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Resident cells of the central nervous system (CNS) play an important role in detecting
insults and initiating protective or sometimes detrimental host immunity. At peripheral
sites, immune responses follow a biphasic course with the rapid, but transient,
production of inflammatory mediators giving way to the delayed release of factors that
promote resolution and repair. Within the CNS, it is well known that glial cells contribute
to the onset and progression of neuroinflammation, but it is only now becoming apparent
that microglia and astrocytes also play an important role in producing and responding to
immunosuppressive factors that serve to limit the detrimental effects of such responses.
Interleukin-10 (IL-10) is generally considered to be the quintessential immunosuppressive
cytokine, and its ability to resolve inflammation and promote wound repair at peripheral
sites is well documented. In the present review article, we discuss the evidence for the
production of IL-10 by glia, and describe the ability of CNS cells, including microglia
and astrocytes, to respond to this suppressive factor. Furthermore, we review the
literature for the expression of other members of the IL-10 cytokine family, IL-19, IL-20,
IL-22 and IL-24, within the brain, and discuss the evidence of a role for these poorly
understood cytokines in the regulation of infectious and sterile neuroinflammation. In
concert, the available data indicate that glia can produce IL-10 and the related cytokines
IL-19 and IL-24 in a delayed manner, and these cytokines can limit glial inflammatory
responses and/or provide protection against CNS insult. However, the roles of other
IL-10 family members within the CNS remain unclear, with IL-20 appearing to act as a
pro-inflammatory factor, while IL-22 may play a protective role in some instances and a
detrimental role in others, perhaps reflecting the pleiotropic nature of this cytokine family.
What is clear is that our current understanding of the role of IL-10 and related cytokines
within the CNS is limited at best, and further research is required to define the actions of
this understudied family in inflammatory brain disorders.
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INTRODUCTION

Inflammation within the central nervous system (CNS) has devastating consequences. While it
was once thought that the brain is a victim organ of infiltrating leukocytes, it is now appreciated
that resident brain cells play a critical role in the initiation and/or progression of inflammatory
responses within the CNS that contribute to disease states. Resident CNS cells, such as microglia
and astrocytes, are able to recognize and respond to either pathogen associated molecular
patterns (PAMPs) or damage associated molecular patterns (DAMPs) via their expression of innate
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immune pattern recognition receptors (PRRs; Bowman et al.,
2003; Tsung et al., 2014; Crill et al., 2015; Serramía et al.,
2015). Similar to other myeloid immune cells such as
macrophages, microglia express an array of cell surface,
endosomal and cytoplasmic PRRs, allowing them to rapidly
respond to the presence of PAMPs and DAMPs in the
extracellular milieu and within the cytosol. In addition to the
well-studied Toll-like and nucleotide-binding oligomerization
domain (NOD)-like families of receptors (TLR and NLR,
respectively), more recent work has demonstrated the ability
of these sentinel cells to functionally express molecules that
serve as cytosolic sensors for foreign and/or damaged nucleic
acid motifs that include DNA-dependent activator of interferon-
regulatory factors (DAI), retinoic acid-inducible gene (RIG)-
like receptors (RLR) and cyclic guanosine monophosphate-
adenosine monophosphate synthase (cGAS; Bowman et al., 2003;
Liu et al., 2010; Furr et al., 2011; Crill et al., 2015; Jeffries
and Marriott, 2017). Interestingly, non-leukocytic CNS cells,
including astrocytes, can also express such innate immune
sensing molecules although, in contrast to microglia, such cells
appear to constitutively express fewer PRR types and expression
levels (Bsibsi et al., 2002, 2006). However, following activation
or infection, astrocytes show rapid elevations in the repertoire
and levels of expression of PRRs, suggesting that these cells
may become sensitized to the presence of danger signals (Bsibsi
et al., 2002; Bowman et al., 2003; McKimmie and Fazakerley,
2005).

