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Novel Natural Product-like Caged 
Xanthones Bearing a Carbamate 
Moiety Exhibit Antitumor Potency 
and Anti-Angiogenesis Activity  
In vivo
Xiaoli Xu1, Yue Wu1, Mingyang Hu1, Xiang Li1, Qichao Bao1, Jinlei Bian1, Qidong You1 & 
Xiaojin Zhang1,2

DDO-6101, a simplified structure obtained from the Garcinia natural product (NP) gambogic acid 
(GA), has been previously shown to possess high cytotoxicity to a variety of human tumour cell 
lines. To improve its physicochemical properties and in vivo cytotoxic potency, a series of novel 
carbamate-bearing derivatives based on DDO-6101 was synthesized and characterized. The structural 
modifications revealed that the presence of a carbamate moiety was useful for obtaining comparable 
cytotoxicity and improved aqueous solubility and permeability. 8n, which contains a bipiperidine 
carbamate moiety, displayed better drug properties and potential in in vivo antitumor activity. In 
addition, an antitumor mechanistic study suggested that 8n (DDO-6337) inhibited the ATPase activity 
of Hsp90 (Heat shock protein 90), leading to the inhibition of HIF-1a and ultimately contributing to its 
anti-angiogenesis and antitumor properties.

Natural products (NPs) have a unique diversity of structures and complexity. They have played and continued to 
play important roles in the discovery of drugs that are used to treat various diseases. In the clinic, approximately 
half of the current anticancer agents are NPs or were inspired by NPs1–3. Despite their limitations, including poor 
solubility, undesirable pharmacokinetics and associated toxicity, NPs may still provide core scaffolds with specific 
stereochemistry. In many cases, to gain new physicochemical properties, improve biological effects, have fewer 
side effects and increase their drug properties, structural modifications of NPs are necessary, thereby inspiring 
the whole pharmaceutical industry4.

Garcinia hanburyi (G. hanburyi), an anti-inflammatory and hemostatic traditional herbal medicine from 
Southeast Asia, has received substantial attention from medicinal chemists for centuries. The major bioac-
tive constituents of the gamboges resin secreted by this tropical plant all have a unique scaffold, including a 
4-oxa-tricyclo[4.5.1.03,7]decan-2-one structure5–7. Among these constituents, gambogic acid (GA) (Fig. 1) is con-
sidered to be the compound with the greatest curative effect, and it has been positively identified as a potential 
and promising antitumor agent in recent decades8. It is exciting that phase IIa clinical trials of GA in cancer 
patients were recently completed in China9. GA has been shown to induce apoptosis10, inhibit proliferation11, 
repress adhesion and metastasis12, regulate the cell cycle13, and reverse multidrug resistance of cancer cells14; GA 
has also been shown to possess anti-angiogenic activities15. Similar to many multi-target NPs, GA also has mul-
tiple targets, such as Hsp90, the bcl-2 pathway, and the transferrin receptor in tumour cells12,15–21. However, its 
direct molecular target remains uncertain. Unfortunately, there are some disadvantages to the use of GA, includ-
ing poor physicochemical properties, such as low aqueous solubility and low bioavailability, and the availability of 
the gamboges resin22. Substantial effort in medicinal chemistry is essential and significant to improving the drug 
properties of GA and other caged xanthones.
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In recent years, our group and others have carried out a large body of work focusing on structure-activity rela-
tionships (SARs) studies of GA around its unique chemical architecture, a “caged-xanthone”23–28. Through great 
efforts, the simplification and modification of GA has been fully explored. As previously reported, some caged 
scaffolds with different rings do not have activity25. Additionally, changes in the orientation and spacing of the 
B ring or breaking its rigid planar structure will decreases its antitumor activity. As a result, the intact BCD ring 
with its unique caged scaffold, as shown in Fig. 1, is the minimum pharmacophore motif essential for antitumor 
activity27. Moreover, the C-9,10-α ,β -unsaturated moiety in the D caged ring is also important to maintain anti-
tumor activity26,27. It is worth noting that simplified caged xanthone analogues showed better antitumor activity 
and druggability compared to GA (Fig. 1).

Our group described a series of caged-xanthone-derived compounds with potent antitumor activity. DDO-
6101, which has a simplified structure, has retained the activity of GA against various tumour cells27. Derivatives 
were designed based on DDO-6101 to improve its in vivo antitumor activity, and the biological results indicated 
that modifications at the C(2), C(3) and C(4) sites of the B ring and the C(19) and O(16) sites of the D caged ring 
are well tolerated. Among these derivatives, DDO-6267, which has a modification at C(19), had better oral antitu-
mor activity than GA27. Moreover, DDO-6306 inhibited 52.6% of tumour growth in Heps-transplanted mice fol-
lowing its intravenous (IV) administration and is more potent than DDO-610126. In addition, structure-property 
relationship (SPR) studies based on DDO-6101 demonstrated that hydrophilic heteroatom-containing groups, 
such as those in DDO-6306, help enhance drug-like properties and improve antitumor activity in vivo, suggesting 
that these compounds with simplified structures are potential anticancer compounds. However, their limited solu-
bility and drug-like properties still limit their clinical application. From these diverse caged-xanthone-derivatives, 
the effect of the group at the C(1) site of DDO-6101 has not been explored thoroughly. Therefore, to explore the 
C(1) site, hydrophilic heteroatom-containing groups at the C(1) site were introduced with the aim of develop-
ing more potent compounds, completing the SAR and SPR studies of the caged-xanthones, and exploring this 
region to determine whether modifying it can improve the antitumor potency and drug-like properties of the 
compounds. Here, we describe the design, synthesis and evaluation of novel caged-xanthone-derivatives of DDO-
6101 to develop novel xanthones as anticancer agents.

