]. On tertiary
level, the global folding free energy change (DG) of protein
domains were assessed and estimated using a structure based
approach to predict stability weakness and strengths through the
SWOTein server. The structural descriptors were expressed in
terms of inter-residue spatial distance (DGdist), inter-residue inter-
action with solvent (DGacc) and backbone torsion angles (DGtor).
The negative values indicate stability strengths and positive values
conferred stability weakness of the protein domains/residues. The
distance descriptor indicates the free energy change from the ter-
tiary interactions established by a residue with its neighbouring
residues in spatial conformations while the accessibility and tor-
sion components indicates the energy required to interact with
the solvent molecules and the energy required to maintain the
backbone torsion angles to lie in the favoured regions respectively
[52].

2.4. Residue level propensity and stability analysis through coarse
dynamics and MDS

Residue-level backbone dynamics in the form of NAH S2 bond-
order restraints and coarse-grained dynamics refinements were
performed through the DynaMine [53] and CABSflex2.0 [54] ser-
vers respectively as described previously [19,20,55]. The DynaMine
web-server predicts the atomic bond-order restraints according to
the molecular reference frame derived from experimentally
derived NMR chemical shifts. The NAH S2 values ranges from 0
to 1, where scores above 0.8 infers structural rigidity while scores
below 0.8 represents flexibility [53]. The coarse dynamics repre-
sents residue-level fluctuation concerning the most stable protein
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conformation. The protein stability was estimated from the root
means square fluctuation (RMSF) trajectory upon merging coarse
dynamics simulation and consensus protein fluctuations in an
aqueous environment using default parameters of all-atom force-
field with explicit water model, for a timeframe of 10 ns. The sim-
ulation was carried out under default settings of conformational
distances (minimum: 3.8 Å; maximum: 8.0 Å) and gap = 3 which
represents the minimum distance between previous and next
amino acid residue to be restrained [54].

The optimized protein was finally subjected to MDS analysis for
estimating protein stability upon mimicking an aqueous cellular
environment using GROMACS 2020.2 package. Protein topology
was built using CHARMM36-Feb2021 force-field and simple-
point charge (TIP3P) water model. Protein solvation was performed
upon centering the protein inside a cubic box of uniform dimen-
sion (1.0 nm) followed by system neutralization with the addition
of requisite counter ions (Na+/Cl-). Energy minimization was car-
ried out using steepest descent algorithm for 50,000 steps and con-
vergence tolerance force of 1000 kJ/mol nm�1. Further,
equilibration of the system was achieved under standard NVT
(constant number of particles, volume and temperature) and NPT
(constant number of particles, pressure and temperature) ensem-
bles for 100 ps. Later, MD production was carried out for a time-
scale of 75,000 ps using particle-mesh Ewald electrostatics sum-
mation and Parrinello-Rahman extended coupling ensemble as
previously described [19]. The trajectory data were further visual-
ized using the Grace software.
2.5. Virtual screening, pharmacokinetic filtering and ligand
optimization upon DFT simulations

Based on text mining, therapeutic target database and Drug-
Bank screening, conventional inhibitor against the target protein
was considered as the reference molecule for screening commer-
cial analogues from the ZINC database using SwissSimilarity [56]
server. The server aids in rapid ligand based virtual screening from
enormous small molecule/ligand libraries. Based on the structural
homology descriptors, the similarity is quantified by Tanimoto
coefficient which is the ratio between the common positive bits
to the total positive bits between the reference drug and predicted
molecular fingerprint. The lead molecules were funneled down
based on Tanimoto coefficients and pharmacokinetic parameters
from SwissADME web-tool that provides a rational outlook to the
diverse physicochemical properties, drug-likeliness and medicinal
chemistry parameters besides accessing the permissible ranges of
absorption, distribution, metabolism and excretion (ADME) [57].
In-silico toxicity predictions including oral toxicity assessments
(LD50, toxicity class) and toxicity endpoints (hepatotoxicity, acute
toxicity, mutagenicity, carcinogenicity, immunotoxicity, adverse
pathways and toxicity targets) were assessed from the ProTox-II
server using pharmacophore modelling, molecular homology and
ML algorithms [58].

The atomic valences of the shortlisted 3D leads were satisfied
upon the addition of polar H-atoms, while spatial restraints were
enhanced by universal force-field mechanics using the steepest-
descent algorithm. These optimisations were carried out in a pow-
erful standalone Avogadro v1.2.0 platform used extensively for
molecule editing, visualization and analysis [59]. Further, the
chemical reactivity and stability of the leads were ascertained
through DFT simulations using Gaussian-09 software for quantum
chemical calculations and the results were subsequently visualised
in GaussView v6.0.16 software [60,61]. Molecular geometry opti-
mization, electron density mapping and frontier orbital (HOMO-
LUMO) calculations were achieved using Becke’s three parameter
exchange–correlation function (B3) conjugated with Lee-Yang-
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Parr (LYP) and 6–311++G(d,p) basis level for estimating its minimal
energy configurations [62,63].
2.6. Molecular docking and stability analysis upon MDS

Site-specific molecular docking was performed concerning the
active-site residues which were predicted using the CASTp server
that scans the surface topography of the protein. The server simul-
taneously predicts the superficial, deep-seated pockets and cross
channels which might serve as potential active-site for drug bind-
ing [64]. Therefore, subsequent druggability validation of these
grooves is predicted through the DoGSiteScorer server uses super-
vised ML algorithm for druggability estimation. The druggability
score ranges from 0 to 1 where higher scores represent better
druggability profile of the concerned groove [65].

The validated drug-target devoid of unwanted hetero-atoms,
crystallographic water molecules was subjected to AutoDock 4.2
and its embedded tools that uses semi-empirical free energy scor-
ing function to predict the binding energies of docked poses with
high reproducibility [66]. The free-end residues of protein moiety
were stabilized by adding polar H-atoms, requisite Kollman
charges and merging non-polar H-atoms. The ligand torsions of
optimized reference drug and shortlisted leads were similarly fixed
upon merging non-polar H-atoms and addition of Gasteiger
charges. The active-site of protein was centered inside affinity
grid-box of uniform dimension (60x60x60Å3) with grid-point spac-
ing of 0.375 Å. Thereafter, autogrid4 and autodock4 programs were
executed that respectively scanned and generated the docked pro-
tein–ligand complex. Lamarckian and genetic algorithms were
opted for selecting complex with the least binding energy (BE)
and represented as Mean ± SD [66]. The 2D conformer of the pro-
tein–ligand docked complexes were visualized in UCSF-Chimera
v1.9, an efficient molecular visualization and editing program
[67]. The 3D docked poses were viewed in Discovery Studio Visu-
alizer v20.1.0.19295 which provides an user friendly protein mod-
eling, pharmacophore analysis and drug designing platform [68].
The classical drug and shortlisted leads were docked (in triplicates)
separately with the proposed drug-target [23,24,55].

Based on the binding affinities and inhibition constants (IC),
screened protein-inhibitor complexes were subjected to MDS anal-
yses. GROMACS (GROningen MAchine for Chemical Simulation)
suite is a highly efficient, open-source and flexible MDS suite inte-
grating tutorials for simulating simple protein in water to highly
complex simulations incorporating membrane protein, biphasic
system, protein–ligand complex and construction of virtual sites.
In the present study, stability of therapeutic target-ligand/lead
complexes was performed in an aqueous environment for a time-
frame of 75,000 ps using GROMACS 2020.2 package. Protein topol-
ogy was built as described previously (section 2.4) while ligand
topology was built using the CGenFF server. The complex was cen-
tered inside a dodecahedron box of uniform edge-distance
(1.0 nm) following solvation with simple point-charge water
model and system neutralization with requisite counter ions
(Na+/Cl-). Steepest-descents algorithm (50,000 steps) and
convergence-tolerance force (1000 kJ/mol nm�1) were considered
for energy minimization of the system. Thereafter, two cycles of
equilibrations were opted with constant volume (NVT) ensemble
for 100 ps using leap-frog integrator for attaining desired temper-
ature (300 K). Secondly, constant pressure (NPT) ensemble for
100 ps using Parrinello-Rahman barostat was applied for attaining
desired pressure (1 bar) upon applying motion-equations to the
box vectors. Long-range electrostatic interactions were treated
using particle-mesh Ewald algorithm with a cubic interpolation
of order 4.0 and Fourier spacing of 0.16 nm. Finally, the system
was subjected to MD production for 75,000 ps timescale with inte-
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gration timescale of 2 fs and sampling of simulated trajectories
were carried out every 10 ps [21,69,70].

3. Results

3.1. GIN Analysis, hub-protein identification and validation

The retrieved interactome profile encompassed 49 genes speci-
fic to PD machinery having 525 interactions among them. Both
experimentally validated and computationally predicted interac-
tions were considered with a confidence score (CS) ranging from
0.40 to 1.00 and statistical significance of P-value < 0.05. All the
49 genes interacted with each other making 86, 47, 136 and 256
interactions with the highest, high, medium and low CS respec-
tively [Supplementary Table S1]. FEA resulted in 658 GO terms
(525 BP; 65 MF; 66 CC); 26 pathway enrichments (05 KEGG; 21
Reactome) and 77 domain descriptors (29 InterPro; 10 Pfam; 05
SMART; 33 UniProt keywords) [Supplementary Table S2].

