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Abstract
In this study, an attempt has beenmade to differentiate Novel Coronavirus-2019 (COVID-19) conditions from healthy subjects in
Chest radiographs using a simplified end-to-end Convolutional Neural Network (CNN) model and occlusion sensitivity maps.
Early detection and faster automated screening of the COVID-19 patients is essential. For this, the images are considered from
publicly available datasets. Significant biomarkers representing critical image features are extracted fromCNN by experimentally
investigating on cross-validation methods and hyperparameter settings. The performance of the network is evaluated using
standard metrics. Perturbation based occlusion sensitivity maps are employed on the features obtained from the classification
model to visualise the localization of abnormal areas. Results demonstrate that the simplified CNN model with optimised
parameters is able to extract significant features with a sensitivity of 97.35% and F-measure of 96.71% to detect COVID-19
images. The algorithm achieves an Area Under the Curve-Receiver Operating Characteristic score of 99.4% with Matthews
correlation coefficient of 0.93. High value of Diagnostic odds ratio is also obtained. Occlusion sensitivity maps provide precise
localization of abnormal regions by identifying COVID-19 conditions. As early detection through chest radiographic images are
useful for automated screening of the disease, this method appears to be clinically relevant in providing a visual diagnostic
solution using a simplified and efficient model.

Keywords Chest radiograph . COVID-19 . Convolutional neural network . Occlusion sensitivity . Visualisation

1 Introduction

Novel Coronavirus-2019 (COVID-19) is a pandemic affecting
212 countries and territories worldwide. As on May 82,020
report by the World Health Organisation, 37,59,967 con-
firmed cases and 2,59,474 deaths are reported [1]. The infec-
tions are seen to rise exponentially and rapidly, where an
infected person transmits the disease to 406 individuals within
30 days. There is an urgent need for automated screening and
early diagnosis of the disease to contain its prevalence [2].

Currently, Reverse Transcription-Polymerase Chain
Reaction (RT-PCR) is the gold standard diagnostic test for
confirming COVID-19 patients. However, this method has
been reported to suffer from high false negative rates and is

time consuming [3]. Evidences of imaging manifestations
show promising directions to improve sensitivity in the detec-
tion. The imaging characteristics of COVID-19 are subtly dif-
ferent from other types of viral pneumonia [4]. Typical radio-
logical manifestations of COVID-19 include patchy to conflu-
ent ground glass opacities distributed peripherally with or
without consolidation appearing in bilateral lower lung zones
[5, 6].

Chest Radiographic (CXR) imaging is considered as the
initial diagnostic modality and primary screening tool to de-
tect several respiratory pathologies such as Tuberculosis (TB)
and Pneumonia [7, 8]. This modality is reliable and portable
by avoiding risk of any disease exposure especially in remote
settings [8]. Recent guidance by the World Health
Organisation also suggests the prospective uses of chest im-
aging for COVID-19 patient diagnostics and therapy.

Computer Aided Diagnostic (CAD) systems driven by
Artificial Intelligence (AI) have proven to be effective for
disease screening [9]. The introduction of fully automated
models in a CAD system has significantly reduced inter and
intra observer variability in radiological examinations and im-
prove diagnostic relevance through rapid screening rates.
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However, false negative rates produced are still high enabling
continuous research potential in this field. Convolutional
Neural Networks (CNN) have been the core technique to de-
tect and localise disease manifestations and differentiate
anomalies. These methods have been successfully employed
for several radiographic applications [10–12]. These models
utilise larger training samples to achieve better performance.
Studies show that better performance can be achieved with
tailor-made CNN trained from scratch [12, 13]. Simplified
CNN models are also employed with shallow architecture
for limited training datasets [14–16].

There have been significant efforts in the literature to detect
and distinguish COVID-19 patients from normal using CXRs
and CNNs [8]. Custom CNN models have been developed to
classify CXR images with better accuracy [17]. In another
study by Rahimzadeh [18], a concatenation of Xception and
ResNet50V2 networks are performed on a combination of
large dataset with a smaller number of COVID-19 X-ray im-
ages and achieved high performance. A deep stacking net-
work is reported to yield better performance with the usage
of transfer learning to detect COVID-19 from larger and
smaller datasets [13]. These models employ image
pretraining, data augmentation and transfer learning tech-
niques by creating large datasets to achieve better perfor-
mance [8, 17]. However, these networks require more com-
putations for training and inference, and may not suit to med-
ical tasks consisting of a limited amount of data [9].

