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Abstract
Introduction  The increase in multidrug resistance and lack of efficacy in malaria therapy has propelled the urgent discovery 
of new antiplasmodial drugs, reviving the screening of secondary metabolites from traditional medicine. In plant metabo-
lomics, NMR-based strategies are considered a golden method providing both a holistic view of the chemical profiles and a 
correlation between the metabolome and bioactivity, becoming a corner stone of drug development from natural products.
Objective  Create a multivariate model to identify antiplasmodial metabolites from 1H NMR data of two African medicinal 
plants, Keetia leucantha and K. venosa.
Methods  The extracts of twigs and leaves of Keetia species were measured by 1H NMR and the spectra were submitted to 
orthogonal partial least squares (OPLS) for antiplasmodial correlation.
Results  Unsupervised 1H NMR analysis showed that the effect of tissues was higher than species and that triterpenoids 
signals were more associated to Keetia twigs than leaves. OPLS–DA based on Keetia species correlated triterpene signals to 
K. leucantha, exhibiting a higher concentration of triterpenoids and phenylpropanoid-conjugated triterpenes than K. venosa. 
In vitro antiplasmodial correlation by OPLS, validated for all Keetia samples, revealed that phenylpropanoid-conjugated 
triterpenes were highly correlated to the bioactivity, while the acyclic squalene was found as the major metabolite in low 
bioactivity samples.
Conclusion  NMR-based metabolomics combined with supervised multivariate data analysis is a powerful strategy for the 
identification of bioactive metabolites in plant extracts. Moreover, combination of statistical total correlation spectroscopy 
with 2D NMR allowed a detailed analysis of different triterpenes, overcoming the challenge posed by their structure similar-
ity and coalescence in the aliphatic region.
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1  Introduction

Every year several 100 million of people get malaria, 
1.2 million of which die. Even if a reduction of 37% cases 
has been recently reported, it remains the most severe para-
sitic disease worldwide, particularly for children under the 
age of five and pregnant women (World Health Organisa-
tion (WHO) 2018). Despite efforts to develop vaccines, the 
antigenic variability of these parasites allows only a partial 
and decreasing protection against clinical malaria and only 
in children and infants (Olotu et al. 2016).

In addition, malaria therapy faces some emerging prob-
lems such as parasite multidrug resistance, mosquito resist-
ance to insecticides and the shortage of the time and money 
required for the development of new synthetic and natu-
ral leads (Achan et al. 2018; Woodrow and White 2017). 
The need to discover new prototypes of drugs is thus very 
important. In this context, natural products provide a high 
degree of lead-/drug-similarity, remaining undoubtedly the 
best source of native drugs or structural templates for anti-
malarial compounds development (Cargnin et al. 2018; Da 
Silva et al. 2013). A recent review reporting the new drugs 
available on the market during the last 34 years showed that 
approximately 60% of these new antiparasitic drugs have a 
natural origin/pharmacophore (Newman and Cragg 2016).

To date, the natural product database NAPRALERT has 
reported over 152 plant genera with a historical record of 
antimalarial properties, thus offering unlimited possibili-
ties for the identification of novel hits/targets (Graham and 
Farnsworth 2010; Mojab 2012; Wells 2011). So far, how-
ever, the chemical and biological potential of these medici-
nal plants remains little explored.

When attempting to screen plant-matrixes, the large 
dynamic range and diversity of metabolites still hamper 
their identification and biological correlation. In the past, 
bio-guided fractionation was often used to identify active 
compounds. However, these reductionist procedures often 
lead to a laborious, time-consuming, non-comprehensive 
and expensive process of isolation and purification (Chen 
et al. 2015; Pezzuto 1997). Recently, metabolomics emerged 
as a fast alternative screening method to correlate chemical 
and biological data of natural products (Yuliana et al. 2011). 
Moreover, in an untargeted analysis of medicinal plants, 
metabolomics allows a broad range of chemical comparison 
between samples (Queiroz et al. 2009), prioritizing the iden-
tification of active molecules and, consequently, improving 
the process of chemotype and sample selection (Abreu et al. 
2017; Kumar et al. 2014; Stermitz et al. 2000).

Considering their coverage of metabolites, sensitivity 
and resolution, NMR and MS methodologies are currently 
the most popular methods and are complementarily used for 
detailed chemical information on many biological systems. 