Clustering analysis of 49 genes resulted in four densely inter-
connected clusters (C1-C4). The clusters C1 (20 nodes; 182 edges),
C2 (06 nodes; 12 edges), C3 (14 nodes; 29 edges) and C4 (04 nodes;
06 edges) obtained MCODE scores of 19.16, 4.80, 4.46 and 4.00
respectively as illustrated in Fig. 1(a). The functionalities associ-
ated with the clustered proteins were highly similar as evident
from nine C1; three C3 and four C4 proteins being involved in
the regulation of apoptosis [GO:0042981], a major biochemical
pathway in PD [Fig. 1(b)]. The cluster C3 maintained the oxidative
Fig. 1. Gene Interaction Network Analysis: (a)MCODE clustering analysis of 49 PD assoc
GO:2001233] (c) Hub genes and associated genes involved in oxidative stress [GO:200
mitophagy [GO:0010821; GO:1903599; GO:0051881; GO:1903146].
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stress, kinase activity, ion homeostasis [GO:0043549;
GO:0045859; GO:0071900] besides strongly interacting with the
cluster C2 [Fig. 1(c)]. The cluster C1 was mainly involved in the
regulation of mitochondrial oxidative stress [GO:0006979;
GO:1903202], maintaining appropriate levels of a-synuclein, pro-
tein ubiquitination [GO:0031397; GO:0031398], regulation of
phosphorylation and neurotransmitter transport [GO:0001505;
GO:0006836; GO:0046928; GO:0051580] [Fig. 1(d)]. Cluster C4
regulated protein folding mechanisms [GO:0006457;
GO:0042026; GO:0061077], while C2 denoted regulation of trans-
lational activity, cellular and biochemical metabolism
[GO:0006417; GO:0006413; GO:0006446] [Supplementary
Table S2].

Topological analysis highlighted LRRK2 exhibiting the highest
number of direct interactions (39) followed by PARK7, SNCA, PARK2
and PINK1 with 38, 36, 33 and 30 interactions respectively. The
tendency of a gene to be considered as the hub molecule was
majorly sorted based on betweenness centrality, clustering coeffi-
cient and degree of interaction. From the comparative analysis of
topological metrics, CSs of direct interactors and functionality,
LRRK2, PARK2, PARK7, PINK1 and SNCA favoured multiple criteria
and thus can be considered as hub-genes. Based on the above anal-
yses and interaction confidence (reliability), a scoring metrics was
generated for the top five hub-genes, all belonging to the C1 clus-
ter, as tabulated in Table 1. With an objective to interfere with the
a-synuclein aggregation, it was observed that PARK2 (Parkin) made
direct association with SNCA with CS > 0.990, the highest amongst
iated genes (b) Hub genes and associated genes involved in apoptosis [GO:0042981;
0377; GO:0006979; GO:0034599] (d) Hub genes and associated genes involved in



Table 1
Topological parameters, scoring metrics (based on CS) and sub-cellular locations of PD hub-genes from GIN analysis.

HUB GENES TOPOLOGICAL PARAMETERS CONFIDENCE SCORES (CS) SUBCELLULAR LOCATION

Betweenness Centrality Clustering Coefficient Degree LRRK2 PARK2 PARK7 PINK1 SNCA

LRRK2 0.82 0.24 39 Membrane
PARK2 0.36 0.29 33 0.987 Cytoplasm
PARK7 0.86 0.74 38 0.958 0.979 Mitochondria
PINK1 0.34 0.32 30 0.966 0.999 0.988 Mitochondria
SNCA 0.55 0.27 36 0.971 0.992 0.990 0.922 Membrane
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all other predicted hub-genes. Thus, Parkin was prioritized as an
important candidate for targeted therapy and was subjected for
structural evaluations.
3.2. In-silico drug-target modeling and refinement

The unavailability of a well-defined 3D Parkin structure
prompted us to cure the stretches of missing residues using dual
step modeling method. BLASTp search of Parkin (UniProt ID:
060260) against RCSB-PDB highlighted 5C1Z with query coverage
and sequence similarity of 100 % and 79.78 % respectively. There-
after, Parkin was modeled using dual-step modeling approach
using SWISS-MODEL and MODELLER using 5C1Z as a template.
The modeled structure was energy minimized and refined result-
ing in high Ramachandran favoured regions (98.5 %) and low poor
rotamers (0.8 %). The refined 3D conformer of Parkin was finally
submitted to Protein Model Database (PMDB) bearing PMDB-ID:
PM0084200 [Fig. 2(a)]. Gross structural characteristics explained
in terms of global model quality exhibited Z-score of �8.87
[Fig. 2(b)].
3.3. Domain configurations of Parkin

After the identification of parkin as a targetable key regulatory
protein, the conformational dynamics (structural stability/ dynam-
ics) was evaluated to validate the quality of the structure used.
Subsequently, drug-pocket was characterized prior to screening
novel therapeutic agents against it. It was observed that the local
energetics curve of functional domains of Parkin was positioned
well below the threshold cut-off (0.00) [Fig. 2(c)]. Inherent thermal
motions expressed as normalized B-factors revealed average
atomic-level fluctuations of �0.07 Å2. Secondary structure predic-
tion highlighted 63.65 % solvent accessible and 36.35 % buried
regions, while the structure is majorly composed of coils
(62.80 %), b-sheets (27.10 %) and a-helix (10.10 %) [Fig. 2(d)]. Par-
kin laid upon the HARMONY propensity-calibration curve [Fig. 2
(e)] while substitution curve revealed minimum intersections
between the forward and reverse sequences (graph not shown).
The overall protein structure quality assessed from ProtSAV heat-
map revealed the structure within RMSD 2–5 Å [Fig. 2(f)], whereas
the average domain disorderness was estimated to be � 0.20 posi-
tioning below the threshold cut-off (0.50) [Fig. 2(g)].

The structural descriptors based on several kinetic and thermo-
dynamic constraints deduced RING0 domain having high energy
requirement for inter-residue distances (DGdist = -0.257 kcal/mol)
and backbone torsion angles (DGtor=+0.683 kcal/mol) when com-
pared with RING1 (DGdist = -0.611 kcal/mol; DGtor=+0.108 kcal/-
mol) and RING2 (DGdist = �0.349 kcal/mol; DGtor=
+0.149 kcal/mol) domains. In terms of solvent accessibility poten-
tial, the interaction of residues in RING0 (DGacc = �0.031 kcal/mol)
and RING1 (DGacc = �0.305 kcal/mol) domains were energetically
favoured. [Fig. 3(a)]. The NAH S2 bond-order restraints based on
NMR chemical shifts displayed rigid backbone dynamics of Parkin
protein (average S2=�0.80), while RING0, RING1 and RING2
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domains exhibited average backbone dynamics of S2 = 0.82, 0.87
and 0.80 respectively [Fig. 3(b)]. The coarse-grained simulation
revealed the average residual-level root means square fluctuations
of RING1, RING0 and RING2 domains to be 0.68 Å, 0.97 Å and
1.07 Å respectively, whereas the RMSF trajectory for the entire pro-
tein was computed to be 1.22 Å [Fig. 3(c)].
3.4. Stability analysis of Parkin through MDS

The MDS analysis profile of unbound parkin was taken as a
standard for evaluating the relative deviation in the structures of
inhibitor-bound complexes. MDS trajectories revealed a stable root
means square deviation (RMSD) curve concerning protein back-
bone attaining equilibrium at 0.68 ± 0.09 nm that was maintained
throughout the studied time-frame [Fig. 4(a)]. The RMSF values of
RING0 (0.22 ± 0.08 nm), RING1 (0.18 ± 0.06 nm) and RING2 (0.21
± 0.06 nm) as well as for the overall protein (0.27 ± 0.09 nm) were
noted [Fig. 4(b)] while a stable radius of gyration curve maintained
at 2.73 ± 0.04 nm [Fig. 4(c)]. The conformational coherence
between proximal backbone residues was calculated to be 4.89 ± 0
.65 nm (>2.0 nm) [Fig. 4(d)]. Persistent intermolecular (protein-
solvent) hydrogen bonds (�1215) [Fig. 4(e)] and steady trajectory
of solvent accessible surface area (SASA; 282.44 ± 6.01 nm2) were
observed for the Parkin protein [Fig. 4(f)]. The system energetics
represented in terms of potential energy (�2.3e + 06 kJ/mol)
[Fig. 4(g)] and total energy (-1.8e + 06 kJ/mol) were computed
[Fig. 4(h)].
3.5. Lead sorting, ADMET screening and chemical reactivity prediction
analysis

Ligand-based virtual screening resulted in 400 commercial ana-
logues of the classical drug UDCA (PubChem ID: 31401) due to its
reported activity against Parkin protein [Supplementary Table S3
(a)]. The analogues were initially sorted upon filtering the isomers
resulting in 58 unique lead molecules [Supplementary Table S3
(b)]. ADMET screening was thereby performed narrowing down
the data based on positive blood–brain barrier (BBB) permeability,
as the leads were destined to penetrate the human brain cells
[Supplementary Table S3(c)]. Further, refinements were based
on high bioavailability score, high LD50 value, high GI absorption,
total polar surface area (20–130 Å2), low synthetic accessibility
and minimal Lipinski violations [Supplementary Table S3(d-e)].
The screening resulted in four lead molecules namely Molecule-
258 (ZINC5022267), Molecule-297 (ZINC3846933), Molecule-309
(ZINC3846931) and Molecule-371 (ZINC5289889) to be showing
favourable scores [Table 2]. We observed the LD50 (2000 mg/kg)
and bioavailability (0.56) profiles of UDCA ranged lower compared
to the four shortlisted drugs with � 63 % and � 52 % higher LD50

and bioavailability profiles respectively. Amongst all, Molecule-
258 and Molecule-271 displayed no reported toxicity and therefore
their efficacy was critically scrutinized for declaring potential ther-
apeutic candidates.