Acute inflammatory responses play an important role in
pathogen clearance in peripheral tissues and organs, as discussed
elsewhere (Ma et al., 2015; Gyurkovska and Ivanovska, 2016;
Newton et al., 2016). While inflammation can similarly be
protective within the CNS, such responses can have severe
detrimental consequences if they are too extreme or sustained.
Following activation, glial cells are capable of the rapid
production of chemokines and cytokines that can alter the
integrity of the blood brain barrier (BBB), recruit and activate
circulating leukocytes to the site of the insult, and cause
cerebral edema that increases cranial pressure which, in severe
cases, can result in death due to herniation, blood clots, and
subsequent ischemic stroke (Bowman et al., 2003; Liu et al.,
2010; Furr et al., 2011; Barichello et al., 2012; Fayeye et al., 2013;
Minkiewicz et al., 2013; Pelegrín et al., 2014; Tibussek et al.,
2015; Papandreou et al., 2016; Sun et al., 2016; Shah, 2018).
Microglia and astrocytes respond to PAMPs (Furr et al., 2010;
Liu et al., 2010; Serramía et al., 2015; Sun et al., 2016) and
DAMPs (Minkiewicz et al., 2013; Tsung et al., 2014) by releasing
the signature inflammatory cytokines, interleukin-6 (IL-6) and
tumor necrosis factor-α (TNF-α), and the chemokine IL-8.While
these mediators can assist in the recruitment of leukocytes
that include those responsible for protective adaptive immune
responses, long-term exposure to these cytokines results in local
tissue damage. As such, it is essential that this acute inflammatory
phase is regulated and limited to prevent neurological damage.
In this review article, we will discuss the ability of glial cells to
produce mediators that can limit or resolve sterile or pathogen-
induced neuroinflammation, with a particular emphasis on the
IL-10 family of cytokines.

CNS CELLS CAN CONTRIBUTE TO THE
RESOLUTION PHASE OF IMMUNE
RESPONSES WITHIN THE BRAIN

Inflammation is typically biphasic and features the rapid
production of pro-inflammatory mediators, followed by a
decrease in their release and the subsequent delayed expression
of immunosuppressive factors that limit their production and/or
effect (Mino and Takeuchi, 2013; Shen et al., 2013; Headland
and Norling, 2015). Such a change in the cytokine expression
profile during this resolution phase serves to prevent prolonged
exposure to inflammatory mediators and limits associated tissue
damage. The transient nature of pro-inflammatory cytokine and
chemokine production by glia and leukocytes (Conti et al., 2004;
Barichello et al., 2011) results, at least in part, by a modification
in cytokine mRNA stability by RNA binding proteins, which
bind to the adenylate-uridylate (AU)-rich elements (ARE)
in the 3′ untranslated region (UTR) of the mRNA. For
example, the RNA binding protein tristetraprolin (TTP) has been
demonstrated to have an anti-inflammatory role as it binds to
the UTR of mRNA encoding the key pro-inflammatory cytokine
TNF-α, thereby destabilizing it (Liu et al., 2013; Patial et al., 2016;
Astakhova et al., 2018).

In addition to factors that can limit the production of
inflammatory mediators in the continued presence of activating
stimuli, other components can be upregulated in glial cells or
their neighbors that attenuate their effects. Anti-inflammatory
response (AIR) gene products include suppressor of cytokine
signaling (SOCS) molecules, and these proteins are potent
inhibitors of inflammatory mediator signaling cascades (Croker
et al., 2003; Hutchins et al., 2012). For example, SOCS3 functions
by binding to the IL-6 family receptor subunit, gp130, and
inhibiting the signal cascade for this cytokine family (Babon
et al., 2014; Wilbers et al., 2017). Importantly, cytokines that
are recognized to have immunosuppressive effects, including
IL-4 and IL-13, can induce the expression of SOCS molecules
in both peripheral immune cells and non-leukocytic cell
types, thereby contributing to their anti-inflammatory effects
(Hebenstreit et al., 2003; Jackson et al., 2004; Albanesi et al.,
2007; Dickensheets et al., 2007). Within the CNS, activated
glial cells have been shown to express members of the SOCS
family of molecules and their importance has been discussed in
detail in other literature reviews (Campbell, 2005; Baker et al.,
2009). Additionally, soluble cytokine decoy receptors, such as
decoy receptor 3 and IL-2 receptor 2 (IL-1R2), that can bind
inflammatory factors and prevent their interaction with target
cell receptors, can be produced during this anti-inflammatory
period (Francis et al., 2001; Ichiyama et al., 2008; Liu et al., 2015;
Bonecchi et al., 2016).