Results and Discussion
Compound Design and Synthesis. DDO-6101 contains a phenolic hydroxy group that is a potential 
modification site. First, derivatives 1–5 were designed to explore the influence of some ester and alkyl substituent 
groups at the C(1) site. The designed cage xanthone derivatives 1–5 and synthetic routes are shown in Fig. 2. 
The starting material DDO-6101 was generated using previously described chemical pathways27. Acylation of 
DDO-6101 in the presence of DMAP and acetic anhydride produced caged xanthone 1. Methyl sulphonylation 
of DDO-6101 with methylsulfonyl chloride and triethylamine produced 2. DDO-6101 was methoxylated by 
methyl iodide and potassium carbonate at RT. 4 was prepared using bromoacetic acid ethyl ester and potassium 
carbonate in a polar aprotic solvent (DMF). The hydrolysis of 4 in diluted hydrochloric acid and tetrahydrofuran 
yielded 5. The caged xanthone was not stable in an alkaline environment, and thus, hydrolysis was performed 
under acidic conditions.

Figure 1. Structures of GA and its simplified caged xanthone analogs. 
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Then, the antiproliferative activities of the derivatives were assessed, as shown in Table 1. Doxorubicin was 
used as the positive control for the in vitro assay. 1 (acetylation of C1) exhibited inhibitory activity toward the 
three cancer cell lines, similar to that of DDO-6101; 2 (methylsulphinyloxy group) showed slightly decreased 
activity compared to DDO-6101; and 3 (methoxy group) was approximately 4–8-fold less active. The presence 
of electron-withdrawing substituents on C1 improved the activity of the compounds, whereas electron-donating 
groups on C1 inhibited cytotoxicity. Preliminary SAR studies indicated that the α,β-unsaturated ketone moiety 
of the CD caged region in GA was the key motif to maintain its antitumor activity. A substituent group on C1 
substantially influenced the electrophilicity of the α,β-unsaturated double bond, and an electron-withdrawing 
group decreased its electron cloud density, thereby contributing to the Michael reaction with nucleophilic groups 
of target proteins, such as sulfhydryl and amino groups, ultimately leading to better cytotoxicity.

Compared to 3, compound 4, which has a longer side chain, exhibited reduced activity, indicating that 
extending the substituent carbon chain results in a loss of activity. The activity of 5 was far lower than that of 4, 
which suggests that the presence of strong hydrophilic groups, such as carboxyl groups, causes a complete loss of 
cytotoxicity.

1 showed low micromolar activity, with IC50 values ranging from 0.97 to 1.49 μ M, comparable to those of 
DDO-6101 and GA. However, compounds 2–5 were less cytotoxic against the three cancer lines. Therefore, 
caged-xanthone-derivatives were designed and prepared based on 1.

Figure 2. Reagents and conditions: (a) Ac2O (1.5 equiv.), 4-dimethylaminopyridine (DMAP; 1.5 equiv.), 
dichloromethane (DCM), room temperature (rt), 5 h, 99%; (b) CH3SO2Cl (1.5 equiv.), triethanolamine 
(TEA, 1.5 equiv.), DCM, rt, 5 h, 97%; (c) MeI (1.5 equiv.), K2CO3 (1.5 equiv.), acetone, rt, overnight, 99%; 
(d) BrCH2CO2Et (1.2 equiv.), K2CO3 (1.2 equiv.), dimethylformamide (DMF), 45 °C, 1 h, 92%; (e) 17% HCl, 
tetrahydrofuran (THF), rt, 12 h, 85%.

Compound

IC50 (μM)

HepG2 HCT116 MDA-MB-231

1 1.07 ±  0.09 1.49 ±  0.17 0.97 ±  0.09

2 1.41 ±  0.06 2.12 ±  0.14 2.00 ±  0.07

3 8.55 ±  0.43 6.10 ±  0.19 1.80 ±  0.06

4 12.70 ±  0.97 8.13 ±  0.73 5.42 ±  0.57

5 > 10 > 10 > 10

DDO-6101 1.14 ±  0.09 0.71 ±  0.1 0.32 ±  0.09

GA 2.08 ±  0.07 0.34 ±  0.08 1.50 ±  0.05

Adriamycin 0.28 ±  0.01 0.40 ±  0.04 0.49 ±  0.05

Table 1.  The in vitro antiproliferative activities of the caged compounds based on the preliminary SAR 
studies.



www.nature.com/scientificreports/

4Scientific RepoRts | 6:35771 | DOI: 10.1038/srep35771

As a structural motif, organic carbamate plays an important role in drug design and medicinal chemistry29. 
Because of their chemical stability and ability to permeate cell membranes, many approved drugs and clinical 
candidate compounds contain carbamate structures, such as Ritonavir and the BACE1 inhibitor, as shown in 
Fig. 3 30,31. Ritonavir, a first-generation protease inhibitor, shows excellent pharmacokinetic properties, possibly 
because of the increased stability of the thiazole groups with the carbonate linker32. Scherren et al. explored the 
characteristics of paclitaxel-2′ -carbamate, which is more stable than esters and carbonates in vivo33. Thus, it was 
inspiring to use organic carbamate as a structural motif in further studies.