Fig. 2. Structural Analysis of Parkin: (a) Optimized modeled structure (b) Global model quality (c) Local model quality (d) Atomic-level fluctuations (normalized B-factor),
solvent accessibility and secondary structural analysis (e) Propensity plot (f) ProTSAV heat-map (g) Extent of disorderness.
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Fig. 3. Stability Analysis of Parkin: (a) Global folding free energy of thermodynamic and kinetic constraints of Parkin (b) Backbone stability profile of Parkin (c) Residue-level
fluctuation profile of Parkin.
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Fig. 4. MDS analysis of unbound Parkin: (a) RMSD curve (b) Residue-level RMSF plot (c) Rg trajectory (d) Minimum distance amongst proximal backbone residues (e)
Number of intermolecular (protein-solvent) hydrogen bonds (f) SASA trajectory (g) Potential energy curve (h) Total energy curve.
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Table 2
Pharmacokinetic profiles of UDCA and four shortlisted lead molecules.

Molecule TPSA GI Absorption BBB Permeability Lipinski Violations Bioavailability Score Synthetic Accessibility LD50 Remarks

UDCA 77.76 High No No 0.56 4.93 2000 Hepatotoxicity, MMP
Molecule-258 57.53 High Yes No 0.85 4.14 3265 –
Molecule-371 54.37 High Yes No 0.85 2.86 3265 –
Molecule-297 57.53 High Yes No 0.85 3.91 3265 Hepatotoxicity, MMP
Molecule-309 57.53 High Yes No 0.85 3.91 3265 Hepatotoxicity, MMP

TPSA = Total Polar Surface Area; GI = Gastro-Intestinal; BBB = Blood Brain Barrier; LD = Lethal Dose; MMP = Mitochondrial Membrane Potential.

Fig. 5. DFT simulations highlighting frontier molecular orbital (HOMO-LUMO) and electron density map of: (a) UDCA (b) Molecule-258 (c) Molecule-297 (d) Molecule-
371.
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The structures of four shortlisted leads and reference compound
(UDCA) were subjected to stereochemical enhancements with
improved torsions for deciphering their chemical reactivity param-
eters through DFT structure optimization simulations. The energy
difference (DE = ELUMO-EHOMO) between the frontier orbitals of
LUMO and HOMO in Molecule-258, Molecule-297, Molecule-309,
Molecule-371 and UDCA were computed to be DE = 6.93 eV,
DE = 6.75 eV, DE = 6.71 eV, DE = 5.85 eV and DE = 7.36 eV respec-
tively [Fig. 5]. The optimized structures of UDCA along with four
shortlisted leads with atom numbering scheme and DFT profile
of Molecule-309 are provided in Supplementary Figures S4(a-e)
and S5(a) respectively.

3.6. Druggability prediction of Parkin and molecular docking analysis

Surface topology scan of Parkin revealed a groove (Area:
1176.92 Å2; Volume: 1024.15 Å3) encompassing the active-site
residues from RING0 (residues: 239–241) and RING1 (residues:
259, 263, 266–267, 270–271, 274, 276, 288–292) domains. The
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pocket revealed high druggability potential (0.81) and therefore
was considered as the active-centre for performing molecular
docking analysis. The surface view of Parkin highlighting its RING0,
RING1 and RING2 domains are illustrated in Fig. 6(a). Intermolec-
ular interactions of Parkin_UDCA complex (BE = -7.28 ± 0.05 kcal/
mol) displayed the highest binding affinity with minimum IC of
4.62 lM. Amongst the four shortlisted leads, Molecule-258
(BE = -6.57 ± 0.1 kcal/mol; IC = 15.35 lM) had better binding pro-
files when compared to Molecule-297 (BE = -6.12 ± 0.25 kcal/mol;
IC = 34.66 lM), Molecule-371 (BE = -5.44 ± 0.2 kcal/mol; IC = 34.
66 lM) and Molecule-309 (BE = -5.32 ± 0.3 kcal/mol; IC = 125.65
lM) [Fig. 6(b)].

Docking pose of Parkin_UDCA complex revealed two H-bonds
with the electronegative O1-I239 and O2-R396 residues. The com-
plex was further stabilized by van der Waals (vdW) interactions
with solvent-accessible residues K48-E49, T240, T242 and several
non-canonical alkyl-p interactions between electropositive atoms
of cyclohexane-cyclopentane (C5-C8, C10, C12-C13, C15-C16,
C19) ring and A397, A402, C241 residues [Fig. 6(c)]. The inter-



Fig. 6. Molecular Docking Profiles: (a) 3D conformer of Parkin highlighting its RING domains (b) Binding energies and Inhibition Constants of docked complexes (c)
Intermolecular interaction profile of UDCA (d) Intermolecular interaction profile of Molecule-258 (e) Intermolecular interaction profile of Molecule-297 (f) Intermolecular
interaction profile of Molecule-371.
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molecular interactions of Parkin_Molecule-258 complex were
highly similar to that of UDCA as K48-E49 residues from Ubl sub-
strate recognition domain formed alkyl-p interactions and H-
bond respectively besides forming a second H-bond with O2-
D394 residue. The RING0 domain residues T240 and T242 formed
vdW interactions while C241 formed alkyl-p interactions with
the cyclohexane rings consisting C4-C7, C9-C10 and C12-C15
atoms similar to the parkin-UDCA complex [Fig. 6(d)].
Parkin_Molecule-297 displayed three H-bonds between O1-T242,
O3-K48 and O2-D394 residues, alkyl-p interactions (C4-C6, C8,
C10-C11 atoms) with C241 and vdW interactions with T242 resi-
dues of RING0 domain [Fig. 6(e)]. Though safe toxicity profile
was obtained for Molecule-371, no correlation could be drawn
from the intermolecular interacting residues of Parkin_Molecule-
371 complex with UDCA or other studied complexes. A sharp con-
formational change (dihedral angle �81.49⁰) was observed in C12-
C15 ligand backbone atoms that deviated from the parent molecule
(dihedral angle 179.71⁰) in the docked pose [Fig. 6(f)]. In
Parkin_Molecule-309 complex, although involvement of K48,
T240-C241 residues in forming H-bonds and T242 in vdW interac-
tions were displayed, the lowest binding affinity (�27 % lower than
UDCA) was recorded [Supplementary Figure S5(b)]. Hence,
Molecule-309 and Molecule-371 were excluded from the current
study whereas Molecule-258 and Molecule-297 complexed with
Parkin protein were prioritized for stability analysis through MDS
analysis.

3.7. Stability analysis of Parkin-inhibitor complexes through MDS

Based on the binding profiles and intermolecular interaction
patterns of Molecule-258 and Molecule 297 with Parkin, stability
of these complexes was further ascertained upon MDS and com-
pared with Parkin_UDCA complex. The RMSD curves indicated that
Parkin complexed with UDCA (0.61 ± 0.1 nm), Molecule-258 (0.6
3 ± 0.12 nm) and Molecule-297 (0.55 ± 0.09 nm) attained equilib-
rium which was maintained throughout the studied timeframe
[Fig. 7(a)]. The positional fluctuations of all residues in simulated
system were measured in terms of RMSF concerning the protein
backbone atoms. Parkin_Molecule-297 complex exhibited rela-
tively lower RMSF profiles (0.24 ± 0.10 nm) when compared with
UDCA (0.28 ± 0.16 nm), Molecule-258 (0.30 ± 0.17 nm) complexes.
However, when the residual fluctuations were considered for the
interacting RING0 domain, least fluctuations were recorded in
Parkin_Molecule-258 (0.2 ± 0.05 nm) followed by
Parkin_Molecule-297 (0.23 ± 0.08 nm) while maximum residual
disturbances were noted in Parkin_UDCA (0.27 ± 0.12 nm) com-
plexes. Further, the integration of UDCA in active groove of RING0
resulted in relatively high RMSF curves (0.27 ± 0.12 nm) when
compared to the fluctuation profiles of Parkin_Molecule-258 (0.2
0 ± 0.05 nm) and Parkin_Molecule-297 (0.23 ± 0.08 nm). Higher
fluctuations were also noted in the RING1 and RING2 domain while
the protein was bound with UDCA (11.11 %; 47.62 %), Molecule-
258 (33.33 %; 23.81 %) and Molecule-297 (11.11 %; 14.29 %) respec-
tively as compared with the unbound protein [Fig. 7(b)]. The Rg
trajectory concerning Ca atoms denoted an average value of 2.56
± 0.02 nm for Parkin_Molecule-297 while Parkin_UDCA (2.62 ± 0.
03 nm) and Parkin_Molecule-258 (2.63 ± 0.04 nm) maintained
similar Rg trajectory [Fig. 7(c)]. The intermolecular H-bonding pat-
terns from MDS further validated the molecular docking analysis
revealing that UDCA formed three H-bonds, while Molecule-258
and Molecule-397 each formed two stable H-bonds with the Parkin
protein [Fig. 7(d)]. The SASA plot of Parkin_UDCA (�277.25 nm2)
and Parkin_Molecule-258 (�268.49 nm2) revealed similar conver-
gence profile upto 60,000 ps while Parkin_Molecule-297 displayed
SASA trajectory with reduced hydrophilicity (�262.8 nm2) that
was constantly maintained throughout the simulation [Fig. 7(e)].
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The free energy of solvation revealed that Parkin_Molecule-258
(-51.82 kJ/mol) complex was the most energetically favourable
compared to Parkin_Molecule-297 (-45.93 kJ/mol) and Parki-
n_UDCA (-45.36 kJ/mol) [Fig. 7(f)]. The interaction energy revealed
energetically stable (<0kJ/mol) profiles for Parkin_UDCA (-91.55 kJ/
mol), Parkin_Molecule-297 (-53.12 kJ/mol) and Parkin_Molecule-
258 (-48.55 kJ/mol) complexes [Fig. 7(g)] while the total energy
of all the three simulated systems converged at � -1.288e + 06 kJ/
mol [Fig. 7(h)].
4. Discussion