Visualising and interpreting the network behaviour helps to
validate the model’s localization performance in assessing
subtle characteristics and suspicious biomarkers associated
with abnormal findings in medical images [10]. Besides quan-
titative validation of CNN model using performance mea-
sures, Explainable AI methods are essential to provide a visual
diagnostic approach [19]. There have been attempts to visual-
ise critical regions of COVID-19 using deep networks using
Class Activation Map (CAM) methods based on gradients
such as Grad-CAM, GradCAM++ to provide class-
discriminating regions [8, 17, 20]. However, they tend to scat-
ter from the areas of COVID-19 providing imprecise localiza-
tions [13, 17, 20]. Hence, sensitive methods that capture finer
and subtle abnormal findings based on CNN’s features are
necessary. Occlusion sensitivity maps would provide appro-
priate visual diagnosis by delivering finer details of abnormal-
ity localization using sensitivity of softmax scores [10, 21].

The objective of this framework is to perform a pilot study
for automated differentiation of COVID-19 patients from
healthy subjects using chest X-ray images. For this, an effi-
cient and simplified end-to-end CNN model for a limited
training dataset is developed by extracting critical image fea-
tures representing significant CXR biomarkers to identify
COVID-19. The model is optimized by exploring its feasibil-
ity and efficiency in terms of its cross -validation analysis and
hyperparameter setting. Besides quantitative validation using

performance measures, “Explainable AI” method is used to
qualitatively validate the features obtained from CNN. This is
performed using occlusion sensitivity maps which provides a
visual diagnostic approach based on precise localization of
abnormal regions within the lung fields.

Rest of the paper is organized as follows: Methods is de-
scribed in section II, results are illustrated in section III, dis-
cussion is presented in section IV, followed by conclusions in
section V and references.

2 Methods

This section describes about the image datasets, proposed
CNN model, performance evaluation and occlusion sensitivi-
ty maps.

2.1 Image database

In this study, two publicly available datasets are considered
for healthy and COVID-19 CXR images respectively.

& COVID-19 image collection: The CXR images of
COVID-19 patients are considered from a publicly acces-
sible dataset [22]. This dataset contains CXR and CT im-
ages of various bacterial and viral pneumonias especially
COVID-19 [20]. The images are being collected from
various public sources, hospitals and physicians. It is part
of a project approved by the University of Montreal Ethics
Committee, which aims at improving prognostic predic-
tions to triage and manage patient care. The objective be-
hind the project is to develop AI based techniques for the
diagnosis and prediction of infectious disease. As of April
28, 2020, an updated version of this dataset consists of 310
chest X-ray images in three views belonging to viral and
bacterial pneumonia conditions with varied demo-
graphics. The dataset also contains patient metadata with
clinical notes and patient details such as age, sex, survival
information, date of image acquisition and name of the
admitted hospital for most of the images. Bounding box
denoting regions are provided for the detection of prob-
lematic regions in images. In this study, 151 COVID-19
CXR images in Posterior-Anterior (PA) view are used
(refer Table 1).

& The Shenzhen set - Chest X-ray Database: The CXR
images of healthy subjects are considered from a public
dataset [23]. This dataset has been created and published
by the National Library of Medicine, Maryland, USA, in
an effort to provide healthy and TB CXR images for train-
ing machine learning algorithms [24]. The dataset was
obtained from Shenzhen No.3 People’s Hospital,
Guangdong Medical College, Shenzhen, China. The
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CXR images belong to the hospital outpatient clinics, and
are acquired within a 1-month duration in September 2012
using a DR digital diagnose system from Philips [9, 23].
The patient metadata such as age, gender and TB abnor-
mality are provided as separate files. The database has
been exempted from IRB review for public use. In this
study, CXR images in PA view pertaining to 150 healthy
subjects are considered from this dataset.