Previous modifications to DDO-6101 revealed some SARs, and these studies identified analogues that exhib-
ited comparable inhibitory activity. These studies showed that an OH group at the C(1) site was not required for 
antiproliferative activity because substituting this group with an acetyl group did not change the potency of the 
compound. Whether modifying this region with carbamate would increase its inhibitory activity or improve its 
drug-like properties was further explored.

Using excess carbamyl chloride with a potassium carbonate base and DMAP catalyst, DDO-6101 can be 
converted into 8a–8m, with yields of 50–70%, as shown in Fig. 4. Carbamyl chloride can be obtained using different 
reactions with triphosgene. The chemical structures of these derivatives were inferred using 1H-nuclear magnetic 
resonance (NMR), 13C-NMR, electron ionization mass spectrometry (EI-MS), and infrared (IR) spectroscopy. All 
of the synthesized compounds yielded acceptable elemental analyses and high-resolution EI-MS (HREI-MS) data.

Figure 3. Examples of carbamate drugs and alcohol carbamate prodrugs. 

Figure 4. Reagents and conditions: (a) bis(trichloromethyl) carbonate (BTC, 1 equiv.), TEA (3 equiv.), DCM, 
90%; (b) K2CO3 (1 equiv.), DMAP(0.1 equiv), DCM, rt, 3 h, 60–90%.
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In vitro Cytotoxic Effects. The antiproliferative activities of the 15 synthesized caged xanthone derivatives, 
lead compound DDO-6101, GA and doxorubicin were assessed using a tetrazolium-based colorimetric (MTT) 
assay and human hepatocellular carcinoma cell line (HepG2), human colon cancer cell line (Hct116) and human 
breast cancer cell line (MDA-MB-231), as previously reported. The antiproliferative activities, expressed as IC50 
values, are summarized in Table 2.

In general, most of the caged xanthones exhibited potent antiproliferative activities against HepG2, HCT116, 
MDA-MB-231 and A549 cells, with IC50 values in the low micromolar range, which are comparable to those of 
GA and DDO-6101. The results indicated that these alkyl carbamate derivatives function in the cell.

However, different compounds showed different activities against the three cell lines. 8e, 8f and 8l showed 
selective activity against HepG2 cells, with growth inhibition IC50 values of 0.99 ±  0.01, 0.95 ±  0.09 and 
0.34 ±  0.27 μ M, respectively. The HCT116 cell line was sensitive to 8d, 8e, 8f and 8i, with IC50 values of 0.71 ±  0.04, 
1.06 ±  0.09, 1.02 ±  0.07 and 1.08 ±  0.02 μ M, respectively. The MDA-MB-231 cell line was sensitive to 8a, 8c, 8m 
and 8o, with IC50 values of 0.17 ±  0.04, 0.25 ±  0.12, 0.76 ±  0.09 and 0.66 ±  0.02 μ M, respectively. The A549 cells 
were less sensitive to all of the tested compounds compared to the other cell lines. However, these compounds 
showed better cytotoxic activity against Taxol-resistant and cisplatin-resistant A549 cell lines. In particular, 8l 
displayed 10–15-fold higher activity against the resistant A549 cell line, but was less active against A549 cells.

Based on Table 2, introduction of carbamate with long aliphatic side chains, as in 8a–8c, 8j and 8k, resulted in 
slightly lower activity than those of pentacyclic or hexacyclic compounds, as in 8d–8i, 8l–8m. Few differences in 
cytotoxicity were found between pentacyclic and hexacyclic compounds. Among the series of caged derivatives, 
8l showed the most potent inhibitory activity against HepG2, HCT116, and MDA-MB-231 cells in vitro, with IC50 
values of 0.34 ±  0.27, 2.49 ±  0.33 and 0.88 ±  0.5 μ M, respectively. Notably, 8l was more active in vitro than the lead 
compound DDO-6101.

Structure-property Relationship (SPR) Studies. The physicochemical characteristics of compounds 
directly determine their potential drug-like properties. Assessing a compound’s physicochemical properties 
before performing in vivo evaluations can guide further studies and minimize the time and cost associated 
with drug discovery. Therefore, parallel to the in vivo study, these solubilities of these compounds in water were 
experimentally measured using high-performance liquid chromatography (HPLC). Based on the results of full 
wave scanning, 290 nm was chosen as the maximum absorption wavelength for HPLC detection. However, no 
improvement in water solubility was observed for non-carbamate-containing compounds1–5 compared to DDO-
6101 and GA, as shown in Table 3. Modifying the compounds substantially improved their water solubility when 
the lipophilic tail was linked with the pharmacophore on C(1), particularly when the primary pharmacophore 
was an amide. To improve the water solubility by a large margin, some compounds were generated via salification 
with HCl, such as 8n and 8o, which exhibited water solubility exceeding 40 mM (Table 3).

Permeability is another important property that reflects the ability of molecules to diffuse through cell mem-
branes. The permeability coefficients were determined using a standard parallel artificial membrane permeability 
assay (PAMPA) on a PAMPA Explorer instrument (Pion, Inc., MA, USA)34. As shown in Fig. 5, the introduction 
of hydrophilic substituents, such as in 8b, 8d, 8i and 8l, improved the permeability of the compounds relative to 
DDO-6101 and GA, suggesting that modification with the carbamate moiety could enhance permeability.