The present study was dedicated to propose potential therapeu-
tic interventions against PD by means of integrated network and
structural biology approaches. The constructed GIN highlighted
distinct biomolecular clusters whereas FEA and topological analy-
ses resulted in the better understanding of the network and even-
tual identification of the hub-genes. The hubs were screened based
on two crucial topological parameters namely betweenness cen-
trality and clustering coefficient. Betweenness centrality identifies
the central point in the interactome while the clustering coefficient
indicates the tendency of a node to cluster. Each gene cluster (C1-
C4) was enriched with similar GO terms denoting specific bio-
chemical pathways significant to PD. The E3-ubiquitin ligase PARK2
(33 interactions) leads to ubiquitination and proteasomal degrada-
tion while maintaining mitochondrial homeostasis. PINK1 and
PARK7 are the key players in mitochondrial dysfunction machinery
being a target of reactive oxygen species generated from electron
transport system [GO:0010821; GO:1902958; GO:0098779]. Regu-
lation of mitochondrial organization and autophagy [GO:0010821;
GO:1903599] is of utmost necessity in preventing PD, as increased
oxidative stress [GO:2000377; GO:0034599] results in mitochon-
drial toxicity and dysfunction.

Simultaneously, excessive a-synuclein in PD patients reduces
dopamine uptake [GO:0051583; GO:0014059]. PARK2 has substan-
tial functional interaction with PINK1 (0.999), which prevents
mitochondrial oxidative stress in association with PINK1 facilitat-
ing the mitochondrial translocation of PARK2 for Parkin-mediated
mitophagy [R-HSA-5205685] and Ubiquitin-mediated proteolysis
[GO:0032434; GO:0032436; GO:0031398]. From the comparative
analysis of the CS, topological metrics, functionality and direct
interactors, LRRK2, PARK2, PARK7, PINK1 and SNCA favoured multi-
ple criteria and thus can be considered as hub-genes. These five
genes were moreover involved in regulatory responses to drugs
[GO:0042493; GO:2001023], hence implying the genes to be con-
sidered as candidate therapeutic biomarkers. From the scoring
metrics, PARK2 was singled out due to its highly experimentally
validated functional association (CS > 0.990) with SNCA involved
in a-synuclein aggregation (as evident from Table 1). Moreover
amongst the five hub-genes, PARK2 (expressed product being Par-
kin protein) interacted with other hub-genes with the highest
average CS of 0.989 followed by PARK7 (0.979), LRRK2 (0.971),
PINK1 (0.969) and SNCA (0.946). Therefore, Parkin protein was
noted to hold the central point and served as the bridge among
other hub-genes in the interactome. Therefore, Parkin was
adjudged as a better candidate for targeted therapy.

Text mining revealed that Parkin has already been patented to
be a potent diagnostic biomarker in PD progression [71]. On the
other hand, a recent study summarizing therapeutic targets at var-
ious stages of PD did not suggest the role of Parkin as therapeutic
biomarker [72]. Hence, the present study focused on exploring the
potency of Parkin as a therapeutic target. With an aim to design
novel therapeutic leads against Parkin, extensive database and lit-
erature mining revealed the inhibitory activity of UDCA, Nilotinib
and Simvastatin against Parkin (PARK2). Parkin inhibition as sup-



Fig. 7. MDS analysis of Parkin-Inhibitor Complexes: (a) RMSD curve (b) Residue-level RMSF plot (c) Rg trajectory (d) Number of intermolecular (protein-inhibitor)
hydrogen bonds (e) SASA trajectory (f) Free energy of solvation (g) Interaction energy profile (h) Total energy curve.
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ported by literary evidence could be easily targeted being present
in the cytoplasm or Golgi-complex of human brain [73], hence Par-
kin structure modeling and refinement were executed. The N-
terminal of Parkin comprises of Ubl domain (amino-acid residues:
1–76), followed by RING0 (amino-acid residues: 141–255), RING1
(amino-acid residues: 256–327), IBR (amino-acid residues: 328–
378) and RING2 (amino-acid residues: 328–378) domains at C-
terminal [74]. Enzyme E1 activates ubiquitin via energy-
dependent process that is further transferred to the cysteine resi-
due of E2 conjugating enzyme. Activated ubiquitin is subsequently
attached by E3-ubiquitin ligase (Parkin) to the lysine residue of the
target protein (a-synuclein), thereby degrading the LB [75]. How-
ever, literary evidence suggests auto-inhibition of the catalytic
RING2 domain by RING0 domain [74,76] while several in-vitro
studies revealed the high ubiquitin potency of Parkin upon dele-
tion of RING0 domain [77,78]. Therefore, subsequent analyses were
carried out to understand the stability and dynamics of the Parkin-
RING domains.

The global model quality revealed a well-poised structure of
Parkin amongst all experimentally characterized proteins revealing
minimal erroneous structural folds [Fig. 2(b)]. Negative ProSA-web
energetics curve and HARMONY propensity-calibration plot indi-
cated nominal local errors and structural misfolds revealing high
protein stability [Fig. 2(c, e)]. Normalized B-factor revealed mini-
mum atomic-level fluctuations due to thermal mobility and posi-
tional disorders [79]. The RING0 domain unique to Parkin is
primarily composed of coils (64.35 %) and appeared to be the most
solvent accessible (�67 %) amongst other RING domains being
actively involved in auto-inhibition of the catalytic RING2 domain
[Fig. 2(d)] [74]. Protein structural quality as interpreted from Prot-
SAV heatmap established Parkin to be ideal for protein–ligand
interaction analysis [46] [Fig. 2(f)]. Although low domain disorder-
ness was noted in the overall structure, slight disorderness was
observed in the residues of RING0 (0.142) in comparison to RING1
(0.076) and RING2 (0.038) domains could possibly arise due to the
intramolecular interactions of the RING0 residues with other
domains [Fig. 2(g)]. Kinetic and thermodynamics-based structural
parameters revealed high energy contribution of the RING0
domain which in turn signifies functionally active residues
involved in the interaction with other domains, macromolecular
and micromolecular species [52]. The residual-level fluctuations
of Parkin domains gave an elaborate perspective about their stabil-
ity and functionality. Rigid backbone dynamics of overall Parkin
protein implied restricted movements of the atomic bond vectors
that were evident from the evolutionary conserved domains of
E3 ubiquitin ligases. Due to macromolecular interaction in execut-
ing auto-inhibition mechanism of RING2 domain by RING0
domain, the latter acts as a scaffold resulting in high rigidity
(S2 = 0.82) of the domain [76]. The E2-binding domain (RING1;
S2 = 0.87) and catalytic domain (RING2; S2 = 0.80) had reduced flex-
ibility being highly evolutionary conserved among other E3-
ubiquitin ligases [Fig. 3(b)]. The coarse-grained dynamics simula-
tion revealed the average residual-level RMSF of RING1, RING0
and RING2 domains to be lower than the entire RMSF trajectory
by 44.60 %, 20.33 % and 12.54 % respectively [Fig. 3(c)]. These fluc-
tuations justify the overall stability and rigidity of the Parkin
domains, further complemented by the reduced flexibility profiles
of the NAH S2 bond-order restraints.