However, a major component in the transition of immune
responses from an inflammatory to a resolution phase is
the delayed secondary production of mediators that are
immunosuppressive and/or neuroprotective. For example,
pathogen recognition via PRRs generates a complex response
that includes the production of both inflammatory mediators
and factors that can restore an immunoquiescent environment,
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such as microRNAs (miRNAs). Once thought of as ‘‘junk’’
RNA that is generated during gene transcription, miRNAs
have been identified to play a major role in switching off acute
inflammatory responses, and several have been shown to have
such functions within the CNS (Ponomarev et al., 2011; Iyer
et al., 2012; Cho et al., 2015). miRNAs appear to contribute to
the maintenance of an immunoquiescent environment in the
CNS by reducing the production of inflammatory mediators
by microglia, perivascular macrophages, and astrocytes, and by
downregulating the expression of molecules involved in innate
immune sensing pathways that render these cells less responsive
to insult (Ponomarev et al., 2011; Iyer et al., 2012; Lai et al., 2013;
Zhao et al., 2013; Cho et al., 2015; Sun et al., 2015; Qin et al.,
2016).

In addition, microglia and astrocytes play a critical role in
providing neurons with a protective homeostatic environment
within the brain by expressing excitatory amino acid transporters
(EAAT), such as glutamate transporter 1 (GLT-1; Almeida et al.,
2005; Persson et al., 2005, 2007). During inflammation,
extracellular glutamate levels show increases that could
potentially be neurotoxic (Zou and Crews, 2005), but EAAT
expression and glutamate uptake by glia are elevated, thereby
protecting neurons from excitotoxicity (Moidunny et al., 2016).

Furthermore, and in contrast to the rapid production of
pro-inflammatory mediators, immunosuppressive cytokines are
typically produced at peripheral sites in a delayed manner to
promote tissue repair. These suppressive cytokines include IL-4,
IL-10, IL-13 and transforming growth factor-β (TGF-β), which
can significantly reduce the level of pro-inflammatory cytokine
production by activated CNS cells (Moore et al., 2001; Qian et al.,
2008). In addition, these soluble mediators can alter microglial
phenotype polarization from the predominantly inflammatory
‘‘M1’’ phenotype to a more immunoregulatory ‘‘M2’’ phenotype
that expresses protective and/or repairing factors (Qian et al.,
2008; Guglielmetti et al., 2016; Rossi et al., 2018). Of these
anti-inflammatory factors, IL-10 is generally considered to be
the quintessential immunosuppressive cytokine produced within
the CNS.

IL-10 IS EXPRESSED WITHIN THE CNS
AND LIMITS GLIAL INFLAMMATORY
RESPONSES

It is known that IL-10 plays a critical role in the resolution
of peripheral inflammation and this molecule has been the
most widely studied anti-inflammatory cytokine, as discussed
in numerous reviews (Hutchins et al., 2013; Headland and
Norling, 2015; Mingomataj and Bakiri, 2016). Since its initial
discovery, IL-10 has been found to be produced by an array
of leukocytic cell types, including monocytes and granulocytes,
as well as non-immune cells such as epithelial cells and
keratinocytes (Moore et al., 2001; Moser and Zhang, 2008).
Importantly, isolated microglia and astrocytes produce IL-10
in a delayed manner, with increased IL-10 mRNA expression
seen at 8 h after activation with TLR ligands or microbial
pathogens, and detectible protein release at 24 h following

stimulation (Jack et al., 2005; Bsibsi et al., 2006; Rasley et al.,
2006; Park et al., 2007; Gautam et al., 2011; Werry et al., 2011;
Gutierrez-Murgas et al., 2016). In addition, these resident CNS
cells have been demonstrated to express IL-10 in situ following
in vivo LPS challenge (Park et al., 2007).

Interestingly, such delayed IL-10 production by glia appears
to occur secondary to the release of inflammatory mediators, as
we have shown the rapid induction of this cytokine following
exposure to conditioned media from bacterially challenged
cells (Rasley et al., 2006). Furthermore, the inflammatory
cytokines IL-6 and TNF-α have been demonstrated to induce
IL-10 production by microglia in a dose dependent manner
(Sheng et al., 1995). IL-10 production by cytokine-challenged
microglia can be further augmented by neurotransmitters
including glutamate (Werry et al., 2011), and damage-associated
molecules such as adenosine (Koscsó et al., 2012). In contrast,
the neuropeptide, substance P (SP), appears to play a role
in the reduction of IL-10 levels within the CNS that occurs
following bacterial infection, as this effect was not seen following
prophylactic administration of an antagonist for its high
affinity receptor (Chauhan et al., 2008, 2011). Such an effect
suggests that SP can promote neuroinflammation in two ways,
first by exacerbating pro-inflammatory glial and infiltrating
leukocyte responses, as discussed in our recent review on
this topic (Johnson et al., 2017), and second by limiting the
expression of immunosuppressive mediator production within
the brain.