8n Induces Tumour Cell Apoptosis. Because it has superior cytotoxicity and physicochemical properties, 
8n was chosen as a representative compound to determine whether caged xanthone derivatives modified with 
carbamate induced tumour cell apoptosis as well as GA. First, the influence of 8n on the cytoskeleton was eval-
uated using morphological observations. After treatment with 8n, the morphological features of tumour cells 
changed greatly, and the changed characteristics included the rounding-up of cells, rough membrane surfaces, 
and more spherical or ovoid cytoplasmic fragments (Fig. 6A). However, the control group, which lacked com-
pound 8n, had good growth. Next, we examined whether the morphological changes were the result of apoptosis 
induced by compound 8n using DAPI staining and FACScan. DAPI-stained nuclei indicated that there were 
condensed chromatin and nuclear fragmentation in the 8n treatment group, whereas there were little nuclear 
condensation and apoptotic bodies (Fig. 6B). Similar findings were observed with Annexin-V-PI staining, which 
showed that compound 8n induced apoptosis in HepG2 cells in a dose-dependent manner, and indeed, treatment 
with 0.3 and 1 μ M 8n for 48 h induced apoptosis in more than 11.89% and 46.3% of cells, respectively (Fig. 6D).

To corroborate these results, the effects of 8n on the cleavage of Caspase-3 and poly(ADP-ribose) polymerase 
(PARP), two well-established biochemical markers of apoptosis, were determined. Treatment with 8n increased the lev-
els of cleaved caspase-3/PARP and decreased the amount of full-length Caspase-3/PARP. The apoptosis inducers Bcl-2 
and Bax were also affected by 8n, suggesting that 8n led to apoptosis via the mitochondrial apoptosis pathway (Fig. 6E).

8n exhibits potent in vivo activity in hepatoblastoma xenograft models. Given the in vitro 
anti-tumour cell activity of 8n, we continued to evaluate its in vivo effect in hepatoblastoma xenograft models 
using previously reported methods35, and the water-soluble anti-cancer drug 5-fluorouracil (5-FU) was used 
as a positive control. After tumours were established, the mice were IV injected with 2.5, 5, 10 or 50 mg/kg 8n; 
the lead compound DDO-6101 and antitumour drug 5-FU were used as controls. All mice had normal weights 
and quality of life in in vivo tests. As shown in Fig. 5A,B, twice-daily treatment with 2.5, 5 and 10 mg/kg 8n pro-
duced significant inhibition of the tumour volume by 27.97%, 38.50%, and 48.36%, respectively, compared with 
the 5-FU group (50.95%) and the DDO-6101 group (36.81%). 8n displayed a significant and dose-dependent 
inhibitory effect on the growth of HepG2 tumours in nude mice. The in vivo activity of 8n was also evaluated after 
oral administration. When administered daily at a dosage of 50 mg/kg, 8n inhibited tumour growth by 30.12%, 
suggesting that 8n has good bioavailability (Fig. 7C,D). Thus, compared with DDO-6101, the carbamate deriva-
tive 8n exhibited better oral activity and was much more potent in vivo. This observation may be attributed to the 
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Compound -NR1R2

IC50 (μM)

A549 A549/taxol A549/cisplatinHepG2 HCT116
MDA-

MB-231

1 1.07 ±  0.09 1.49 ±  0.17 0.97 ±  0.09 3.00 ±  0.80 1.62 ±  0.10 1.53 ±  0.20

8a 1.73 ±  0.43 2.32 ±  0.21 0.17 ±  0.04 3.09 ±  0.14 0.65 ±  0.08 1.10 ±  0.10

8b 1.88 ±  0.14 2.87 ±  0.07 0.47 ±  0.07 2.86 ±  0.02 0.68 ±  0.08 1.46 ±  0.09

8c 2.56 ±  0.19 2.75 ±  0.14 0.25 ±  0.12 3.05 ±  0.58 0.66 ±  0.16 1.48 ±  0.14

8d 2.31 ±  0.18 0.71 ±  0.04 0.58 ±  0.04 9.81 ±  0.17 0.53 ±  0.08 1.48 ±  0.25

8e 0.99 ±  0.01 1.06 ±  0.09 4.40 ±  1.50 8.63 ±  0.19 12.42 ±  0.29 5.68 ±  0.15

8f 0.95 ±  0.09 1.02 ±  0.07 0.87 ±  0.16 2.93 ±  0.02 1.45 ±  0.18 2.98 ±  0.17

8g 1.55 ±  0.08 2.52 ±  0.03 2.20 ±  0.13 4.36 ±  0.22 2.70 ±  0.14 3.45 ±  0.26

8h 1.75 ±  0.28 3.15 ±  0.22 6.80 ±  0.70 8.45 ±  0.20 1.10 ±  0.16 6.70 ±  0.18

8i 1.61 ±  0.18 1.08 ±  0.02 1.00 ±  0.10 3.38 ±  0.02 0.82 ±  0.08 1.80 ±  0.10

8j 5.21 ±  0.01 4.14 ±  0.05 6.20 ±  0.11 10.24 ±  0.10 4.25 ±  0.70 3.78 ±  0.11