MDS revealed a stable RMSD trajectory for Parkin as well as
minimal positional fluctuations further complementing the NAH
S2 backbone dynamics and coarse-grained dynamics curves [Fig. 4(-
a-b)]. The compactness in folding patterns of Parkin was ascer-
tained by a stable Rg curve further validating the domain
stability strengths represented by the negative folding free energy
curves of DGdist from SWOTEIN server [Fig. 4(c)]. The conforma-
tional coherence between proximal backbone residues indicated
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stereochemically compact tertiary structure conformation with
negligible steric hindrance further strengthening the findings from
ProSA-web, HARMONY and ProTSAV servers [Fig. 4(c-d)]. Parkin
formed a uniform layer of solvation upon interaction with the
exposed residues as evident from the formation of persistent inter-
molecular hydrogen bonds and steady trajectory of SASA profile
[Fig. 4(e-f)]. The system energetics signified environmentally
favoured trajectories for the entire timeframe establishing the
stable conformation of the Parkin protein in aqueous environment
[Fig. 4(g-h)] [80,81]. The MDS analyses thus validated the overall
stability profile of the therapeutic target.

Ligand-based virtual screening of anti-Parkin drug UDCA ana-
logues resulted in four lead molecules namely Molecule-258,
Molecule-297, Molecule-309 and Molecule-371 which were sorted
based on BBB permeability, high bioavailability, less toxicity, pas-
sive absorption by GI-tract, optimal total polar surface area, easily
synthesizable and no Lipinski’s violations. The reference drug
UDCA responded negatively to BBB permeability which could be
a probable reason for increased risk of hepatocellular carcinoma
and Tox21 stress response mitochondrial membrane potential
(MMP) toxicity due to high dosage administration for effective
drug binding [9]. Out of the four leads, Molecule-258 and
Molecule-271 exhibited safe toxicity profiles while Molecule-297
and Molecule-309 reported similar toxicity profiles of MMP and
hepatotoxicity similar to that of UDCA. Frontier molecular orbital
(HOMO and LUMO) calculated from DFT structure optimization
simulations gave functional insights about the chemical stability
and reactivity of the leads. Molecule-258 was found to be chemi-
cally more reactive (by � 6 %) than UDCA and possessed better sta-
bility profiles when compared to the DE profiles of Molecule-297,
Molecule-309 and Molecule-371. Electron density map of UDCA
highlighted four electronegative oxygen atoms (O1-O4) as potent
centres for electrophilic attack (red zones) while other leads pos-
sessed three electrophilic centres over O1-O3 atoms. The CAC
ligand backbone corresponded to high positive potential apt for
nucleophilic attack (blue zones) [Fig. 5]. The electrochemical nat-
ure of these leads contributing to various intermolecular interac-
tions with Parkin was further interpreted in molecular docking
analysis.

The residue T240, being a key factor for E2 binding from the
highly druggable groove encompassing RING0 and RING1 domains,
was considered as the active-centre for performing molecular
docking analysis [82]. As illustrated in Fig. 6(a), RING0 lies in close
vicinity to RING2 domain, and therefore, molecular docking was
carried out in order to inhibit the RING0 domain, thus restoring
the catalytic function of RING2 domain. From the present study,
it was clearly evident that Molecule-258 and Molecule-297
showed similar interaction profiles as compared to the classical
drug [Fig. 6(c-e)], where two residues (K48-E49) from Ubl domain
and three (T240-C241-T242) residues from RING0 domain played
predominant roles in the interaction profiles. Though closely
placed, no residues from RING2 domains contributed to inter-
molecular interactions with the lead molecules thereby leaving
the catalytic RING2 domain undisturbed. Though safe toxicity pro-
file was obtained for Molecule-371, no correlation could be drawn
from the intermolecular interacting residues of Parkin_Molecule-
371 complex with UDCA or other studied complexes [Fig. 6(f)].
Amongst the four UDCA analogues, Molecule-258 and Molecule-
297 exhibited superior binding profiles with Parkin, while
Molecule-309 displayed the least binding affinity [Fig. 6(b)]. Dis-
tinct conformational change of Molecule-371 in the docked pose
(by 261.2⁰) was detected which might be a probable reason con-
tributing to the disparity in the binding profile. Due to these fol-
lowing reasons, Molecule-309 and Molecule-371 were not
considered as anti-PD lead molecules in the current study. There-
fore, we can conclude that Molecule-258 and Molecule-297 could
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be proposed as novel therapeutic leads in targeting specifically the
Parkin-RING0 domain thereby restoring the functionality of RING2
domain.

MDS revealed the stability and compactness of the protein-
inhibitor complexes as predicted from the RMSD, RMSF and Rg tra-
jectories. Parkin_Molecule-297 complex was slightly rigid (rela-
tively lower fluctuations) while minimal backbone deviations
were observed in Parkin_UDCA and Parkin_Molecule-258 com-
plexes. Overall the structural convergence of all three RMSD trajec-
tories was observed after 52,500 ps implying stability of the
complexes. Higher fluctuation profiles in the RING0 domain of Par-
kin_UDCA, Parkin_Molecule-258 and Parkin_Molecule-297 com-
plexes by 22.72 %, 9.09 % and 4.54 % respectively were observed
when compared to the unbound Parkin protein. Therefore, integra-
tion of the proposed UDCA analogues had minimal residue-level
fluctuation than UDCA confirming their stability. Moreover, the
higher fluctuations in the catalytic RING2 domain of Parkin-
inhibitor complexes further elucidate its flexibility and dynamicity,
which might be due to the restoration of the RING2 domain.
Through high structural compactness was displayed by the
Parkin_Molecule-297 complex, structural convergence in both
Parkin_Molecule-258 (2.55 ± 0.01 nm) and Parkin_Molecule-297
(2.55 ± 0.02 nm) was evident after 65,000 ns and was maintained
throughout the timeframe [Fig. 7(a-c)].

Molecular docking analysis and MDS were well correlated giv-
ing a clear insight about the protein-inhibitor interaction and cat-
alytic functions in the studied timeframe. From the intermolecular
H-bonding analysis, it was clearly evident that three H-bonds
formed by UDCA and two H-bonds formed each by Molecule-258
and Molecule-397 with Parkin corresponded to � 96 %
and � 99 % of total stable H-bonds formed within the complexes
[Fig. 7(d)]. The knowledge of exposed and hydrophobic buried core
interpreted from secondary structural analysis was further ana-
lyzed upon studying the SASA profiles signifying the compactness
of the hydrophobic core [Fig. 7(e)]. Conformational geometry inter-
preted from the Rg, SASA trajectories and energy curves revealed
uniform concurrence between Parkin_UDCA and
Parkin_Molecule-258 complexes with minimal alterations and
energetically favoured global conformation of Parkin [Fig. 7(f-h)].
Finally based on all these parameters, we can conclude that the
inhibitor Molecule-258 displayed stable interaction profiles com-
parable to that of UDCA and therefore can be concluded as novel
therapeutic lead molecule inhibiting the RING0 domain of Parkin.
Though equipotent interaction and simulation profiles were dis-
played for Molecule-397, less binding affinity (by� 16 %) and nota-
ble toxicity profiles (Hepatotoxicity, MMP) were recorded and
therefore not recommended for therapeutic purposes in the pre-
sent study.
5. Conclusion

Constraints in early detection and targeted therapy evoked us to
investigate therapeutic solutions against PD. Parkin (PARK2) was
identified and prioritized as therapeutic biomarker amongst LRRK2,
PARK7, PINK1 and SNCA from high network associated parameter
scores. Structural elucidation and validation of Parkin revealed an
active groove (centering T240 residue) with high druggability in
the RING0 domain, which plays active role in auto-inhibition of
catalytic RING2 domain. Therefore, commercial analogues of con-
ventional UDCA were virtually screened revealing four leads with
safe toxicity and favourable pharmacokinetic profiles. The short-
listed leads were further optimized through DFT simulations prior
to site-specific molecular docking analysis. Intermolecular interac-
tion profiles and molecular dynamics simulation revealed
Molecule-258 (ZINC5022267) as a potent candidate which can be
4285
subjected to further experimental validations and can be poten-
tially used against PD.

Funding

The research was funded by the Indian Council of Medical
Research, Govt. of India through research grant [IRIS-ID: 2020–
0690].

CRediT authorship contribution statement

Aniket Naha: Formal analysis, Investigation, Writing – original
draft. Sanjukta Banerjee: Investigation, Data curation, Writing –
original draft. Reetika Debroy: Investigation, Data curation. Sou-
mya Basu: Investigation, Data curation, Visualization. Gayathri
Ashok: Formal analysis, Data curation, Visualization. P. Priyam-
vada: Data curation, Visualization. Hithesh Kumar: Validation,
Data curation. A.R. Preethi: Validation, Data curation. Harpreet
Singh: Funding acquisition. Anand Anbarasu: Supervision, Fund-
ing acquisition. Sudha Ramaiah: Supervision, Funding acquisition,
Project administration.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

The authors gratefully acknowledge the management of VIT-
Vellore for carrying out this research work. Aniket Naha sincerely
thanks ICMR for his research fellowship. Reetika Debroy thanks
ICMR for her Senior Research Fellowship [ID: 2021-10632]. The
authors sincerely thank Ms. Vibha S. for her sincere help in the ini-
tial phase of the study.

Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.csbj.2022.08.017.

References

[1] Draoui A, El Hiba O, Aimrane A, El Khiat A, Gamrani H. Parkinson’s disease:
From bench to bedside. Rev Neurol (Paris) 2020;176:543–59. https://doi.org/
10.1016/j.neurol.2019.11.002.