Table 1 shows the demographic details of the two datasets.
In this study, all the images corresponding to both the datasets
are converted into grayscale format and down-sampled to be
fixed at a resolution of 512 × 512. Figure 1 shows
Representative CXR original images of (a and b) healthy sub-
jects and (c and d) COVID-19 patients considered from the
datasets.

2.2 Proposed CNN model

To extract critical features from specific CXR biomarkers, a
simple CNN deep network is employed to differentiate
healthy and COVID-19 CXR images. CNN is the most pop-
ular deep learning method which provides the optimal archi-
tecture for image recognition and classification tasks by elim-
inating the use of hand-crafted features [25, 26]. The pipeline
of the proposed approach with simplified and efficient CNN
architecture is shown in Fig. 2.

The end-to-end CNN model considered in this study com-
prises convolutional sections (including batch normalization),
max pooling layers, followed by a fully connected layer, a
softmax layer and an output classification layer.

& Input Image Layer: This layer comprises of input CXR
images with image sizes corresponding to the height,
width, and the grayscale channel size.

& Convolutional Section: In the convolutional layers, filter
window size and number of filters representing the num-
ber of feature maps are mentioned. It contains batch nor-
malization to perform inbuilt optimization to accelerate
network training and reduce overfitting. It normalizes each
channel across a mini-batch. Then, Rectified Linear Unit
(ReLU) non-linear activation layers are followed [25].

& Max Pooling Layer: These layers perform down-
sampling to reduce the spatial size of the feature layer
and eliminates redundant information.

& Fully Connected Layer: A fully connected layer con-
nects all neurons of the network in the preceding layer
by combining all the features extracted and trained by
the preceding layers across the image to identify the bio-
marker patterns [27].

& Softmax Layer and Classification layer: The non-linear
softmax activation normalizes the output of the previous
layer. The output of this layer can then be used as proba-
bility scores by the classification layer to compute the loss.

2.2.1 Model construction

Firstly, the input images of size 512 × 512 × 1 are subjected to
CNN network. Each convolutional layer is made of varied
number of filters as 8, 16, 32, 64, 128, 256 and 512 with
varying filter sizes 3 × 3 and 5 × 5 [28]. The convolutions
are all zero-padded in order to preserve the input resolution
[9]. Further, each convolutional 2d-layer is followed by batch
normalization layer and ReLU activation layers. An epsilon
value of 1e-5 is chosen in batch normalization.

Table 1 Dataset demographics

Category COVID-19 image collection (As on April 28, 2020) Shenzhen set

Number of images present 354 (CXR +CT) 662

Total Number of CXR images 310 662

Number of normal CXR images – 326

Number of abnormal CXR images 310 (No Finding - 3) 336

Findings Viral and bacterial pneumonias such as ARDS, Chlamydophila,
COVID-19, E.Coli, Klebseilla, Legionella, Pneumocystis, Streptococcus, SARS

TB abnormalities

COVID-19 CXR images 247 –

CXR Image view Frontal view
(PA, AP, Lateral)

Frontal View
(PA, AP)

Image type RGB/Gray scale RGB/Gray scale

Image format PNG/JPEG/JPG PNG

Dot Per Inch (DPI) Variable 72

Bit depth Variable 8

Image resolution Variable 3 K × 3 K approx.
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Fig. 1 Representative CXR
original images of (a and b)
healthy subjects and (c and d)
COVID-19 patients

Fig. 2 Pipeline of the proposed methodology (BN – Batch normalisation, ReLu – Rectified linear unit)
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Further, a max pooling layer is followed with a stride of [2]
and pool size of 2 [25]. The feature maps obtained are fed to a
fully connected layer, followed by the softmax layer and a
classification layer. In this work, the output size of 2, corre-
sponding to the two classes is fixed. The weights are initial-
ized using the Glorot method on all layers where each weight
is initialized from Gaussian distribution with a mean value of
zero and finite variance. Finally, the classification scores are
obtained to generate visualization-based occlusion sensitivity
maps.