IL-10 exerts local effects on cells that express a receptor that
are composed of two subunits, IL-10 receptor (IL-10R)1 and
IL-10R2 (Moore et al., 2001) as shown in Figure 1. While most
cell types are known to express IL-10R2 constitutively, IL-10R1
expression tends to be restricted to cells of hematopoietic
lineage (Moore et al., 2001; Wolk et al., 2002; Moser and
Zhang, 2008). As might be expected given their myeloid
lineage, microglia constitutively express both IL-10R1 and
IL-10R2 (Hulshof et al., 2002). More surprisingly, resting
astrocytes also express both IL-10 receptor subunits (Molina-
Holgado et al., 2001; Ledeboer et al., 2002; Xin et al., 2011;
Perriard et al., 2015; Table 1). However, such expression by
other glial cell types remains controversial with reports of
IL-10R1 expression by rat oligodendrocytes (OD) but not
human cells (Molina-Holgado et al., 2001; Hulshof et al.,
2002), and may also be expressed by neurons (Sharma et al.,
2011).

Following IL-10 binding to its receptor, this cytokine initiates
its cellular effects via a canonical Janus kinase (JAK)/signal
transducer and activator of transcription (STAT) pathway
that features JAK1 and STAT3, which subsequently induces
the expression of genes associated with immunosuppression
(Moore et al., 2001; Hutchins et al., 2013). As we have
demonstrated, STAT3 is phosphorylated in murine microglia
following exposure to IL-10 (Rasley et al., 2006). Similarly,
STAT3 phosphorylation has been observed in cortical neurons
and retinal ganglion cells (RGCs) in response to IL-10, although
this cytokine has also been shown to activate other signaling
components including Akt in these cells (Boyd et al., 2003;
Sharma et al., 2011).
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FIGURE 1 | The interleukin-10 (IL-10) family of cytokines exert their effects via heterodimeric receptor subunits. IL-10 signals through a complex of two IL-10R1 and
two IL-10R2 subunits. IL-22 signals via an IL-22R1 subunit in combination with an IL-10R2 subunit. IL-19 signals through the type 1 IL-20R consisting of IL-20R1
and IL-20R2 subunits. IL-20 and IL-24 can signal via either type 1 IL-20R or the type 2 IL-20R consisting of IL-22R1 and IL-20R2 subunits. Signaling through these
cognate cell surface receptors initiates the activation of canonical Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathways.
Additionally, other signaling cascades have been identified for this family that includes ERK, Akt, mitogen activated protein kinase (MAPK) and p38. Potential decoy
receptors for these cytokines include IL-22 binding protein (IL-22BP) and a truncated IL-20R1 variant that bind IL-22 and an undetermined ligand, respectively.

The ability of IL-10 to regulate inflammatory TH1
responses has been well characterized (Couper et al., 2008;
Moser and Zhang, 2008), and it exerts its immunosuppressive
effects by decreasing pro-inflammatory mediator and co-
stimulatory molecule expression by leukocytes (Fiorentino
et al., 1991; Ding et al., 1993). Furthermore, IL-10 has been
shown to induce the expression of anti-inflammatory miRNAs
that have been shown to negatively regulate signaling via
TLRs and alter the stability of inflammatory cytokine mRNA
(Couper et al., 2008; Moser and Zhang, 2008; Curtale et al.,
2013; Wilbers et al., 2017). Consistent with this role in the
periphery, IL-10 plays an important role in maintaining
homeostasis within the CNS (Gutierrez-Murgas et al., 2016).
It contributes to the regulation of synaptic pruning by glial
cells (Lim et al., 2013; Schwartz et al., 2013; Ellwardt et al.,
2016) and limits the damaging effects of neuroinflammation.
Specifically, IL-10 reduces glial pro-inflammatory mediator
production and reactive astrogliosis in response to the presence
of pathogenic microbes or their components (Balasingam
and Yong, 1996; Ledeboer et al., 2000; Rasley et al., 2006;
Chang et al., 2009; Curtale et al., 2013; Hutchins et al., 2013).
Furthermore, this cytokine can alter microglial and astrocyte
phenotypes to those that can limit inflammation, promote
the production of another immunosuppressive mediator,
TGF-β by astrocytes, and induce the expression of mRNA
encoding the negative regulator of cytokine signaling SOCS3
(Balasingam and Yong, 1996; Rasley et al., 2006; Norden et al.,
2014).