8k 4.76 ±  0.22 4.49 ±  0.77 9.10 ±  0.12 8.96 ±  0.90 6.72 ±  0.53 2.00 ±  0.47

8l 0.34 ±  0.27 2.49 ±  0.33 0.88 ±  0.05 10.05 ±  2.1 0.61 ±  0.04 0.98 ±  0.13

8m 1.36 ±  0.71 8.15 ±  0.70 0.76 ±  0.09 9.97 ±  2.46 1.10 ±  0.05 0.38 ±  0.07

8n 1.32 ±  0.45 0.97 ±  0.12 1.20 ±  0.07 7.23 ±  0.56 1.90 ±  0.12 1.10 ±  0.17

8o 2.80 ±  0.21 9.82 ±  0.68 0.66 ±  0.07 14.87 ±  3.6 0.51 ±  0.05 1.14 ±  0.14

DDO-6101 — 1.14 ±  0.09 0.71 ±  0.10 0.32 ±  0.09 2.59 ±  0.17 0.46 ±  0.03 2.11 ±  0.10

GA — 2.08 ±  0.07 0.34 ±  0.08 1.50 ±  0.05 2.02 ±  0.02 0.29 ±  0.04 2.50 ±  0.06

Doxorubicin 0.28 ±  0.01 0.40 ±  0.04 0.49 ±  0.05 0.17 ±  0.02 0.24 ±  0.02 0.19 ±  0.02

Table 2.  The in vitro antiproliferative activities of the caged compounds according to the preliminary SAR 
studies.
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improved physicochemical properties of 8n compared to those of DDO-6101, such as aqueous solubility and cell 
membrane permeability, which were provided by modification with the carbamate moiety. Taken together, the 
results showed that 8n inhibited tumour growth in vivo.

The In Vitro and In Vivo Anti-Angiogenesis Activities of the Caged Xanthone Derivative 8n. GA 
was reported to inhibit tumour angiogenesis and may be a viable drug candidate for anti-angiogenesis and anti-
cancer therapies15. Therefore, the anti-angiogenesis activity of the caged xanthone derivative 8n was evaluated. 
Human umbilical vein endothelial cells (HUVECs) were used in all experiments. Cell migration is critical for 
endothelial cells to form blood vessels during angiogenesis, tumour growth and metastasis. 8n suppressed 
hypoxia-induced migration in a concentration-dependent manner at 0.01, 0.05 and 0.25 μ M compared to the 
controls (Fig. 8A). Endothelial cell invasion is a critical part of angiogenesis; therefore, a transwell assay was per-
formed to evaluate the ability of inactivated HUVECs to pass through the transwell membrane barrier in the pres-
ence of 8n. As shown in Fig. 8B, 0.25 μ M 8n almost completely inhibited the invasion of inactivated HUVECs, 
suggesting that 8n can significantly inhibit the invasion properties of endothelial cells. In the tube-formation 
assay (Fig. 8C), medium from HepG2 cells treated with 8n significantly impaired the tube-forming ability of 
HUVECs compared to that from the controls (untreated HepG2 cells or medium alone).

Zebrafish has been proposed as a valid alternative animal model for investigating angiogenesis35–37. The effect 
of 8n on embryonic angiogenesis in zebrafish was evaluated. Figure 8D shows the results of treating zebrafish 
embryos with 8n or the vehicle control. Treating live fish embryos with 50 μ g/ml 8n completely blocked the for-
mation of intersegmental vessels, while preserving fluorescence in the dorsal aorta and major cranial vessels. At a 
dose of 10 μ g/ml or 5 μ g/ml 8n, the formation of intersegmental vessels was considerably inhibited compared with 
the blank control group, indicating a dose-dependent inhibition pattern. Together, these results indicated that 8n, 
a caged-xanthone-derivative of GA with a carbamate moiety, exhibited antiangiogenic effects in vitro and in vivo.

The Caged Xanthone Derivatives Showed Anti-Angiogenesis Activity by Targeting Hsp90 
and HIF-1α. Lianru Zhang, Brian S. J. Blagg, et al. reported that GA inhibited Hsp90 ATPase in vitro21,38. 
The effects of these compounds on Hsp90 ATPase activity were examined by measuring the ability of Hsp90 
to hydrolyse ATP using a homogeneous time-resolved fluorescence (HTRF) assay to determine whether the 
caged-xanthone-derivatives of GA inhibited Hsp90. The activities, expressed as the inhibition ratio at 50 μ M, are 

Compound S (mM) Compd S (mM)

1 0.02 8g 0.02

2 0.02 8h 0.02

3 0.01 8i 0.02

4 0.01 8j 0.06

5 0.03 8k 0.03

8a 0.06 8l 0.08

8b 0.03 8m 0.64

8c 0.03 8n > 40

8d 0.04 8o > 40

8e 0.04 GA < 0.005

8f 0.05 DDO-6101 < 0.005

Table 3.  The water solubility of the tested compounds probed with HPLC.

Figure 5. Experimental determination of the membrane permeability of selected compounds at different 
pH values. 
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summarized in Fig. 9A. 17-(Dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG), an Hsp90 
N-terminal inhibitor, was used as a positive control and exhibited an IC50 value of 0.919 μ M in the Hsp90 ATPase 
assay. Analysing the results of the HTRF assay showed that, in general, some compounds maintained the same 
activity as GA. Among them, compounds 8n–8o were identified as good to moderate Hsp90 inhibitors, with IC50 
values of 4.21, 3.25 and 1.89 μM, respectively (Fig. 9B). The inhibition of Hsp90 could decrease client protein 
levels. Based on the enzymatic, structural, and antiproliferative results, 8n was chosen for further investigation.