Mass spectrometry offers high sensitivity and resolution 
with some structure information deduced from accurate 
mass, fragmentation patterns or isotope distribution (Lei 
et al. 2011; Lindon et al. 2007; Markley et al. 2017). On the 
other hand, NMR provides a highly reproducible and non-
destructive analysis with minimal sample preparation, ena-
bling the detailed elucidation of a wide range of metabolic 
groups, including isomers and compounds that are difficult 
to ionize or derivatize for MS (Markley et al. 2017).

NMR-based chemical profiling has often been used in 
plant-metabolomics for chemotaxonomy (Kim et al. 2010a), 
quality control (Yang et al. 2006) and as a bioactivity screen-
ing method (Cardoso-Taketa et al. 2008; Yuliana et al. 2011) 
following a suggested protocol (Kim et al. 2010a). In addi-
tion to simple one-dimensional 1H NMR analysis, various 
two-dimensional experiments can be applied to ensure a 
broad interpretation of the data, providing detailed struc-
ture elucidation and quantification (Brennan 2014; Markley 
et al. 2017; Nagana Gowda and Raftery 2015). However, the 
difficulty of hyphenating NMR to chromatographic separa-
tion systems and its low-sensitivity has led to some inherent 
problems in chemical profiling research, including spectral 
congestion and the identification of minor metabolites (Kim 
et al. 2010b). For example, the elucidation of selected 1H 
resonances in the congested region, requires a previous sig-
nal deconvolution (Emwas 2015). Two-dimensional NMR 
spectra, e.g. J-resolved (Huang et al. 2015; Ludwig and 
Viant 2010) and 1H–13C-HSQC (Öman et al. 2014; Xi et al. 
2008) have been applied to the analysis of complex spec-
tra, in which an additional axis provides a higher resolution 
that can reveal invisible signals or peak purity. Furthermore, 
recent advances for overcoming these highly coalescence 
signals can also be based on the use of post-analytical decon-
volution algorithms, assisting on detection and quantifica-
tion of metabolites without the use of separation techniques. 
One example is statistical total correlation spectroscopy 
(STOCSY), which enables digital separation not limited to 
the usual connectivity of two-dimensional NMR methods 
and takes advantage of the multicollinearity of the signals 
intensity in a 1H NMR spectra (Cloarec et al. 2005).

In this study, NMR-based metabolomics with STOCSY 
was applied to a model of an antiplasmodial medicinal plant 
in order to identify bioactive metabolites involved in the 
activity. Recently, dichloromethane extracts of Keetia leu-
cantha, an African antimalarial plant listed by the Direc-
tion de la Protection Sanitaire of the Benin Ministry of 
Health, showed promising in vitro antiplasmodial activity 
against both susceptible and resistant Plasmodium strains 
and in vivo antimalarial efficacy without any acute toxic-
ity at therapeutic doses. This activity has been related to 
active triterpenes (Beaufay et al. 2017, 2019; Bero et al. 
2009, 2013). In this paper, we report the use of NMR-based 
metabolomics and the implementation of a post-analytical 
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deconvolution algorithm to identify antiplasmodial metabo-
lites from 1H NMR data of K. leucantha and another related 
species, K. venosa. Specifically, dichloromethane extracts of 
twigs and leaves of both Keetia species were measured by 1H 
NMR and the spectra were submitted to orthogonal partial 
least square modeling (OPLS). Correlation with bioactivity 
was performed according to their in vitro antiplasmodial 
response (expressed by IC50) against chloroquine sensitive 
and -resistant Plasmodium falciparum strains (3D7 and W2, 
respectively). For metabolite elucidation, targeted OPLS sig-
nals were submitted to STOCSY and confirmed by 2D-NMR 
experiments.

2 � Materials and methods

2.1 � Plant material

Keetia venosa (Oliv.) Bridson (17 twigs and 17 leaves) and 
K. leucantha (K. Krause) Bridson (27 twigs and 27 leaves) 
(Rubiaceae) were collected by Dr Agbani, a specialized bot-
anist from University of Abomey-Calavi in Benin over the 
period of 2014–2015 in the Republic of Benin, West Africa, 
in different geographical locations in Donga or Ouémé/Zou 
departments, respectively: Djougou, Bassila and Belefunga 
for K. venosa and Adjara, Tako (Porto Novo), Lama and 
Katagon for K. leucantha.