2.2.2 Model evaluation

Effect of comparisons in 5-fold and 10-fold cross-validation
[9, 17] on classification accuracy is experimentally analyzed
for different number of CNN layers. This is done to investi-
gate on the cross-validation technique that yields the best
performing feature test set [29]. This is in-line with literature
stating that cross-validation analysis is important to construct
a simplified network that provides high performance [30].
Number of CNN layers such as 3, 5 and 7 are selected for this
purpose [12].

Network training is carried out by examining the effect of
filter sizes on classification accuracy for different learning
rates [0.001, 0.01] at different number of CNN layers [3, 5,
7]. Mini-batch samples and maximum epochs are selected
empirically as 64 and 30 respectively with data shuffling at
every epoch [9, 31]. In this work, varying CNN filter sizes of
3 × 3 and 5 × 5 are selected for experimental analysis [28].
Categorical cross-entropy is used as the error function and
Adam optimizer is tested [9]. Parameters of Adam optimizer
such as gradient decay factor, squared gradient decay factor
and initial learn rate are fixed at 0.9, 0.999 and 0.001
respectively.

2.2.3 Model selection

An efficient architecture comprising of optimal number of
layers with optimal hyperparameters for the corresponding
model validation method that yields high performance in de-
tection of COVID-19 is selected based on the obtained results.
This provides a simplified and efficient CNN model opti-
mized to achieve high classification performance, so as to help
even unskilled technicians and practitioners of the medical
community.

The whole system is trained and tested in about 20 min
using Nvidia GeForce GTX 1050 Ti, Intel I7 processor,
16 GB RAM in parallel execution environment. The experi-
ments are performed using MATLAB® 2019b software.

2.3 Performance evaluation

To evaluate the classification performance in differentiating
COVID-19 and healthy images, various performance metrics
namely, sensitivity, specificity, precision, F-measure, and
Area Under the Curve-Receiver Operating Characteristic
(AUC-ROC) are used [9, 32]. Average values of folds are
reported in this study. In addition to these, to measure the
effectiveness of detection and to compute the quality of binary
classifier, Diagnostic odds ratio [33] andMatthews correlation
coefficient (MCC) [34] metrics are calculated.

Diagnostic odds ratio: This ratio measures the efficacy of a
diagnostic test and considered to be the single indicator of test
performance. High value of Diagnostic odds ratio could be
helpful [33] to medical practitioners in evaluating COVID-
19 diagnoses. It is calculated by,

Diagnostic odds ratio ¼ sensitivity*specificity
1−sensitivityð Þ* 1−specificityð Þ

2.4 Occlusion sensitivity maps

To identify whether the efficient CNN model is able to detect
specific locations of significant healthy and COVID-19 bio-
markers, occlusion sensitivity maps are used. Occlusion sen-
sitivity maps provide localization information about certain
specific areas in the image, when a grayscale mask is placed
through the whole CXR image generating a probability map
[10, 21]. It is used to analyse the network sensitivity to the
occlusions of image regions [35]. These maps provide high
spatial resolution and finer details.

It works when the occluded images are passed to CNN
network and a Euclidean distance is calculated for each itera-
tion. The difference between the occluded distance and non-
occluded distance is computed. This difference increases once
a patch occludes an area in the image relevant to the network,
thus creating a heat map. The pathological regions correspond
to higher probability and a drop in the value indicates that the
pathological locations have been occluded. In this study, a
mask size of 15 and stride value of 10 pixels are heuristically
chosen. Thus, COVID-19 specific CXR biomarkers can be
localised providing an approximate visual diagnosis.

3 Results

The following section contains image description, CNN mod-
el selection, Performance evaluation and diagnostic visualisa-
tion of CXR images.
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3.1 Image description on healthy and COVID-19 chest
radiographs

A representative set of CXRs of healthy and COVID-19 sub-
jects in PA view are shown in Fig. 1. In Fig. 1(a and b), it is
visually observed that the lung fields have better image con-
trast with respect to background structures. It might be due to
lung sacs that are filled with sufficient amount of air without
forming any white obscurity/opacity. However, the images
suffer from intensity inhomogeneity across lung fields and
along the radiolucent ribs due to overlay of sub- structures.
The lung fields display structural dissimilarity across subjects.