Consistent with these in vitro findings, the importance of
IL-10 in the regulation of neuroinflammatory damage has been

demonstrated in vivo in animal models of CNS disorders. IL-10
deficient mice show uncontrolled inflammation and increased
susceptibility to bacterial, parasitic and viral infections of the
CNS (Gazzinelli et al., 1996; Gutierrez-Murgas et al., 2016;
Martin and Griffin, 2017). In these studies, increased mortality
was associated with elevated levels of inflammatory mediators
in the absence of endogenous IL-10 expression (Gazzinelli
et al., 1996). In addition to infectious CNS disorders, a role
for IL-10 in limiting detrimental neuroinflammation in ‘‘sterile’’
autoimmune diseases, including multiple sclerosis (MS), has
been suggested. Genetic polymorphisms of the IL-10 gene
that result in reduced expression of this cytokine have been
associated with the incidence of MS in human subjects (Martinez
Doncel et al., 2002; Myhr et al., 2002; Talaat et al., 2016).
Similarly, increased levels of IL-10 in the CNS have been shown
to reduce disease severity in mouse models of experimental
autoimmune encephalomyelitis (EAE; O’Neill et al., 2006; Klose
et al., 2013).

Taken together, the available data indicates that IL-10 plays a
critical role in limiting CNS inflammation in a similar manner to
that seen at peripheral sites by altering the ability of resident glia
and infiltrating leukocytes to respond to activating stimuli, and
by reducing the production of inflammatory mediators by these
cells. However, IL-10 is only one member of a family of cytokines
that are grouped together based upon their similar structures and
their sharing of common receptor subunits (Ouyang et al., 2011;
Rutz et al., 2014). This family includes IL-19, IL-20, IL-22, and
IL-24 (Ouyang et al., 2011; Rutz et al., 2014), and these IL-10
relatives are only now being recognized to exert a regulatory role
within the CNS.
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TABLE 1 | Glial sources and targets of the interleukin-10 (IL-10) family within the brain.

IL-10 family
member

CNS cellular
source

Inducers of expression CNS cellular target Receptor
subunits

Decoy
receptor

IL-10 Microglia
Astrocytes

Neisseria meningitidis
Borrelia burgdorferi

LPS
TLR3 ligand

IL-6
TNF-α

Adenosine
Glutamate

Microglia

Astrocytes

Oligodendrocytes

IL-10R1/IL-10R2

IL-10R1/IL-10R2

IL-10R1

IL-19 Microglia
Astrocytes

Staphylococcus aureus
Neisseria meningitidis

Streptococcus pneumoniae
Parasitic nematode
Gamma radiation

LPS
TLR5 ligand

Microglia

Astrocytes

IL-20R2
Perhaps IL-20R1

IL-20R1-/IL-20R2

Truncated
IL-20R1
variant

IL-20 Glioblastoma cells
Mixed glial cells

Ischemia-hypoxia
LPS

Microglia

Astrocytes

IL-22R1/IL-20R2

IL-20R1/IL-20R2
IL-22R1/IL-20R2

Truncated
IL-20R1
variant

IL-22 Unknown

West Nile virus
TMEV
IL-23
IL-6

Microglia

Astrocytes

BBB endothelial cells

Glioblastoma

IL-22R1/IL-10R2

IL-22R1/IL-10R2

IL-22R1/IL-10R2

IL-22R1/IL-10R2

IL-22BP

IL-24 Astrocytes
Chikungunya virus

Neisseria meningitidis
LPS

Microglia

Astrocytes

IL-22R1/IL-20R2

IL-20R1/IL-20R2
IL-22R1/IL-20R2

Truncated
IL-20R1
variant

LPS, Lipopolysaccharide; TLR, Toll-like receptor; TMEV, Theiler’s murine encephalomyelitis virus.