The influence of 8n on the degradation of Hsp90 client proteins was monitored by WB analysis. HepG2 cells 
were treated with different concentrations of 8n for 24 h. The results showed that the expression levels of client 
proteins, such as HER-2, Akt and Erk1/2, were dramatically reduced after 8n treatment, as monitored by WB 
(Fig. 9C). However, the expression of Hsp70 changed little, suggesting that 8n did not induce the heat shock 
reaction like other Hsp90 N-terminal inhibitors. HIF-1α , as a key modulator of angiogenesis and an important client 

Figure 6. (A) Morphological changes in cancer cells and nuclei. (B) 8n induced apoptosis in HepG2 cells. 
Cultured HepG2 cells were treated with the indicated concentrations of 8n for 48 h. The cells were then were 
stained with DAPI and observed by fluorescence microscopy. (C) 8n induces apoptosis in a dose-dependent 
manner. HepG2 cells were treated with different concentrations of 8n for 48 h, and Annexin V and propidium 
iodide staining were performed. (D) The percentages of early apoptotic and total apoptotic cells were quantified 
using flow cytometry. *p <  0.05; **p <  0.01. (E) The expression of apoptotic-related proteins in HepG2 cells 
treated with 8n. HepG2 cells were treated with various concentrations of 8n for 24 h and were then harvested 
and lysed. The expression levels of Caspase-3, Cleaved Caspase-3, Bax, Bcl-2, PARP and cleaved PARP were 
measured by Western blotting.
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protein of Hsp90, was also examined, and the expression of HIF-1α  decreased after treatment with 8n. The hypoxic 
induction of the expression of vascular endothelial growth factor (VEGF), a target gene of HIF-1α , was substantially 
repressed in the presence of 8n (Fig. 9D). Taken together, these results indicate that inhibiting Hsp90 results in the inhi-
bition of HIF-1α , thereby down-regulating the transcription of pro-angiogenic cytokines and inhibiting angiogenesis.

Conclusion
In conclusion, a small library of caged-xanthone-derivatives containing carbamate scaffolds were designed and 
synthesized. These carbamate derivatives were synthesized to improve the drug-like properties of the original 
compound. The MTT assay revealed that these compounds manifested comparable antiproliferative activities 
and better physicochemical properties, which contributed to improving their in vivo activities. The mechanisms 
of these compounds were also explored. 8n (DDO-6337), the representative compound, showed moderate inhib-
itory activity toward Hsp90 ATPase and resulted in the degradation of Hsp90 client proteins, such as HIF-1α , 
ultimately contributing to this compound’s antitumor and anti-angiogenesis activities.

Materials and Methods
Compounds and Reagents. The synthetic routes of target compounds and their identification results are 
shown in the supporting information files. The compounds used in the biological assay were in DMSO with a 
stock concentration of 10 mM, and the maximum concentration of DMSO used was no more than 0.1%. All of 
the chemical reagents and biological reagents, including DMSO, were purchased from Sigma-Aldrich (St Louis, 
MO, USA). All cell lines used in study were purchased from Typical Culture Preservation Commission Cell Bank, 
Chinese Academy of Sciences (NCB). The antibodies used from Cell Signaling Technology (Beverly, MA, USA) 
were the PARP antibody (9542L), cleaved-PARP antibody 5625, anti-Caspase 3 antibody 9664, cleaved caspase-3 
antibody 9664, Bcl-2 antibody 3498, Bax antibody 2772, c-RAF antibody 9422, Akt antibody (9272S), Hsp70 antibody 
4876, Erk1/2 antibody 4370, and HER-2/ErbB2 antibody 2242. The HIF-1a antibody (ab51608) was purchased from 

Figure 7. (A) The tumour diameters were measured and used to calculate the tumour volumes. The HepG2 
xenograft-bearing mice were intravenously injected with 2.5, 5, 10 and 50 mg/kg 8n for 20 days. (B) After 20 days, 
mice were sacrificed and the individual tumours were weighed. *p <  0.05, *p <  0.01; Student’s t-test (n =  6). (C) 
The tumour diameters were measured and used to calculate the tumour volumes. The HepG2 xenograft-bearing 
mice were orally administered 50 mg/kg 8n, 50 mg/kg DDO-6101 or 10 mg/kg 5-FU for 20 days.
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Abcam (Cambridge, MA, USA). The β -actin antibody (60008-1-Ig) was from the Proteintech Group (Wuhan 
Sanying Biotechnology, Hubei, China). Cisbio Bioassays in France supplied the HTRF transcreener ADP kit. 
Adriamycin (S1208) was purchased from Selleck (Texas, USA).

Animals. All animal studies were conducted in compliance with the Guide of Chinese Academy of Medical 
Sciences and under the guidance of the Animal Ethics Committees of the Institute of Materia Medica and China 
Pharmaceutical University. Female nude mice at an age of five to six weeks with body weights ranging from 18 to 
22 g were obtained from the Shanghai Slac Laboratory Animal Limited Company. The mice were maintained in 
a sterile environment at 21 °C to 25 °C and a relative humidity of 55 ±  5%. Autoclaved deionized water and irra-
diated pelleted food as well as a 12 h light/12 h dark cycle were provided during the whole experimental period. 
The mice were maintained under the guidelines of the National Science Council of the People’s Republic of China.