In Fig. 1(c and d), the lung fields exhibit poor contrast with
respect to surrounding regions. This might be due to the ra-
diological manifestations that restrict the flow of air inside the
lungs and its passages. Biomarkers such as patchy and seg-
mental white opacities distributed in central, perihilar and lung
periphery are observed in the bilateral lungs which depict
intensity variations locally. In Fig. 1(c and d), these markers
appear as homogenous in intensity with surrounding opaque
regions such as rib contours, bony areas, mediastinal reflec-
tions and heart vessels. These opaque markers co-exist in
multiple lung areas showing as indefinite image attributes
demonstrating a major challenge to detect and differentiate
COVID-19 CXRs from healthy images.

3.2 CNN model selection

A comparison of 5-fold and 10-fold cross-validation methods
are performed on classification accuracy for different hidden
layers of CNN (refer Table 2). It can be seen that high accu-
racy values are obtained for 5-fold as compared to 10-fold
cross-validation technique. It is also observed that there is an
increase in accuracy values from 3-layer to 5-layer and 7-layer
networks. However, it can be seen that the accuracies are
similar with a higher value of 96.6% in 5-layer and 7-layer
networks against the 3-layer model. This might due to the fact
that the CNN could have extracted most of the relevant fea-
tures in 5-layer architecture for the differentiation of classes.

The experimental analysis of the effect of filter sizes on
classification accuracy for 3, 5 and 7 layers of CNN at two
different learning rates are shown in Fig. 3. From Fig. 3(a), it
is observed that a maximum accuracy value of 96.6% is ob-
tained at 5-layer CNN with filter size 3 × 3 as compared to the

accuracy of 96% with filter size 5 × 5 at learning rate of 0.001.
Similar is the case in Fig. 3(b) with 5-layer CNN reporting a
maximum accuracy using filter size 3 × 3 in comparison with
filter size 5 × 5 and other layers. Among Fig. 3(a) and (b), it is
seen that filter size 3 × 3 at a learning rate of 0.001 yields the
highest accuracy with 5-layers as against the learning rate
0.01.

From the above results, it is seen that a depth of 5-layer
convolutional blocks is chosen. Network training and testing
using 5-fold cross-validation is found to yield better results.
The optimal set of parameter values which provided maxi-
mum accuracy are obtained to be filter size of 3 × 3, a learning
rate of 0.001, batch size of 64 and maximum epochs of 30
(refer Table 3).

3.2.1 Performance evaluation

The classification performance of the proposed CNN model
with 5-layers is quantitively evaluated using performance
measures (refer Table 4). A maximum sensitivity value of
97.35% is obtained in the detection of COVID-19 images.
The percentage specificity value is also found to be better in
identifying healthy subjects not being detected as diseased.
Similarly, precision and F-measure values are found to be
high (> 96%). It can be noted that equivalent values of F-
measure for healthy and COVID-19 classes denote better clas-
sification performance by 5-layered CNN model. Diagnostic
odds ratio is obtained with a high value (882) indicating a
better test performance of the diagnostic CNN model.
Quality of this binary classifier is also found to be better with
perfect prediction of two classes using MCC measure.

Further, a confusion matrix is generated to analyse the pro-
portion of images being classified and misclassified. In
Fig. 4(a), the number of images belonging to true positive
(TP), false positives (FP), true negatives (TN) and false neg-
ative (FN) classes for healthy and COVID-19 subjects are
shown.

It is observed that the greater number of images are identi-
fied as TP. This states that the CNN model is able to detect a
greater number of COVID-19 images correctly with low FN.
Similarly, TNs are also detected more precisely by the model
with 145 healthy images being correctly classified out of 150
with low false negative images. From Fig. 4(b), ROC analysis
shows that a high AUC value of 0.994 is obtained indicating
better classification predictability with 99.4% chance that the
5-layer CNN model distinguishes the two classes. This is ev-
ident from the curve showing increased threshold points at
higher sensitivity close to 1.0.