The leaves and twigs samples were air-dried imme-
diately after collection. Herbarium samples, pre-
pared locally during the collection, and  further identi-
fied by Dr. Olivier Lachenaud, compared with voucher 
specimens, have been deposited at the Herbarium of 
the National Botanic Garden of Belgium (Vouchers 
BR0000005087129 and BR00000014420382 for K. leu-
cantha and BR0000005087228, BR0000005087242, 
BR00000014420443 and BR00000014420375 for K. 
venosa).

2.2 � Sample preparation

Dried and ground plant material (200 mg) was vortexed and 
ultrasonicated for 30 s and 15 min, respectively, with 2.0 mL 
of dichloromethane. For NMR- and biological analysis, 
the filtered (with cotton wool) and dried dichloromethane 
extracts were dissolved in 750 µL of CD3OD, vortexed for 
30 s, ultrasonicated for 1 min and centrifuged for 20 min at 
13,000 rpm. The supernatants were divided in two solutions 
(300 µL) for NMR and in vitro antiplasmodial assay.

2.3 � NMR experiments

1H NMR spectra of the plant samples were acquired on 
a Bruker 600  MHz Advance II spectrometer (Bruker, 

Germany) equipped with a 5 mm triple resonance inverse 
cryoprobe and a z-gradient system. Prior to data acquisition, 
automatic tuning and matching of the probe was performed, 
as well as manual shimming and automatic proton pulse cali-
bration (pulsecal, Bruker).

1H NMR analysis was performed in 3 mm tubes and 
acquired by water 1D-water presaturation pulse sequence 
with composite pulses (zg30pr, Bruker) at the following 
parameters time domain (TD) 32 k; number of scans (NS) 
64; spectral width (SW) 20 ppm; water signal irradiation 
point (o1) 4.84 ppm; temperature 298 K and relaxation delay 
(d1) 1.5 s.

For two dimensional-NMR acquisition, (1) gradient-
selected heteronuclear single quantum coherence (HSQC) 
was performed by phase-sensitive ge-2D multiplicity edited 
HSQC using PEP and adiabatic pulses with gradients in 
back-inept, (2) gradient-selected heteronuclear multiple 
bond correlation (HMBC) was acquired by phase-sensitive 
ge-2D HMBC using a two-fold low-pass J-filter; and (3) 
J-resolved measurement was performed using a standard 
pulse sequence with 25 Hz CW-based water signal suppres-
sion. For HMBC and HSQC acquisition, each parameter of 
1H (f2) and 13C (f1) were as follows: frequency 600.13 and 
150.92 MHz, time domain (TD) 2 k and 512 increments, 
spectral width (SW) 10 and 230 ppm, number of scans (NS) 
64, relaxation delay (d1) 1.00 s and measuring temperature 
298 K. For J-resolved acquisition, operating frequency, 
TD and SW were 600.13 MHz, 16 k, and 20 ppm for both 
axis (f1 and f2), respectively. Number of scans (NS) was 
8; relaxation delay (d1) 2.00 s and temperature 298 K. The 
long-range coupling constant used for HMBC was 8.0 Hz.

2.4 � In vitro antiplasmodial activity

In vitro antiplasmodial activity was evaluated based on para-
site viability using the lactate dehydrogenase assay (Makler 
et al. 1993) on chloroquine-sensitive 3D7 and chloroquine-
resistant W2 P. falciparum strains (Murebwayire et al. 2008). 
Artemisinin (Sigma-Aldrich, Overijse, Belgium) was used 
as a positive control in all experiments, with an initial con-
centration of 100 ng/mL. Tests were performed as described 
by Bero et al. (2013) with a minor modification: extracts 
were tested in eight-serial two-fold dilutions (concentration 
range: 0.78–100 µg/mL, two wells/concentration). A statis-
tical analysis was performed on GraphPad Prism 7.00 to 
compare activities of all Keetia extracts. As distributions 
were not Gaussian (according to D’Agostino-Pearson and 
Shapiro–Wilk normality tests), twigs and leaves extracts 
from K. leucantha and K. venosa were all compared to each 
other with a non-parametric ANOVA (Kruskal–Wallis and 
Dunn’s post-test, significance level of 0.05).
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2.5 � Data processing and multivariate analysis

The 1H NMR spectra were automatically reduced to ASCII 
files. Spectral intensities were scaled to total intensity and 
reduced to integrated regions of equal width (0.04 ppm) cor-
responding to the region of δ 0.0–10.0 by AMIX software 
(Bruker). The regions of δ 4.7–4.9 and δ 3.28–3.34 were 
excluded from the analysis because of the residual signal of 
D2O and CD3OD, respectively.