[2] Gilbert RM, Standaert DG. Bridging the gaps: More inclusive research needed
to fully understand Parkinson’s disease. Mov Disord 2020;35:231–4. https://
doi.org/10.1002/mds.27906.

[3] Simon DK, Tanner CM, Brundin P. Parkinson Disease Epidemiology, Pathology,
Genetics, and Pathophysiology. Clin Geriatr Med 2020;36:1–12. https://doi.
org/10.1016/j.cger.2019.08.002.

[4] Blauwendraat C, Nalls MA, Singleton AB. The genetic architecture of
Parkinson’s disease. Lancet Neurol 2020;19:170–8. https://doi.org/10.1016/
S1474-4422(19)30287-X.

[5] Gandhi S, Wood NW. Molecular pathogenesis of Parkinson’s disease. Hum Mol
Genet 2005;14:2749–55. https://doi.org/10.1093/hmg/ddi308.

[6] Maiti P, Manna J, Dunbar GL. Current understanding of the molecular
mechanisms in Parkinson’s disease: Targets for potential treatments. Transl
Neurodegener 2017;6:28. https://doi.org/10.1186/s40035-017-0099-z.

[7] Emamzadeh FN, Surguchov A. Parkinson’s disease: Biomarkers, treatment, and
risk factors. Front Neurosci 2018;12:1–14. https://doi.org/10.3389/
fnins.2018.00612.

[8] Zahoor I, Shafi A, Haq E. Pharmacological Treatment of Parkinson’s Disease.
Park. Dis. Pathog. Clin. Asp., Codon Publications; 2018, p. 129–44.
10.15586/codonpublications.parkinsonsdisease.2018.ch7.

[9] Athauda D, Foltynie T. Drug Repurposing in Parkinson’s Disease. CNS Drugs
2018;32:747–61. https://doi.org/10.1007/s40263-018-0548-y.

[10] Haleem A, Javaid M, Khan IH. Current status and applications of Artificial
Intelligence (AI) in medical field: An overview. Curr Med Res Pract
2019;9:231–7. https://doi.org/10.1016/j.cmrp.2019.11.005.

https://doi.org/10.1016/j.csbj.2022.08.017
https://doi.org/10.1016/j.neurol.2019.11.002
https://doi.org/10.1016/j.neurol.2019.11.002
https://doi.org/10.1002/mds.27906
https://doi.org/10.1002/mds.27906
https://doi.org/10.1016/j.cger.2019.08.002
https://doi.org/10.1016/j.cger.2019.08.002
https://doi.org/10.1016/S1474-4422(19)30287-X
https://doi.org/10.1016/S1474-4422(19)30287-X
https://doi.org/10.1093/hmg/ddi308
https://doi.org/10.1186/s40035-017-0099-z
https://doi.org/10.3389/fnins.2018.00612
https://doi.org/10.3389/fnins.2018.00612
https://doi.org/10.1007/s40263-018-0548-y
https://doi.org/10.1016/j.cmrp.2019.11.005


A. Naha, S. Banerjee, R. Debroy et al. Computational and Structural Biotechnology Journal 20 (2022) 4271–4287
[11] Aparna G, Mary GA, Sumana G. Performance Analysis of Signal Processing
Techniques in Bioinformatics for Medical Applications Using Machine Learning
Concepts. Data Anal Bioinforma, Wiley 2021:391–429. https://doi.org/
10.1002/9781119785620.ch16.

[12] Daveau RS, Law I, Henriksen OM, Hasselbalch SG, Andersen UB, Anderberg L,
et al. Deep learning based low-activity PET reconstruction of [11C]PiB and
[18F]FE-PE2I in neurodegenerative disorders. Neuroimage 2022;119412.
https://doi.org/10.1016/j.neuroimage.2022.119412.

[13] Grover S, Bhartia S, Akshama, Yadav AKRS. Predicting Severity Of Parkinson’s
Disease Using Deep Learning. Procedia Comput Sci 2018;132:1788–94.
https://doi.org/10.1016/j.procs.2018.05.154.

[14] Memarian N, Kim S, Dewar S, Engel J, Staba RJ. Multimodal data and machine
learning for surgery outcome prediction in complicated cases of mesial
temporal lobe epilepsy. Comput Biol Med 2015;64:67–78. https://doi.org/
10.1016/j.compbiomed.2015.06.008.

[15] McCoubrey LE, Elbadawi M, Orlu M, Gaisford S, Basit AW. Machine Learning
Uncovers Adverse Drug Effects on Intestinal Bacteria. Pharmaceutics
2021;13:1026. https://doi.org/10.3390/pharmaceutics13071026.

[16] Naha A, Kumar Miryala S, Debroy R, Ramaiah S, Anbarasu A. Elucidating the
multi-drug resistance mechanism of Enterococcus faecalis V583: A gene
interaction network analysis. Gene 2020;748:. https://doi.org/10.1016/J.
GENE.2020.144704144704.

[17] Debroy R, Miryala SK, Naha A, Anbarasu A, Ramaiah S. Gene interaction
network studies to decipher the multi-drug resistance mechanism in
Salmonella enterica serovar Typhi CT18 reveal potential drug targets. Microb
Pathog 2020;142:. https://doi.org/10.1016/j.micpath.2020.104096104096.

[18] Miryala SK, Ramaiah S. Cellular and molecular level host-pathogen
interactions in Francisella tularensis: A microbial gene network study.
Comput Biol Chem 2022;96. https://doi.org/10.1016/
j.compbiolchem.2021.107601.

[19] Basu S, Naha A, Veeraraghavan B, Ramaiah S, Anbarasu A. In silico structure
evaluation of BAG3 and elucidating its association with bacterial infections
through protein-protein and host-pathogen interaction analysis. J Cell
Biochem 2021. https://doi.org/10.1002/jcb.29953.

[20] Shankar C, Basu S, Lal B, Shanmugam S, Vasudevan K, Mathur P, et al.
Aerobactin, seems to be a promising marker compared to unstable RmpA2 for
the identification of hypervirulent carbapenem-resistant Klebsiella
pneumoniae: In-silico and in-vitro evidence. Front Cell Infect Microbiol
2021;776. 10.3389/fcimb.2021.709681.

[21] Miryala SK, Basu S, Naha A, Debroy R, Ramaiah S, Anbarasu A, et al.
Identification of bioactive natural compounds as efficient inhibitors against
Mycobacterium tuberculosis protein-targets: A molecular docking and
molecular dynamics simulation study. J Mol Liq 2021;117340. https://doi.
org/10.1016/j.molliq.2021.117340.

[22] Naha A, Vijayakumar S, Lal B, Shankar BA. Genome sequencing and molecular
characterisation of XDR Acinetobacter baumannii reveal complexities in
resistance: Novel combination of Sulbactam-Durlobactam holds promise for
therapeutic intervention. J Cell Biochem 2021:1–25. https://doi.org/10.1002/
jcb.30156.

[23] Vasudevan K, Basu S, Arumugam A, Naha A, Ramaiah S, Anbarasu A, et al.
Identification of potential carboxylic acid-containing drug candidate to design
novel competitive NDM inhibitors: An in-silico approach comprising
combined virtual screening and molecular dynamics simulation. Res Prepr
2021. 10.21203/rs.3.rs-784343/v1.

[24] Varghese R, Basu S, Neeravi A, Pragasam A, Aravind V, Gupta R, et al.
Emergence of Meropenem Resistance Among Cefotaxime Non-susceptible
Streptococcus pneumoniae. Evid Challeng Front Microbiol 2022;12. https://
doi.org/10.3389/fmicb.2021.810414.

[25] Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING
v11: protein–protein association networks with increased coverage,
supporting functional discovery in genome-wide experimental datasets.
Nucleic Acids Res 2019;47:D607–13. https://doi.org/10.1093/nar/gky1131.

[26] Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, et al. The
STRING database in 2017: quality-controlled protein–protein association
networks, made broadly accessible. Nucleic Acids Res 2017;45:D362–8.
https://doi.org/10.1093/nar/gkw937.

[27] Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The
STRING database in 2021: customizable protein–protein networks, and
functional characterization of user-uploaded gene/measurement sets.
Nucleic Acids Res 2021;49:D605–12. https://doi.org/10.1093/nar/gkaa1074.

[28] Miryala SK, Anbarasu A, Ramaiah S. Discerning molecular interactions: A
comprehensive review on biomolecular interaction databases and network
analysis tools. Gene 2018;642. https://doi.org/10.1016/j.gene.2017.11.028.

[29] Smoot ME, Ono K, Ruscheinski J, Wang P-L, Ideker T. Cytoscape 2.8: new
features for data integration and network visualization. Bioinformatics
2011;27:431–2. https://doi.org/10.1093/bioinformatics/btq675.

[30] Shannon P, Markiel A, Owen Ozier 2, Baliga NS, Wang JT, Ramage D, et al.
Cytoscape: a software environment for integrated models of biomolecular
interaction networks. Genome Res 2003;13:2498–504. 10.1101/gr.1239303.
metabolite.