3.2.2 Diagnostic visualisation: Correctly classified

To understand the diagnostic information obtained from CNN
model, it is essential to visualise the image regions responsible

Table 2 Comparison of cross-validation methods on classification ac-
curacy (in %) for different layers of CNN

Layers K = 5 K = 10

3 95.3 94.3

5 96.6 95.3

7 96.6 95.3
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for abnormality detection through feature activations of the
network. Figure 5 shows occlusion sensitivity maps and their
extracted lung field regions for representative healthy and
COVID-19 subjects. The localization is mainly obtained in
the lung field regions. The first and second rows of Fig. 5(a)
show a representative chest radiograph truly classified as
healthy. The occlusion sensitivity maps shown in Fig. 5(b)
(Row 1 and Row 2) have blue areas highlighted in entire lung
field regions and red areas as surrounding regions. These find-
ings are correctly identified as healthy by the CNNmodel and
in line with the database annotations.

As lungs are the region of interest, this can be visualised in
the extracted lung field maps shown in Fig. 5(c) (Row 1 and
Row 2). Here, small spots of red markings are visible inside
lung fields. However, there are no increased signal variations
in any of the regions. The first and second rows of Fig. 5(d)
show a representative chest radiograph truly classified as
COVID-19. The first row of Fig. 5(d) shows a hazy patchy
and streaky opacities in the bilateral lung bases covering a
large portion in the lower zones. This might indicate a high
severity of disease.

Similarly, the second row of Fig. 5(d) shows a striated hazy
opacity near the middle lower lobes evolving from the lung
borders. This might also represent a highly severe condition.
These findings are consistent with COVID-19. In the occlu-
sion sensitivity maps shown in Fig. 5(e), the areas inside lung
fields are highlighted in red. It can also be seen that the areas
adjacent to red regions inside lung fields denote colour chang-
es between greenish yellow to brownish red. This correlates
well with the pathological changes seen in the original image
and inline with the database annotations indicating an in-
creased density of abnormality. These visualizations represent

positive contributions to classification and are better repre-
sented through extracted lung field maps shown in Fig. 5(f).

3.2.3 Diagnostic visualisation: Misclassified

The first row of Fig. 6 shows a healthy subject which is
wrongly classified as positive for COVID-19. Figure 6(a and
d) represents original healthy and COVID-19 images respec-
tively. The occlusion sensitivity map in Fig. 6(b and c) shows
brighter red areas along the lung borders and greenish yellow
to brownish red areas inside lung fields suspicious for
COVID-19. This area attributes to much decreased radiolu-
cency, as this may be the case for a pediatric with reduced air
inspiration. This is inline with the patient history of a 3-year-
old subject. The second row corresponds to COVID-19 sub-
jects misclassified as negative. In the second row of Fig. 6, the
dataset annotations describe that patchy ill-defined subpleural
opacities are found in the middle zone of the right lung.
However, the occlusion sensitivity maps and extracted lung
field maps shown in Fig. 6(e and f) couldn’t reveal the asso-
ciated pathology as whole of the lung fields represent blue
areas corresponding to negative contribution to classification.

4 Discussion

This work focusses on the differentiation of healthy subjects
from COVID-19 CXR images using a simplified and efficient
end-to-end CNNmodel and occlusion sensitivity maps. In this
work, the images are obtained from public datasets and are
trained and tested using a simplified end-to-end CNN model
for classification of the two classes. Cross-validation analysis
and hyperparameters settings are performed experimentally to

Fig. 3 Effect of filter sizes on
classification accuracy for
different number of layers with
(a) Learning rate = 0.001 and (b)
Learning rate = 0.01

Table 3 Custom CNN model selection based on maximum classification performance

Parameters Convolutional layers Cross validation Filter size Learning rate Mini-batch samples Max. epochs

Optimal values 5 5-fold 3 × 3 0.001 64 30
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construct an efficient model optimized for the considered
problem. Further, perturbation-based visualization method is
employed to capture finer details of localization of abnormal
regions within lung fields, so as to provide approximate visual
diagnostics helpful in the clinical setting.