The final processed data was exported in comma-sepa-
rated values (.csv) and imported to SIMCA (version 15.2) 
software (Umetrics, Umeå, Sweden) for multivariate data 
analysis. All chemometric analysis were performed on the 
processed 1H NMR data using unit variance (UV) scal-
ing method. The OPLS–DA analysis was modeled based 
on (1) Keetia species (K. leucantha and K. venosa) and 

OPLS analysis was modeled on (2) in vitro antiplasmodial 
activity (IC50 values) of all Keetia samples. For metabolite 
elucidation, STOCSY was applied to all targeted bioactive 
buckets selected from the OPLS loadings (Cloarec et al. 
2005). Chemical connectivity of the targeted bucket (driver 
peak) was analyzed by STOCSY correlation and covari-
ance algorithm using MATLAB R2017a software (Math-
works, Natick, MA, USA). For confirmation and individual 
compound assessment, 2D NMR experiments (J-resolved, 
HMBC and HSQC) were acquired and interpreted using 
MestreNova 12.0.3 software17 (MestreLab Research SL, 
Santiago de Compostela, Spain).

Fig. 1   Chemical structures of dihydroxy cinnamic acid and triterpe-
noidal (oleanolic- and ursolic acids) moieties identified in Keetia spe-
cies, and typical 1H NMR spectra (600 MHz, CH3OH-d4) of CH2Cl2 
extracts of K. venosa twigs (a) and leaves (b), and K. leucantha twigs 

(c) and leaves (d) in phenolic (δ 6.0–7.7) and aliphatic region (δ 0.7–
1.2). H-2, H-5, H-6, H-7 and H-8 are H of dihydroxy cinnamic acid 
moiety
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3 � Results and discussion

3.1 � Metabolic profiling of leaves and twigs of Keetia 
species by 1H NMR and multivariate data 
analysis

1H NMR metabolic fingerprinting was applied as a high-
throughput method for detecting chemical differences 
between Keetia samples and their related tissues. Figure 1 
illustrates some representative 1H NMR spectra of CH2Cl2 
extracts of K. leucantha and K. venosa (both leaves and 

twigs). Two major metabolic groups were detected in the 
spectra, triterpenoids and phenylpropanoids. In the region of 
δ 0.7–1.2, many characteristic CH3 resonances were found 
including H-23, H-24, H-25, H-26, H-27, H-29 and H-30 
from the triterpenoids moiety. Moreover, in the region of δ 
6.1–7.7, characteristic signals of dihydroxy cinnamic acid 
analogues, such as caffeic- or ferulic acids, were clearly 
detected in some Keetia samples.

Previous reports indicate that phenylpropanoids are pre-
sent in both free form or conjugated to triterpenoids (Bero 
et al. 2013) and 1H NMR data suggest that both free- and 
phenylpropanoid-conjugated triterpenes are present in these 

Fig. 2   Score plot (PC1 × PC2) (a) and PC1 loading plot (b) of 
principal component analysis of K. leucantha and K. venosa sam-
ples (leaves and twigs), and OPLDS–DA score plot (c) (t1/to1) and 
S-plot (d) using two species classes. 1: K. leucantha, 2: K. venosa, 

o: Leaves, •: twigs. *: methyl signals of triterpenoids. Red (•) and 
blue dots (•) in (d) are methyl signals of triterpenoids and squalene, 
respectively
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species. Phenylpropanoid conjugated triterpenes were found 
to be more abundant in K. leucantha twigs than in any other 
samples (Bero et al. 2013).