IL-19 MAY FUNCTION IN A SIMILAR
IMMUNOSUPPRESSIVE MANNER TO IL-10
IN THE CNS

Around the time that IL-10 was discovered, a number of proteins
showing a high degree of homology to this cytokine were
identified that were subsequently categorized as the IL-10 family.
Gallagher et al. (2000) described a list of potential IL-10 family
members based upon homologous gene sequences. This work
led to the identification of IL-19, a IL-10 homolog expressed by
bacterial LPS challenged immune cells, including monocytes and
T and B lymphocytes, which can be detected at sites such as the
skin following Staphylococcus aureus infection (Gallagher et al.,
2000, 2004; Wolk et al., 2002; Reiss-Mandel et al., 2018).

Interestingly, elevated levels of mRNA encoding IL-19 have
been observed in mouse brain parenchyma after gamma
radiation treatment (Baluchamy et al., 2010), and three studies
have shown that isolated murine astrocytes express IL-19
mRNA and protein following challenge with bacteria or their
components (Cooley et al., 2014; Nikfarjam et al., 2014; Horiuchi
et al., 2015; Table 1). However, the question of whether microglia
are a significant source of IL-19 remains contentious, with one
study reporting the ability of neonatal murine microglia to
release high levels of IL-19 in response to LPS (Horiuchi et al.,
2015), while our own work indicates that these cells and a

murine microglial cell line express little or no mRNA encoding
IL-19 following challenge with either LPS or N. meningitidis
(Cooley et al., 2014). Importantly, IL-19 expression within the
CNS and by isolated glia following challenge demonstrates
delayed kinetics of induction, which is consistent with a
secondary, and perhaps protective, response (Cooley et al.,
2014; Nikfarjam et al., 2014). Similarly, IL-19 is produced in
a delayed manner within the brain cortex of mice infected
with a parasitic nematode (Yu et al., 2015), although the
precise function of this cytokine in this model has not been
determined.

As shown in Figure 1, IL-19 exerts its effects on cells
expressing a heterodimeric receptor that consists of the subunits
IL-20 receptor (IL-20R)1 and IL-20R2 (Rutz et al., 2014).
While this dimeric receptor is commonly referred to as
IL-20R, it has been demonstrated that IL-19 binds to the
IL-20R2 subunit with a higher affinity than IL-20 (Dumoutier
et al., 2001; Logsdon et al., 2012). This cognate receptor
is constitutively expressed in human tissues including the
pancreas, liver and skin (Wolk et al., 2002). In contrast,
immune cells express the IL-20R2 subunit but fail to express
IL-20R1 either at rest or following exposure to LPS (Wolk
et al., 2002; Kunz et al., 2006; Ouyang et al., 2011). Consistent
with this, we have demonstrated that astrocytes constitutively
express both IL-20R1 and IL-20R2, while microglia exclusively
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possess the IL-20R2 subunit (Cooley et al., 2014; Table 1).
However, it should be noted that one study has reported
the contradictory finding that microglia express the cognate
receptor while astrocytes express just the IL-20R2 subunit
(Horiuchi et al., 2015). To date, the reason for the apparent
discrepancy in these findings remains unclear. Finally, we
have also detected a novel truncated IL-20R1 subunit (IL-
20R1 variant) in the mouse cortical brain (Table 1) that
lacks the cytoplasmic signaling tail (Cooley et al., 2014).
As such, it is possible that this truncated protein serves
as a decoy receptor for IL-19, and we have reported the
intriguing finding that the expression of this receptor is
downregulated following infection (Cooley et al., 2014), an effect
that could render CNS cells more susceptible to the effects
of IL-19.

Following complexing of IL-19 with IL-20R1/IL-20R2,
JAK associates with the cytoplasmic tail of IL-20R1 and
phosphorylates the transcription factor STAT3 (Gallagher, 2010;
Wegenka, 2010; Rutz et al., 2014). Within the CNS, IL-19
has been demonstrated to activate JAK/STAT signaling in
microglia, as evidenced by STAT3 phosphorylation in these
cells following IL-19 exposure (Horiuchi et al., 2015). However,
defining the role of IL-19 in inflammatory responses in the
periphery and the CNS has been hampered by inconsistent
reports. Despite these issues, and evidence that IL-19 can
exert pleiotropic effects that are dependent on the target
cell type and stage of the insult, the preponderance of
available evidence indicates that IL-19 is immunosuppressive.
Similarly, while the reported effects of IL-19 on glial immune
responses have shown variability, they are generally consistent
with an immunosuppressive role for this cytokine. For
example, our laboratory showed that IL-19 administration
increases the expression of mRNA encoding the negative
regulator of inflammatory cytokine signaling, SOCS3, in primary
murine astrocytes, and decreases the production of IL-6 and
TNF-α by these cells following stimulation (Cooley et al.,
2014). Furthermore, other investigators demonstrated that LPS
challenged microglia isolated from IL-19 deficient mice produce
significantly higher levels of IL-6 and TNF-α, consistent with
the removal of an inhibitory effect on these cells, that was
reversible with recombinant IL-19 addition (Horiuchi et al.,
2015). However, it should be noted that IL-19 treatment did not
exert a demonstrable effect on the production of inflammatory
mediators by LPS-challenged astrocytes in this study (Horiuchi
et al., 2015).