Based on the obtained results, the proposed tailor-made
model is able to extract significant features corresponding to
healthy and COVID-19 regions from CXRs with better dis-
criminating ability. From the results of cross-validation anal-
ysis, high network performance with 5-fold cross-validation
could be due to large number of test images that are validated
at every fold thus, providing the best performing feature test
set than 10-fold method. Maximum accuracy obtained for
filter 3 × 3 with a learning rate of 0.001 implies that the net-
work is able to better capture local complex features in mas-
sive amount of information with better weight sharing, mak-
ing it an efficient network. The model provides maximum
performance using small learning rate which indicates that it
is able to learn the set of weights in an optimal way with a
small learning rate providing better input-output mapping.

From the experimental investigations, it is found that 5-
layer CNN provides maximum classification performance
with a simplified model optimised for the detection of
COVID-19. Five convolutional blocks correspond to a

receptive window covering the whole input image, and this
window size allows the network to access a large context for
its decisions at each location [9]. This is also evident from the
quantitative measures of sensitivity, specificity, precision,
AUC-ROC, F-measure and Diagnostics odds ratio. The qual-
ity of the binary classifier is validated to be high using MCC.

Results of Occlusion sensitivity maps show that subtle and
non-specific abnormal findings of COVID-19 could be iden-
tified with better visualization by providing finer localizations
of regions. It is obtained that the visual information from the
maps correlates well with the pathological changes seen in the
original image and inline with the database annotations indi-
cating evidence of abnormality.

A detailed discussion and comparison with existing studies
that report the implementation of CNN models and visualiza-
tion methods for the detection of COVID-19 using CXR im-
ages are presented (refer Table 5). Only peer-reviewed articles
are considered for comparison. Ozturk et al. [20] performed
DarkNet with 17 convolutional layers and Grad-CAM based
visualization technique. Limitations of this work correspond
to an imbalanced dataset, and imprecise localization of abnor-
mal areas. A maximum sensitivity value of 90.65% is reported
for the differentiation of healthy and COVID-19 images.

Brunese et al. [8] applied VGG-16 based CNN model and
Grad-CAM visualization method for significant number of
healthy images when compared to COVID-19 CXRs. A sen-
sitivity value of 87% is reported for binary classification. The
work proposed to investigate the use of verification techniques
to obtain better results in the future.

Another study by Mahmud et al. [13] used a stacked multi
resolution-based CNN model with balanced data set for the
classification of healthy and COVID-19 pneumonia.
Although high sensitivity and AUC have been obtained, a
scattering in CNN feature localizations out of a region of
interest has been reported. Rajaraman et al. [36] implemented
pretrained models and a residual network on a very small
collection of COVID-19 data. This work performed data
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Fig. 4 Model performance shown
as (a) Confusion matrix and (b)
ROC analysis

Table 4 Performance measures obtained for healthy and COVID-19
images using CNN

Performance measures Healthy COVID-19

Sensitivity (%) 96.00 97.35

Specificity (%) 97.35 96.00

Precision (%) 97.30 96.08

F-measure (%) 96.64 96.71

Diagnostic odds ratio 882

Matthews correlation coefficient 0.93
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augmentation technique. Large imbalance between the classes
hinders the appropriate selection of augmented training im-
ages. A Truncated Inception Net proposed by Das et al. ex-
plored different sets of input X-ray images achieved high sen-
sitivity and AUC values. However, poor localization of abnor-
mal areas using activation maps could be observed.

From the discussion, it could be observed that most of the
works utilized imbalanced dataset for binary classification of
healthy and COVID-19 CXR images. CAM based visualiza-
tion approaches are predominantly reported to validate the
quality of features obtained from deep architectures. Such

approaches illustrated imprecise localization of COVID-19
regions.

To summarise, this study rules out the usage of such
pretrained networks, which have been established for nat-
ural image classification tasks. The pretrained networks
require more computations for training and inference and
may not suit to medical tasks consisting of limited amount
of data.