To overview the metabolites of leaves and twigs of the 
two Keetia species, 1H NMR spectra of 88 samples were fur-
ther analyzed by PCA, as shown in Fig. 2. This raw 1H NMR 
data (bucketed) as well as their activity against two cell lines 
are in the Supplementary Table 1. The score plot of PCA in 
Fig. 2a showed that the effect of tissues on the metabolome 
was higher than that of species effect. The loading plot of the 
PCA was analyzed to identify the metabolites responsible 
for this discrimination between tissues. The characteristic 
methyl signals of triterpenoids were correlated with the posi-
tive side of PC1 loading plot in Fig. 2b, which indicates that 
the twigs from Keetia species were found to have higher 
level of triterpenoids than leaf samples.

Although the metabolic influence of species was much 
lower than that of tissues in PCA and not detected well using 
PC1 and PC2, the separation between the species might be 
analyzed in minor PCs. To investigate in detail the effect of 
species, a supervised multivariate data analysis, OPLS–DA 
was applied to the same data set using two classes of spe-
cies (1: K. leucantha and 2: K. venosa). The score plot of 
OPLS–DA (Fig. 2c) showed a very clear separation and the 
model was well validated by permutation and CV–ANOVA 
tests (Q2 value > 0.85 in permutation test and p value in 
CV–ANOVA = 1.4126e−29). The S-plot (Fig. 2d) revealed 
that the methyl 1H resonances of triterpenoids were higher 
in K. leucantha samples than K. venosa. In addition, some 
aromatic resonances at δ 7.56 (d, J = 15.9 Hz), δ 7.05 (d, 
J = 2.1 Hz) and δ 6.29 (d, J = 15.9 Hz) were found to be 
more correlated with K. leucantha and were elucidated as 
the dihydroxy cinnamic acid moieties of triterpenic esters, 
previously reported in this species (Bero et al. 2013). On 
the other hand, signals at δ 1.59 (s), δ 1.60 (s), δ 2.07–2.09 
(m), δ 5.09 (t, J = 7.2 Hz) and δ 5.11 (t, J = 7.2 Hz) were 
attributed to K. venosa samples and elucidated as an acyclic 
triterpene, squalene, a common secondary metabolite from 
the leaves of Keetia species (Bero et al. 2013; Thimmappa 
et al. 2014).

3.2 � In vitro antiplasmodial activity of Keetia 
samples and correlation with metabolomics 
data by OPLS

To assess the antiplasmodial potential of the twigs and 
leaves, all Keetia samples were tested in vitro for their anti-
plasmodial activity on chloroquine-sensitive (3D7) and chlo-
roquine-resistant (W2) strains of P. falciparum. The mean 
IC50 of leaves and twigs extracts from K. leucantha were 
124.5 ± 152.4 µg/mL and 77.9 ± 40.6 µg/mL on 3D7 strain, 
respectively, and 63.8 ± 40.6 µg/mL and 88.7 ± 50.7 µg/mL 
on W2 strain, respectively. In the case of K. venosa, the mean 

IC50 for leaves and twigs extracts were 129.2 ± 144.1 µg/
mL and 207.4 ± 167.6 µg/mL on 3D7 strain, respectively, 
and 90.7 ± 98.5  µg/mL and 129.9 ± 92.7  µg/mL on W2 
strain, respectively. Overall, K. leucantha showed similar 
to higher antiplasmodial activity on both strains than K. 
venosa with significant differences between both species 
twigs, K. leucantha leaves and K. venosa twigs on 3D7 
(p < 0.01) but only between leaves of K. leucantha and twigs 
of K. venosa on W2 (p < 0.05). However, these activities 
are quite lower than artemisinin ones (IC50 = 0.008 ± 0.002 
and 0.004 ± 0.001 µg/mL on 3D7 and W2 strains respec-
tively) or previously reported activities for chloroquine 
(IC50 = 0.02 ± 0.01 and 0.49 ± 0.15 µg/mL on 3D7 and W2 
strains respectively) (Bero et al. 2009). Nevertheless, crude 
extracts are mixtures of hundreds of compounds, some of 
which may have high activity, diluted with other non-active 
compounds. In the case of tissues among the same species, 
there was not much difference and the activity depended 
on the tested sample. Moreover, there was a high variation 
in the measured IC50, even in the same species and tissue. 
In particular, K. venosa samples showed a broader range 
of antimalarial results according to the harvest region and 
tissues (IC50 from 29.18 µg/mL to estimated 734.86 µg/mL 
for P. falciparum 3D7 and from 30.38 µg/mL to estimated 
439.29 µg/mL for P. falciparum W2).