Additionally, some evidence suggests that IL-19 may serve to
limit CNS damage in cases of ‘‘sterile’’ neuroinflammation. For
example, elevations in the expression of mRNA encoding IL-19
have been noted in peripheral blood mononuclear cells in an
animal model of stroke (Rodriguez-Mercado et al., 2012), and
IL-19 administration prior to ischemia-reperfusion injury has
been associated with decreased leukocyte activation/infiltration
and lessened neurological damage (Xie et al., 2016). Finally,
genetic polymorphisms in the IL-19 locus have been associated
with the risk of MS development (Khodakheir et al., 2017),
similar to that seen for IL-10, althoughmechanistic links between
these and MS neuropathology have not been defined.

IL-22 CAN EXERT BOTH PROTECTIVE AND
DETRIMENTAL EFFECTS WITHIN THE CNS

IL-22 was first identified as a product of cytokine-activated
lymphoma cells (Dumoutier et al., 2000) and subsequent
studies demonstrated that IL-22 is a major product of the
TH17 subpopulation of CD4+ lymphocytes (Liang et al., 2006).
However, IL-22 expression does not appear to be limited to
T-cells as other leukocytes, including macrophages, can also
express this cytokine (as reviewed in Dudakov et al., 2015).
Importantly, constitutive expression of IL-22 has been described
in the CNS (Zenewicz and Flavell, 2008; Dudakov et al., 2015)
and immunohistochemical staining of human brain tissue has
shown that IL-22 is present in both gray and white matter in
healthy individuals (Perriard et al., 2015). Furthermore, IL-22
expression within the CNS has been demonstrated to increase
following viral infection (Levillayer et al., 2007; Wang et al.,
2012), and it is tempting to speculate that such increases result
from local production of inflammatory cytokines. However, such
a mechanism of induction has not been investigated, and the
specific CNS cell type(s) responsible for constitutive and/or
inducible IL-22 production have yet to be determined.

The functional receptor for IL-22 is a heterodimer composed
of IL-22R1 and IL-10R2 (Zenewicz and Flavell, 2008; Dudakov
et al., 2015; Figure 1), and binding of IL-22 to the IL-22R1
subunit allows for IL-10R2 to form a complex that initiates a
signaling cascade (Dudakov et al., 2015). The IL-22 receptor
is highly expressed in the pancreas, kidney, skin and liver,
and expression can be further upregulated following stimuli
such as S. aureus infection (Myles et al., 2013; Rutz et al.,
2014; Dudakov et al., 2015). While early work failed to detect
the presence of IL-22R1 in immune cells, subsequent studies
have reported the induction of receptor subunit expression in
myeloid cells following bacterial challenge and the ability of
these cells to respond to IL-22 (Dhiman et al., 2009, 2014; Zeng
et al., 2011). In the brain, BBB endothelial cells, astrocytes and
glioblastoma cells have all been shown to constitutively express
both the IL-22R1 and IL-10R2 subunits (Kebir et al., 2007; Akil
et al., 2015; Perriard et al., 2015; Table 1). Interestingly, and in
contrast to other myeloid cells, we have recently demonstrated
that microglia constitutively express robust levels of the IL-22R1
protein (Burmeister et al., unpublished observations).