Secondly, previous studies have shown the visualization
and interpretability task on a superficial level. A deeper un-
derstanding of radiological aspects provides deeper insights to

Fig. 5 Correctly classified
images: Original images of
healthy (a), COVID-19 subjects
(d) and overlay of occlusion sen-
sitivity maps (b and e). Extracted
lung field maps (c and f)
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Table 5 Discussion and comparison with existing studies

Author Images considered Architecture
used

Visualization
method

Validation
method

COVID-19
detection Results
(%)

Remarks/Limitations

Healthy COVID-
19

Ozturk
et al.
[20]

1000 250 DarkNet-17 Grad-CAM 5-fold CV Sensitivity: 90.65 Imprecise localization of areas on the chest
regionAUC-ROC: –

Brunese
et al. [8]

3520 250 VGG-16 Grad-CAM CV Sensitivity: 87 Proposed to investigate if formal verification
techniques can be helpful to obtain better
results

AUC-ROC: –

Mahmud
et al.
[13]

305 305 Stacked
Multi-resolution
CovXNet

Grad-CAM 5-fold CV Sensitivity: 97.8 Scattering in gradient based localizations out of
the region of interestAUC-ROC: 96.9

Rajaraman
et al.
[36]

1583 314 Wide residual
network and
pretrained
models

Grad-CAM Random
Split

Sensitivity: – Very small collection of COVID-19 data to se-
lect augmented training images, Imbalanced
dataset and Imprecise localization of areas on
the chest region belonging to COVID-19

AUC-ROC: –

Das et al.
[17]

D1:1583
D2: 80

162
162

Truncated
Inception Net

Activation
map

10-fold
CV

Sensitivity: 95 Maximum values are reported for imbalanced
dataset. Poor localization of areas of
COVID-19

AUC-ROC: 99

Proposed
Work

150 151 CNN - 5 Occlusion
sensitivity

5-fold CV Sensitivity: 97.35 Simplified, efficient CNN network for limited
dataset

Perturbation based visualization method for
precise localization

AUC-ROC: 99.4

Fig. 6 Misclassified images:
Original images of healthy (a),
COVID-19 subjects (d) and their
corresponding occlusion sensitiv-
ity maps (b and e). Extracted lung
field maps (c and f)
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gain trust, transparency and can be an additional opinion in the
medical community. This work provides such visual diagno-
sis which can be performed on low-end performance compu-
tational systems. The results of visualization are found to be
remarkable, even if absence of any annotation is considered.
Thirdly, the study emphasizes the importance of Diagnostic
odds ratio metric, which measures the effectiveness of a diag-
nostic test in a medical setting. High value of Diagnostic odds
ratio could be helpful to medical practitioners in evaluating
COVID-19 diagnoses.

5 Conclusion

The coronavirus pandemic has had a large impact on global
health and well-being. Early detection of the disease is essen-
tial to reduce its impact for directing proper treatment deci-
sions and strategies. Automated AI based diagnoses using
chest radiographs provide a rapid and reliable solution for
patient screening of COVID-19 abnormalities, especially in
remote and resource-poor regions. In this work, an attempt
has been made to develop a simplified and efficient
end-to-end CNN model optimised for the differentiation
of COVID-19 from healthy subjects based on the iden-
tification of significant image biomarkers at specific lo-
cations of chest radiographs. Experimental investigations
on model validation methods and hyperparameters set-
tings of the model are performed by extracting critical
features.

Maximum sensitivity and AUC-ROC values demonstrate
the discriminating ability of the considered CNN model in the
detection of Novel coronavirus-19 images. The proposed net-
work could offer faster chest X-ray screening by reducing the
computational requirement significantly using less power-
hungry hardware so as to help even unskilled technicians
and practitioners of the medical community. Low false posi-
tives from classification results suggest that many healthy
subjects need not undertake strenuous treatment process and
quarantine procedures as COVID-19 patients. Perturbation
based Occlusion sensitivity maps provide localization of ab-
normal areas by indicating subtle findings and non-specific
alterations with inter and intra patient variability. This auto-
mated CAD system could be clinically useful to assist radiol-
ogists to take precise decisions through visual diagnosis in
minimal amount of time in healthcare settings. When the re-
sources are scanty, such visually assisted tools help medical
practitioners to triage patients by highlighting the pathological
areas despite the lack of fine-grained annotations. This helps
in easy decision making and treatment strategy. Future work
would involve full-scale research on implementing deeper ar-
chitectures of CNN models using large image datasets and
performing lung field segmentation for better prognosis of
the disease.
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