As a next step, 1H NMR data of the samples were corre-
lated with IC50 against both strains by OPLS modeling with 
two Y variables (IC50 on 3D7 and W2 strains). To optimize 
the model, two scaling methods (UV and Pareto) with Log 
transformation were evaluated. As shown in Table 1, the 
highest Q2 value was obtained from permutation test (100 
permutations) when UV scaling with log transformation of 
Y variables were used. A strong correlation between metab-
olomics and antiplasmodial data was found in the score plot 
of OPLS modeling as shown in Fig. 3a, in which 1H NMR 
data and antiplasmodial activity against both P. falciparum 
strains were used as X- and Y-variables with UV scaling 
method.

To identify metabolites responsible for the activ-
ity, a loading plot was used as shown in Fig. 3b. Some 

Table 1   Q2 value of OPLS modeling of 1H NMR metabolomics data 
and antiplasmodial activity (IC50) against 3D7 and W2 P. falciparum 
strains using different scaling methods and transformation obtained 
from permutation test with 100 permutations

Scaling method Transformation of 
IC50 (Y-data set)

Q2 value

3D7 strain W2 strain

Unit variance No 0.277 0.275
Log 0.479 0.473

Pareto No 0.145 0.099
Log 0.314 0.323
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characteristic signals of triterpenoids such as methyls, H-5 
around δ 3.2 and H-12 around δ 5.2 were clearly related 
with the activity (negatively correlated with IC50 values). 
In addition to triterpenoidal signals, some characteristic 1H 
resonances of phenylpropanoids were found to be associated 
to activity (Fig. 3b). In a previous report on the metabolites 
presented in K. leucantha, free forms of triterpenoids and 
their phenylpropanoid-conjugates were found to be major 
secondary metabolites, but only phenylpropanoid-conjugates 
displayed high antiplasmodial activity and low cytotoxicity 
on WI38 cells (Bero et al. 2013). Moreover, loading plot 
of samples with low antiplasmodial activity were also cor-
related to triterpenoids signals, such as methyls at around 
δ 1.60, characteristic of the acyclic triterpene squalene 
(Fig. 3b).

Pentacyclic triterpenes have been already reported to 
show promising antimalarial potential (Beaufay et al. 2018; 
Isah et al. 2016) and some of them display high antiplas-
modial activity and low cytotoxicity alone, in mixtures or 
in combination with artemisinin (Cargnin et al. 2018; Da 
Silva et al. 2013; Ma et al. 2008; Phillipson and O’Neill 
1987). They also possess various pharmacological effects 
and are thought to act as multi-target compounds (Moneriz 
et al. 2011). Phenylpropanoid-conjugated triterpenes from 
K. leucantha have been shown to have higher antiplasmodial 
activity than their corresponding acids (Bero et al. 2013).

3.3 � Structure elucidation of ferulic acid conjugated 
triterpenoid esters

To elucidate the detailed chemical structure of the metabo-
lites, several 2D-NMR such as J-resolved, COSY, HSQC 
and HMBC (Supplementary Figs.  1, 2, 3 and 4) were 
firstly applied to the signals selected by OPLS modeling. 
The identity of each moiety of triterpene (e.g. oleanolic 
acid and ursolic acid) and phenylpropanoid (e.g. feru-
lic acid) was confirmed by 2D-NMR experiments and 

comparison with the spectra of reference compounds. 
However, 2D-NMR spectrum was insufficient to determine 
the conjugation, if any, between the two moieties, that 
requires the detection of a correlation band e.g. H-27 and 
C=O in HMBC, in a very crowded region. To overcome 
this connectivity issue, STOCSY was used to connect the 
spin systems by the multicolinearity of the intensity of 
their signals along a set of spectra. By selecting a driver 
peak, also known as target peak, the STOCSY calculates 
the covariance and the correlation between all peaks in 
a dataset and creates a pseudo NMR spectrum, in which 
the intensities are related to the covariance values and the 
colors are related to the correlation values. Peaks from 
the same molecule or the same pathway to the driver peak 
are expected to have similar values, thus allowing their 
identification even in highly complex mixtures.