Cell Proliferation Assay. The inhibition of tumour cell growth was measured by a modified tetrazolium (MTT) 
salt assay, as previously described39. Cells were cultured in a 96-well plate and treated with culture medium alone or dif-
ferent concentrations of the compounds. The cells were incubated for 72 h, and then, the MTT assay reagent was added. 
After a 4 h incubation, the formazan product was quantitated at 570 nm. The IC50 values (the concentrations that gave 
rise to 50% inhibition of cell viability) were calculated using GraphPad Prism 6 using a variable slope (four parameters).

Hsp90 ATPase Activity. To measure the Hsp90 ATPase activity, a ADP Hunter Plus Assay kit from 
DiscoverX was used as previously described39. Recombinant human Hsp90 protein (200 nM/L, Stressgen) and 
compounds at different concentrations were pre-incubated in a 384-well black microplate at 37 °C for 0.5 h in the 
presence of assay buffer from the kit. Then, the plate was incubated for another 0.5 h after the addition of ATP 
(100 μ M), followed by addition of the detection reagent, and the fluorescence was measured at an excitation wave-
length 540 nm and emission wavelength of 620 nm using a spectrophotometer (Varioskan multimode, Thermo). 
The IC50 was obtained using the GraphPad Prism software, version 6.0.

Figure 8. 8n had anti-angiogenesis activity in vitro and in vivo. (A) A wound-healing assay was used to 
evaluate the motility of HUVECs after treatment with 8n for 24 h. (B) Changes in cell motility were evaluated 
using a transwell assay of cell migration and invasion. (C) The effect of 8n on tube formation by HUVECs. 
HUVECs were incubated with 8n for 6 h and then transferred to Matrigel for 6 h. (D) Zebrafish embryos treated 
with blank control or 1, 10, or 50 μ g/ml of 8n.
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Western Blotting. The cells were washed with PBS and lysed with ice-cold lysis buffer supplemented with 
protease inhibitors (Roche) for 30 min. The protein content of the supernatants of lysates was determined using 
a bicinchoninic acid assay. Equal 50 μ g total protein samples were separated by sodium dodecyl sulphate poly-
acrylamide gel electrophoresis (SDS− PAGE) and then transferred onto PVDF membranes (Millipore) at 90 volts 
for 90 mins. After blocking the membrane with 5% skim milk for 1 h at RT, the membranes were incubated with 
the primary antibody overnight at 4 °C. Then, the membranes were incubated with a DyLight 800-labeled second-
ary antibody in the dark for 1 h. Detection of specific proteins was performed with the Odyssey infrared imaging 
system (LI-COR, Lincoln, Nebraska, USA).

Transwell Migration Assay. A transwell migration assay was performed as previously described with 
minor modifications15. HUVECs (4× 104 cells per well) with compound 8n were seeded in the top of transwells 
(Corning Incorporated) and allowed to migrate for 4 h at 37 °C, 5% CO2 and 1% O2. The cells on the top surface 
of the Matrigel were removed using a cotton swab, and the migrant cells were fixed for 30 min with 4% (wt/vol) 
formaldehyde. The cells were then washed three times with PBS, coloured with 0.1% crystal violet, and micropho-
tographed. Each assay was performed three times using triplicate samples.

Tube Formation Assay. The tube formation assay was performed as previously reported with some modi-
fications40. A 48-well cell culture plate and the tips used were pre-chilled at − 20 °C for 10 mins and then carefully 
coated with Matrigel (200 μ L/well; Becton Dickinson, Bedford, MA, USA). Caution was taken to avoid bubbles. 
The plate was cultured at 37 °C for 30 minutes, and then, the Matrigel became solid. HUVECs were treated with 
8n for 4 h. The cells were collected and suspended in serum-free medium. Then, 2 × 104 cells were seeded onto the 

Figure 9. (A) The caged compounds (50 μ M) inhibited the Hsp90 ATPase activity in a HTRF-based inhibition assay. 
(B) The IC50 values for the inhibition of Hsp90 ATPase by 8n, 8o and GA as detected by the HTRF Transcreener ADP 
kit. The test compounds were diluted to obtain a range of concentrations and incubated with Hsp90 and ATP. The 
amount of ADP generated was detected. (C) Western blots of the Hsp90 client proteins after HepG2 cells were treated 
with the indicated concentrations of 8n for 24 h. (D) The mRNA expression of VEGF was determined by real-time 
quantitative reverse-transcriptase polymerase chain reaction (RT-PCR) and analysed by the delta Ct method. The 
bars represent the means with standard error of the mean (SEM) and the fold change in the VEGF/GAPDH ratio 
relative to the vehicle-treated group. The different significance levels are indicated as **P <  0.05.
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Matrigel under normoxic or hypoxic conditions. After 6–8 h, photos were taken of the tube formed by HUVECs 
in five random fields per well.

Wound Healing Assay. HUVECs were incubated in a 6-well plate until full confluence. Monolayers of 
HUVECs (90% confluent) were starved in serum-free medium for 12 h and carefully scratched using a 200 μ l ster-
ile pipette tip. The debris was washed twice with PBS. Then, the HUVECs were treated with 8n or the vehicle in 
full medium. Cells were cultured under hypoxic conditions for 24 h. Then, the wound edges were photographed 
under an inverted-phase microscope and measured.