[31] Saito R, Smoot ME, Keiichiro Ono J, Ruscheinski O, Wang P-L, Lotia S, et al. A
travel guide to Cytoscape plugins. Nat Methods 2012;9:1069–76. https://doi.
org/10.1038/jid.2014.371.

[32] Bader GD, Hogue CW. An automated method for finding molecular complexes
in large protein interaction networks. BMC Bioinf 2003;4:2. https://doi.org/
10.1093/nar/29.1.137.
4286
[33] Assenov Y, Ramírez F, Schelhorn SESE, Lengauer T, Albrecht M. Computing
topological parameters of biological networks. Bioinformatics 2008;24:282–4.
https://doi.org/10.1093/bioinformatics/btm554.

[34] Raghavan Unnithan SK, Kannan B, Jathavedan M. Betweenness Centrality in
Some Classes of Graphs. Int J Comb 2014;2014:1–12. https://doi.org/10.1155/
2014/241723.

[35] Sk R, Balakrishnan K. Betweenness centrality in Cartesian product of graphs.
AKCE Int. J Graphs Comb 2020;17:571–83. https://doi.org/10.1016/j.
akcej.2019.03.012.

[36] Landherr A, Friedl B, Heidemann J. A Critical Review of Centrality Measures in
Social Networks. Bus Inf Syst Eng 2010;2:371–85. https://doi.org/10.1007/
s12599-010-0127-3.

[37] Kirkley A, Barbosa H, Barthelemy M, Ghoshal G. From the betweenness
centrality in street networks to structural invariants in random planar graphs.
Nat Commun 2018;9:2501. https://doi.org/10.1038/s41467-018-04978-z.

[38] Miryala SK, Anbarasu A, Ramaiah S. Discerning molecular interactions: A
comprehensive review on biomolecular interaction databases and network
analysis tools. Gene 2018;642:84–94. https://doi.org/10.1016/
j.gene.2017.11.028.

[39] Schwede T. SWISS-MODEL: an automated protein homology-modeling server.
Nucleic Acids Res 2003;31:3381–5. https://doi.org/10.1093/nar/gkg520.

[40] Webb B, Sali A. Comparative Protein Structure Modeling Using MODELLER.
Curr Protoc Bioinforma 2016;54:5–6. https://doi.org/10.1002/cpbi.3.

[41] Heo L, Park H, Seok C. GalaxyRefine: Protein structure refinement driven by
side-chain repacking. Nucleic Acids Res 2013;41:384–8. https://doi.org/
10.1093/nar/gkt458.

[42] Kaplan W, Littlejohn TG. Swiss-PDB Viewer (Deep View). Brief Bioinform
2001;2:195–7. https://doi.org/10.1093/bib/2.2.195.

[43] McGuffin LJ, Bryson K, Jones DT. The PSIPRED protein structure prediction
server. Bioinformatics 2000;16:404–5. https://doi.org/10.1093/bioinformatics/
16.4.404.

[44] Wiederstein M, Sippl MJ. ProSA-web: Interactive web service for the
recognition of errors in three-dimensional structures of proteins. Nucleic
Acids Res 2007;35:407–10. https://doi.org/10.1093/nar/gkm290.

[45] Pugalenthi G, Shameer K, Srinivasan N, Sowdhamini R. HARMONY: A server for
the assessment of protein structures. Nucleic Acids Res 2006. https://doi.org/
10.1093/nar/gkl314.

[46] Singh A, Kaushik R, Mishra A, Shanker A, Jayaram B. ProTSAV: A protein
tertiary structure analysis and validation server. Biochim Biophys Acta -
Proteins Proteomics 2016;1864:11–9. https://doi.org/10.1016/j.
bbapap.2015.10.004.

[47] Mulder NJ, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, et al. New
developments in the InterPro database. Nucleic Acids Res 2007;35:D224–8.
https://doi.org/10.1093/nar/gkl841.

[48] Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, et al.
InterPro: the integrative protein signature database. Nucleic Acids Res
2009;37:D211–5. https://doi.org/10.1093/nar/gkn785.

[49] Finn R, Griffiths-Jones S, Bateman A. Identifying Protein Domains with the
Pfam Database. Curr Protoc Bioinforma 2003;1:2.5.1-2.5.19.. https://doi.org/
10.1002/0471250953.bi0205s01.

[50] Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, et al. The
Pfam protein families database. Nucleic Acids Res 2004;32:138D–41D. https://
doi.org/10.1093/nar/gkh121.

[51] Jones DT, Cozzetto D. DISOPRED3: precise disordered region predictions with
annotated protein-binding activity. Bioinformatics 2015;31:857–63. https://
doi.org/10.1093/bioinformatics/btu744.

[52] Hou Q, Pucci F, Ancien F, Kwasigroch JM, Bourgeas R, Rooman M. SWOTein: a
structure-based approach to predict stability Strengths and Weaknesses of
prOTEINs. Bioinformatics 2021;37:1963–71. https://doi.org/10.1093/
bioinformatics/btab034.

[53] Cilia E, Pancsa R, Tompa P, Lenaerts T, Vranken WF. The DynaMine webserver:
Predicting protein dynamics from sequence. Nucleic Acids Res
2014;42:264–70. https://doi.org/10.1093/nar/gku270.

[54] Jamroz M, Kolinski A, Kmiecik S. CABS-flex: Server for fast simulation of
protein structure fluctuations. Nucleic Acids Res 2013;41:427–31. https://doi.
org/10.1093/nar/gkt332.

[55] Naha A, Vijayakumar S, Lal B, Shankar BA, Chandran S, Ramaiah S, et al.
Genome sequencing and molecular characterisation of XDR Acinetobacter
baumannii reveal complexities in resistance: Novel combination of
sulbactam–durlobactam holds promise for therapeutic intervention. J Cell
Biochem 2021:1–12. https://doi.org/10.1002/jcb.30156.

[56] Zoete V, Daina A, Bovigny C, Michielin O. SwissSimilarity: A Web Tool for Low
to Ultra High Throughput Ligand-Based Virtual Screening. J Chem Inf Model
2016;56:1399–404. https://doi.org/10.1021/acs.jcim.6b00174.

[57] Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate
pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small
molecules. Sci Rep 2017;7:42717. https://doi.org/10.1038/srep42717.

[58] Banerjee P, Eckert AO, Schrey AK, Preissner R. ProTox-II: a webserver for the
prediction of toxicity of chemicals. Nucleic Acids Res 2018;46:W257–63.
https://doi.org/10.1093/nar/gky318.

[59] Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR.
Avogadro: an advanced semantic chemical editor, visualization, and analysis
platform. J Cheminform 2012;4:17. https://doi.org/10.1186/1758-2946-4-17.

[60] Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al.
Gaussian 09, Revision A. 2. Gaussian, Inc Wallingford, CT; 2009.

https://doi.org/10.1002/9781119785620.ch16
https://doi.org/10.1002/9781119785620.ch16
https://doi.org/10.1016/j.neuroimage.2022.119412
https://doi.org/10.1016/j.procs.2018.05.154
https://doi.org/10.1016/j.compbiomed.2015.06.008
https://doi.org/10.1016/j.compbiomed.2015.06.008
https://doi.org/10.3390/pharmaceutics13071026
https://doi.org/10.1016/J.GENE.2020.144704
https://doi.org/10.1016/J.GENE.2020.144704
https://doi.org/10.1016/j.micpath.2020.104096
https://doi.org/10.1016/j.compbiolchem.2021.107601
https://doi.org/10.1016/j.compbiolchem.2021.107601
https://doi.org/10.1002/jcb.29953
https://doi.org/10.1016/j.molliq.2021.117340
https://doi.org/10.1016/j.molliq.2021.117340
https://doi.org/10.1002/jcb.30156
https://doi.org/10.1002/jcb.30156
https://doi.org/10.3389/fmicb.2021.810414
https://doi.org/10.3389/fmicb.2021.810414
https://doi.org/10.1093/nar/gky1131
https://doi.org/10.1093/nar/gkw937
https://doi.org/10.1093/nar/gkaa1074
https://doi.org/10.1016/j.gene.2017.11.028
https://doi.org/10.1093/bioinformatics/btq675
https://doi.org/10.1038/jid.2014.371
https://doi.org/10.1038/jid.2014.371
https://doi.org/10.1093/nar/29.1.137
https://doi.org/10.1093/nar/29.1.137
https://doi.org/10.1093/bioinformatics/btm554
https://doi.org/10.1155/2014/241723
https://doi.org/10.1155/2014/241723
https://doi.org/10.1016/j.akcej.2019.03.012
https://doi.org/10.1016/j.akcej.2019.03.012
https://doi.org/10.1007/s12599-010-0127-3
https://doi.org/10.1007/s12599-010-0127-3
https://doi.org/10.1038/s41467-018-04978-z
https://doi.org/10.1016/j.gene.2017.11.028
https://doi.org/10.1016/j.gene.2017.11.028
https://doi.org/10.1093/nar/gkg520
https://doi.org/10.1002/cpbi.3
https://doi.org/10.1093/nar/gkt458
https://doi.org/10.1093/nar/gkt458
https://doi.org/10.1093/bib/2.2.195
https://doi.org/10.1093/bioinformatics/16.4.404
https://doi.org/10.1093/bioinformatics/16.4.404
https://doi.org/10.1093/nar/gkm290
https://doi.org/10.1093/nar/gkl314
https://doi.org/10.1093/nar/gkl314
https://doi.org/10.1016/j.bbapap.2015.10.004
https://doi.org/10.1016/j.bbapap.2015.10.004
https://doi.org/10.1093/nar/gkl841
https://doi.org/10.1093/nar/gkn785
https://doi.org/10.1002/0471250953.bi0205s01
https://doi.org/10.1002/0471250953.bi0205s01
https://doi.org/10.1093/nar/gkh121
https://doi.org/10.1093/nar/gkh121
https://doi.org/10.1093/bioinformatics/btu744
https://doi.org/10.1093/bioinformatics/btu744
https://doi.org/10.1093/bioinformatics/btab034
https://doi.org/10.1093/bioinformatics/btab034
https://doi.org/10.1093/nar/gku270
https://doi.org/10.1093/nar/gkt332
https://doi.org/10.1093/nar/gkt332
https://doi.org/10.1002/jcb.30156
https://doi.org/10.1021/acs.jcim.6b00174
https://doi.org/10.1038/srep42717
https://doi.org/10.1093/nar/gky318
https://doi.org/10.1186/1758-2946-4-17