The correlation between the moieties was detected 
applying the STOCSY algorithm to the selected signals 
from the loadings (Fig. 4a). The driver peak at δ 7.56 (d, 
J = 15.9 Hz, 1H, CH) from the H-7 of ferulic acid moi-
ety strongly correlated with many terpenoidal signals, as 
well as other signals of ferulic acid including OCH3. The 
structural confirmation was based on the NMR data of 
the eight triterpenic esters with phenylpropanoid moie-
ties isolated from K. leucantha twigs by Bero et al. (2013) 
as cited above. Two-dimensional J-resolved, HSQC and 
HMBC data for all the above signals indicate the pres-
ence of two phenylpropanoid conjugated triterpenes, 
3β-hydroxy-27-(E)-feruloyloxyolean-12-en-28-oic acid (1) 
and 3β-hydroxy-27-(E)-feruloyloxyurs-12-en-28-oic acid 
(2) as the major bioactive compounds present in Keetia 
plants (Fig. 5).

In addition, the signals of squalene in the congested 
region were also detected and confirmed by STOCSY 
(Fig.  4c). OPLS–DA revealed that these signals were 
strongly correlated to Keetia samples that displayed low 
antiplasmodial activity, in which squalene appeared 

Fig. 3   Score (a) and loading 
plot (b) of OPLS modelling 
with log IC50 of in vitro anti-
plasmodial assay against 3D7 
and W2 P. falcifarum strains t1 
of 1H NMR data versus u1 of 
log IC50 of in vitro antiplasmo-
dial activity. r2 for the correla-
tion = 0.487. Red bars in (b) are 
IC50 values against 3D7 and W2 
P. falcifarum strains and blue 
bars in (b) are 1H resonances 
of triterpenoids and phenyl-
propanoids associated with the 
activity



	 R. T. Freire et al.

1 3

27  Page 8 of 11

as a major metabolite. The driver peak at δ 1.59 (s, 3H, 
CH3 attached to C-6) showed a high covariance and cor-
relation with the olefinic signals at δ 5.11 (t, J = 7.2 Hz, 1H, 
H-7) and δ 5.15 (t, J = 3.8 Hz, 1H, CH, H-11), indicating 
the presence of three olefinic signals with cis isomerism. 
Moreover, CH3 attached to C-6 also displayed high correla-
tion with the multiplet at δ1.94–2.10 and three singlets at 
δ1.66, δ1.67, and δ1.60, connecting the olefinic signal with 
the complex aliphatic structure. Squalene confirmation was 
performed by 2D-NMR and comparison with data previ-
ously reported studies (Rotondo et al. 2017) (Fig. 5).

By comparing the STOCSY obtained through the driver 
peaks of compounds 1, 2 (Fig. 4a, b), it was possible to 
observe that both metabolites shared the same pathway, con-
cluding that if the concentration of compound 1 increases, 

the level of compound 2 will also increase. These results 
were corroborated by the loadings obtained with the multi-
variate data analyses based on the IC50 values that showed 
that both these substances contribute synergistically to the 
increase of the antiplasmodial activity. On the other hand, 
when the STOCSY plot from the squalene was compared 
with that of compound 1 and 2 (Fig. 4a–c) it was possible 
to observe that these compounds were displayed in opposite 
pathways, representing both a chemical (STOCSY) and a 
biological (IC50) antagonistic effect between squalene and 
the cyclic triterpenes.

Fig. 4   STOCSY plot using drivers peak at δ 7.55 (a), δ 1.56 (b) 
and δ 1.59 (c). Signal assignments; (a) *driver peak at δ 7.55 (H-7 
of ferulic acid moiety), 1: H-2 of ferulic acid moiety, 2: H-6 of feru-
lic acid moiety, 3: H-5 of ferulic acid moiety, 4: H-8 of ferulic acid 
moiety, 5: H-12 of ursolic- and oleanolic acid, 6: OCH3 of ferulic 
acid moiety, 7: H-3 of ursolic- and oleanolic acid, 8: H-11 of urso-
lic- and oleanolic acid, 9: H-6 of ursolic- and oleanolic acid, 10: H-27 
of ursolic- and oleanolic acid, 11: H-25 of ursolic- and oleanolic 
acid, 12: H-26 of ursolic- and oleanolic acid, 13: H-24 of ursolic- 