Cell Death Analyses. HepG2 cells were grown on glass coverslips and fixed in 4% paraformaldehyde. Then, 
the nuclei were stained with DAPI (Sigma Aldrich) and visualized to evaluate the morphological evidence of 
apoptosis. 8n-induced apoptosis was assessed using a fluorescence microscope and the Annexin V-FITC apop-
tosis Detection Kit (Beyotime Biotechnology, Shanghai, China) according to the manufacturer’s instructions. 
Briefly, cells treated with 8n for 48 h were harvested and washed in PBS. The cells were diluted to 1× 106 cells/
mL and incubated with Annexin V and propidium iodide (PI) for 10 minutes in binding buffer in the dark at RT. 
Stained cells were analysed with a FACScan analyser (argon laser, Becton Dickinson, USA). All data were ana-
lysed by using the FlowJo software.

In vivo Fluorescent Zebrafish Assay. Transgenic zebrafish (VEGFR2: GFP) embryos were supplied using 
the drug screening platform of the Shandong Academy of Sciences Institute; they were grown and maintained 
according to the same protocols41. The screen was carried out in 24-well plates. Compounds were prepared ini-
tially as a 10 mg/mL stock solution in dimethyl sulfoxide (DMSO). The stock solution was diluted to the relevant 
assay concentration with fish water, and 0.5% DMSO served as a vehicle control. The embryos were distributed 
in 24-well plates, with 10 embryos placed in each well. Then, a diluted solution of each compound was added. 
The embryos were exposed to the compound solution and incubated at 28.5 °C. After 24 h, the zebrafish were 
anesthetized with 0.01% tricaine and imaged under a fluorescence microscope (Olympus, Inc.) equipped with a 
SZX16 microscope and a DP2-BSW digital camera (Olympus, Inc.). The animal experiments were performed in 
accordance with the approval of the Chinese Academy of Medical Sciences and the Biology Institute of Shandong 
Academy of Sciences. All studies were performed in accordance with the approved guidelines from the China 
Zebrafish Resource Center with the approved protocol number of 2012CB944504.

A statement identifying the institutional and/or licensing committee experimental approval.  
All animal studies were performed in compliance with the Chinese Academy of Medical Sciences and the Animal 
Ethics Committees of the Institute of Materia Medica. The animal experiments were performed in accordance 
with the National Institutes of Health Guide for the Care and Use of Laboratory Animals with the approval of the 
Center for New Drug Evaluation and Research of China Pharmaceutical University (Nanjing, China).

Human Tumour Xenograft Studies. All studies were performed in compliance with the relevant guide-
lines and regulations. Tumours on female nude mice were established by injecting 1× 107 HepG2 cells on the dor-
sal surface. After four weeks, tumours of approximately 150 mm3 were cut into pieces that were 3 mm× 3 mm× 
3 mm in size and were then implanted in the dorsal surface of other female nude mice. One week later, mice 
implanted with xenografts of 100 mm3 were selected, randomized, and intraperitoneally injected with 2.5, 5, or 
10-mg/kg 8n or vehicle daily for another three weeks. The tumour dimensions were measured daily with vernier 
calipers, and the tumour volumes were calculated using the formula: volume =  (width)2 ×  length/2.

Determination of the Physicochemical Properties. A HPLC system with an ultraviolet (UV) detector 
was used to detect the solubility of the compounds. The optimal wavelength was 290 nm. Ethanol/water (85:15) was 
an efficient eluent at a flow rate of 0.5 mL/min. The compounds were stirred in deionized water overnight to max-
imize the retention of the compounds in solution. Then, the solutions were filtered and the supernatant was used 
as a fluid sample for HPLC detection. The permeability (Pe) of some of the compounds was tested with the help of 
a standard PAMPA (pION), as previously reported34. PAMPA was performed on a PAMPA Explorer instrument 
(pION, Inc., Woburn, MA) with the PAMPA Explorer command software (Version 3.7.4.1). The compounds were 
diluted to 10 mM with the system solution buffer (pH 7.4). Then, 150 μ L of the diluted compound solution was trans-
ferred to a UV plate, and the UV spectrum was collected and used as a reference. Then, paint the membrane with 5 μ 
L of gastrointestinal tract (GIT) lipid. The acceptor chamber was filled with 200 μ L of acceptor solution buffer, and 
the donor chamber was filled with 200 μ L of diluted compound solution. The PAMPA sandwich was assembled and 
left at 25 °C for 4 h. The UV spectra (240–500 nm) from the donor and the acceptor were collected. The permeability 
coefficient was calculated with the PAMPA Explorer Command software (Version 3.7.4.1) based on the area under 
the curve (AUC) of the reference plate, the donor plate, and the acceptor plate. The permeability coefficient of the 
compound was tested for four times, and the data are shown as the average values. Ketoprofen (4.5× 10−6 cm/s) and 
propranolol (112.8× 10−6 cm/s) were used as the standards in this assay.

Statistical Analysis. All of the reported values are presented as the means ±  standard deviations (SDs) from 
at least two independent experiments performed in triplicate. When necessary, the two-group differences were 
statistically compared using t-tests. All of the statistical tests were performed using GraphPad Prism 6.0.
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