A. Naha, S. Banerjee, R. Debroy et al. Computational and Structural Biotechnology Journal 20 (2022) 4271–4287
[61] Dennington R, Keith T, Millam J. GaussView, Version 5. Semichem Inc,
Shawnee Mission KS; 2009.

[62] Kohn W, Sham LJ. Self-Consistent Equations Including Exchange and
Correlation Effects. Phys Rev 1965;140:A1133–8. https://doi.org/10.1103/
PhysRev.140.A1133.

[63] Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ. Ab Initio Calculation of
Vibrational Absorption and Circular Dichroism Spectra Using Density
Functional Force-fields. J Phys Chem 1994;98:11623–7. https://doi.org/
10.1021/j100096a001.

[64] Tian W, Chen C, Lei X, Zhao J, Liang J. CASTp 3.0: computed atlas of surface
topography of proteins. Nucleic Acids Res 2018;46:W363–7. https://doi.org/
10.1093/nar/gky473.

[65] Volkamer A, Kuhn D, Rippmann F, Rarey M. Dogsitescorer: A web server for
automatic binding site prediction, analysis and druggability assessment.
Bioinformatics 2012;28:2074–5. https://doi.org/10.1093/bioinformatics/
bts310.

[66] Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al.
AutoDock4 and AutoDockTools4: Automated docking with selective receptor
flexibility. J Comput Chem 2009;30:2785–91. https://doi.org/10.1002/
jcc.21256.

[67] Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al.
UCSF Chimera-A visualization system for exploratory research and analysis. J
Comput Chem 2004;25:1605–12. https://doi.org/10.1002/jcc.20084.

[68] Studio D. Dassault systemes BIOVIA, Discovery studio modelling environment,
Release 4.5. Accelrys Softw Inc 2015:98–104.

[69] Jayaraman M, Rajendra SK, Ramadas K. Structural insight into conformational
dynamics of non-active site mutations in KasA: A Mycobacterium tuberculosis
target protein. Gene 2019;720:. https://doi.org/10.1016/
j.gene.2019.144082144082.

[70] Lemkul J. From Proteins to Perturbed Hamiltonians: A Suite of Tutorials for the
GROMACS-2018 Molecular Simulation Package [Article v1.0]. Living J Comput
Mol Sci 2019;1:0–53. 10.33011/livecoms.1.1.5068.

[71] Geldenhuys WJ, Abdelmagid SM, Gallegos PJ, Safadi FF. Parkinson’s disease
biomarker: a patent evaluation of WO2013153386. Expert Opin Ther Pat
2014;24:947–51. https://doi.org/10.1517/13543776.2014.931375.
4287
[72] Storm CS, Kia DA, Almramhi MM, Bandres-Ciga S, Finan C, Noyce AJ, et al.
Finding genetically-supported drug targets for Parkinson’s disease using
Mendelian randomization of the druggable genome. Nat Commun
2021;12:7342. https://doi.org/10.1038/s41467-021-26280-1.

[73] Kubo S, Hatano T, Takanashi M, Hattori N. Can parkin be a target for future
treatment of Parkinson’s disease? Expert Opin Ther Targets 2013;17:1133–44.
https://doi.org/10.1517/14728222.2013.827173.

[74] Seirafi M, Kozlov G, Gehring K. Parkin structure and function. FEBS J
2015;282:2076–88. https://doi.org/10.1111/febs.13249.

[75] Dove KK, Klevit RE. RING-Between-RING E3 Ligases: Emerging Themes amid
the Variations. J Mol Biol 2017;429:3363–75. https://doi.org/10.1016/j.
jmb.2017.08.008.

[76] Duda DM, Olszewski JL, Schuermann JP, Kurinov I, Miller DJ, Nourse A, et al.
Structure of HHARI, a RING-IBR-RING Ubiquitin Ligase: Autoinhibition of an
Ariadne-Family E3 and Insights into Ligation Mechanism. Structure
2013;21:1030–41. https://doi.org/10.1016/j.str.2013.04.019.

[77] Chaugule VK, Burchell L, Barber KR, Sidhu A, Leslie SJ, Shaw GS, et al.
Autoregulation of Parkin activity through its ubiquitin-like domain. EMBO J
2011;30:2853–67. https://doi.org/10.1038/emboj.2011.204.

[78] Trempe J-F, Sauvé V, Grenier K, Seirafi M, Tang MY, Ménade M, et al. Structure
of Parkin Reveals Mechanisms for Ubiquitin Ligase Activation. Science (80-)
2013;340:1451–5. https://doi.org/10.1126/science.1237908.

[79] Parthasarathy S, Murthy MRN. Protein thermal stability: Insights from atomic
displacement parameters (B values). Protein Eng 2000;13:9–13. https://doi.
org/10.1093/protein/13.1.9.

[80] Kushwaha PP, Singh AK, Bansal T, Yadav A, Prajapati KS, Shuaib M, et al.
Identification of Natural Inhibitors Against SARS-CoV-2 Drugable Targets
Using Molecular Docking, Molecular Dynamics Simulation, and MM-PBSA
Approach. Front Cell Infect Microbiol 2021;11. 10.3389/fcimb.2021.730288.

[81] Basith S, Manavalan B, Shin T, Lee G. A Molecular Dynamics Approach to
Explore the Intramolecular Signal Transduction of PPAR-a. Int J Mol Sci
2019;20:1666. https://doi.org/10.3390/ijms20071666.

[82] Wauer T, Komander D. Structure of the human Parkin ligase domain in an
autoinhibited state. EMBO J 2013;32:2099–112. https://doi.org/10.1038/
emboj.2013.125.

https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1021/j100096a001
https://doi.org/10.1021/j100096a001
https://doi.org/10.1093/nar/gky473
https://doi.org/10.1093/nar/gky473
https://doi.org/10.1093/bioinformatics/bts310
https://doi.org/10.1093/bioinformatics/bts310
https://doi.org/10.1002/jcc.21256
https://doi.org/10.1002/jcc.21256
https://doi.org/10.1002/jcc.20084
https://doi.org/10.1016/j.gene.2019.144082
https://doi.org/10.1016/j.gene.2019.144082
https://doi.org/10.1517/13543776.2014.931375
https://doi.org/10.1038/s41467-021-26280-1
https://doi.org/10.1517/14728222.2013.827173
https://doi.org/10.1111/febs.13249
https://doi.org/10.1016/j.jmb.2017.08.008
https://doi.org/10.1016/j.jmb.2017.08.008
https://doi.org/10.1016/j.str.2013.04.019
https://doi.org/10.1038/emboj.2011.204
https://doi.org/10.1126/science.1237908
https://doi.org/10.1093/protein/13.1.9
https://doi.org/10.1093/protein/13.1.9
https://doi.org/10.3390/ijms20071666
https://doi.org/10.1038/emboj.2013.125
https://doi.org/10.1038/emboj.2013.125

	Network metrics, structural dynamics and density functional theory calculations identified a novel Ursodeoxycholic Acid derivative against therapeutic target Parkin for Parkinson's disease
	1 Introduction
	2 Materials and methods
	2.1 Data curation, GIN construction and functional enrichment analysis
	2.2 Clustering and topological analysis
	2.3 Protein structure modeling, secondary and tertiary structure validations
	2.4 Residue level propensity and stability analysis through coarse dynamics and MDS
	2.5 Virtual screening, pharmacokinetic filtering and ligand optimization upon DFT simulations
	2.6 Molecular docking and stability analysis upon MDS

	3 Results
	3.1 GIN Analysis, hub-protein identification and validation
	3.2 In-silico drug-target modeling and refinement
	3.3 Domain configurations of Parkin
	3.4 Stability analysis of Parkin through MDS
	3.5 Lead sorting, ADMET screening and chemical reactivity prediction analysis
	3.6 Druggability prediction of Parkin and molecular docking analysis
	3.7 Stability analysis of Parkin-inhibitor complexes through MDS

	4 Discussion
	5 Conclusion
	Funding
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Supplementary data
	References