and oleanolic acid. (b) *Driver peak at δ 1.56 (H-6 of ursolic- and 
oleanolic acid), 1: H-12 of ursolic- and oleanolic acid, 2: H-3 of 
ursolic- and oleanolic acid, 3: H-11 of ursolic- and oleanolic acid, 4: 
H-27 of ursolic- and oleanolic acid, 5: H-25 of ursolic- and oleanolic 
acid, 6: H-26 of ursolic- and oleanolic acid, 7: H-24 of ursolic- and 
oleanolic acid. (c) *Driver peak at δ 1.59 (CH3  attached  to  C-6 
of squalene), 1: H-3, H-7 and H-11 of squalene, 2: H-4 and H-8 of 
squalene, 3: H-1 and H-9 of squalene, 4: H-1 and H-2 of squalene. 
For the 1H assignments see the chemical structures in Figs. 1 and 5



Identification of antiplasmodial triterpenes from Keetia species using NMR-based metabolic…

1 3

Page 9 of 11  27

4 � Conclusion

1H NMR metabolic fingerprinting was applied as a high-
throughput method for the detection of chemical differences 
between Keetia samples (and their tissues) revealing two 
major metabolic groups, triterpenoids and phenylpropa-
noids. Unsupervised PCA analysis of the 1H NMR data 
showed that the effect of tissues was higher than the effect 
of species on the metabolome and that characteristic triter-
penoid methyl signals were more correlated to the twigs of 
both Keetia species, showing higher level of triterpenoids 
than the leaves. Supervised OPLS–DA based on Keetia 
species (K. leucantha and K. venosa) showed a very clear 
separation and a validated model. The resonances of triter-
penoids were found to be higher in K. leucantha samples 
than K. venosa. In addition, some aromatic resonances were 
also more correlated with K. leucantha and were elucidated 
as moieties of dihydroxy cinnamic acid derivatives of two 
triterpenic esters (1–2) previously reported in this species 
by Bero et al. (2013).

To assess the antimalarial potential of the twigs and 
leaves, all Keetia samples were tested for their antiplasmo-
dial activity. In vitro biological results showed that, over-
all, K. leucantha has a similar or a little higher antimalarial 
activity than K. venosa against both chloroquine-sensitive 
(3D7) and chloroquine-resistant (W2) P. falciparum strains. 
However, in the case of tissues for a same species, there 

was not much difference and the activity depended on the 
tested sample. The 1H NMR data of Keetia samples were 
correlated with the IC50 by OPLS modeling with two Y vari-
ables (IC50 of 3D7 and W2 strains). To optimize the model, 
two scaling methods (UV and Pareto) with Log transforma-
tion were evaluated and the highest Q2 value was obtained 
when UV scaling with log transformation of Y variables was 
used. A strong correlation between metabolomics data and 
antiplasmodial results was found in the score plot of OPLS 
modeling. Furthermore, characteristic signals of triterpe-
noids, such as methyls, H-5 around δ 3.2 and H-12 around 
δ 5.2 were clearly related with the activity, as well as some 
1H resonances of phenylpropanoids.

Overall, NMR-based metabolomics combined with super-
vised multivariate data analysis has proved to be a power-
ful strategy for the identification of bioactive metabolites in 
plant extracts. However, the difficulty of hyphenating NMR 
with chromatographic separation systems and its low-sensi-
tivity result in spectral congestion and hamper the identifica-
tion of convoluted metabolites, such as triterpenes. In this 
study, these problems have been solved by successfully com-
bining STOCSY with 2D-NMR, allowing a detailed analy-
sis of different triterpenes in the raw-extract, overcoming 
structure similarity and coalescence in the aliphatic region.

Although STOCY-supported NMR-based profilins could 
give a large improvement for the identification of metabo-
lites, there are still limitations to fully identify a metabolite 

Fig. 5   Chemical structures 
of squalene and two phe-
nylpropanoid conjugated 
triterpenes, 3β-hydroxy-27-(E)-
feruloyloxyolean-12-en-28-oic 
acid (1) and 3β-hydroxy-27-(E)-
feruloyloxyurs-12-en-28-oic 
acid (2)
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in mixtures due to high congested signals and similarity 
between analogues of a certain metabolites, e.g. terpenoids 
or steroids in secondary metabolites. These shortcomings 
could be overcome by a development of specific preparative 
methods for the isolation, which might be supported by mass 
spectrometry confirmation.
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