Decoy receptors are known to play an important role in
regulating the effects of their associated cytokines, and IL-22
binding protein (IL-22BP) serves as a soluble decoy receptor
for IL-22 by binding this cytokine with higher affinity than cell
associated IL-22R1 (Martin et al., 2017). Leukocytes such as
dendritic cells can release IL-22BP but the effects of higher decoy
receptor expression, and hence lower levels of available IL-22,
appear to vary according to the disease condition, with decreased
disease severity in an animal model of psoriasis (Martin et al.,
2017) and greater hepatic fibrosis in human schistosomiasis
patients (Sertorio et al., 2015). These data therefore indicate
that IL-22 can serve both detrimental and protective roles. In
the CNS, IL-22BP expression is upregulated in the cerebral
spinal fluid (CSF) of patients with active MS (Perriard et al.,
2015) and mice deficient in the expression of IL-22BP show
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less severe disease in a mouse model of EAE (Laaksonen et al.,
2014), while increased IL-22BP expression correlates with greater
macrophage infiltration and more severe neuroinflammation in
a rat EAEmodel. Together, these findings support the notion that
IL-22 limits the damaging effects of CNS inflammation (Beyeen
et al., 2010).

Like other IL-10 family members, binding of IL-22 to its
transmembrane receptor initiates a JAK/STAT signaling cascade
in target cells (Dudakov et al., 2015). Typically, tyrosine kinase
2 (Tyk2) and/or JAK1 activation is associated with IL-22
signaling, with subsequent promiscuous STAT phosphorylation
(Lejeune et al., 2002). STAT1, STAT3 and STAT5 activation
have all been reported following exposure to IL-22 (Lejeune
et al., 2002; Dudakov et al., 2015). However, IL-22 has also
been demonstrated to activate mitogen activated protein kinase
(MAPK) and p38 pathways in keratinocytes and synovial
fibroblasts (Ikeuchi et al., 2005; Andoh et al., 2009). Consistent
with this, human glioblastoma cell lines exposed to IL-22 show
increases in both STAT3 and Akt phosphorylation (Akil et al.,
2015).

As reviewed elsewhere, IL-22 appears to contribute to host
defense at peripheral sites (Zenewicz and Flavell, 2008; Ouyang
et al., 2011; Rutz et al., 2014), while in the brain IL-22 can
function as a cell survival factor as it protects glioblastoma
cells from the apoptosis-inducing effects of serum starvation
and Fas ligand exposure (Akil et al., 2015). Similarly, primary
human astrocytes treated with IL-22 demonstrate increased
survival rates following challenge with TNF-α (Perriard et al.,
2015). However, IL-22 may also disrupt the integrity of BBB
tight junctions by reducing the level of expression of occludin
by endothelial cells, and promote the recruitment of CD4+

lymphocytes by elevating the production of CCL2 (MCP-1) by
these BBB cells (Kebir et al., 2007). As such, IL-22 may either
act in a protective manner or may exacerbate detrimental host
immune responses.

Elevated IL-22 levels have been detected in the blood plasma
of patients with peripheral inflammatory diseases such as
psoriasis and Crohn’s disease (Wilson et al., 2010), and the
severity of Guillain-Barré Syndrome (GBS) appears to correlate
with CSF and plasma concentrations of this cytokine (Wilson
et al., 2010). However, it is not known whether such elevations
underlie these disorders or, rather, represent a compensatory
response of the host to limit inflammatory damage. Within the
CNS, it is similarly unclear whether IL-22 provides protection
during MS/EAE (Beyeen et al., 2010; Laaksonen et al., 2014;
Perriard et al., 2015). Increased levels of IL-22 protein have been
reported in the serum, but not the CSF, of patients with activeMS
(Perriard et al., 2015), while IL-22 has been found to be expressed
in the CNS early in the development of EAE in the rat (Almolda
et al., 2011). The finding that IL-22 expression diminishes during
resolution in this rodent model has been taken as an indication
that it contributes to the inflammatory phase of this MS-like
disease (Almolda et al., 2011). However, it is important to note
that mice lacking IL-22 show no significant difference in the
level of EAE-associated neuroinflammation, suggesting that this
cytokine is not a major driving force for disease development
(Kreymborg et al., 2007).

In an animal model of West Nile virus associated
encephalitis, mice lacking IL-22 fail to show significant
differences in protective IFN-β expression, but do exhibit
elevated levels of the key inflammatory cytokines, TNF-α
and IL-6, and have higher viral loads following intra-cranial
administration (Wang et al., 2012). However, when such
mice were infected through the foot pad, they demonstrated
less viral dissemination to the brain, decreased inflammatory
mediator production, reduced leukocytes recruitment to
the CNS, and lower mortality, compared to that seen in
wild type animals (Wang et al., 2012). As such, these
seemingly contradictory findings may indicate a double-
edged role for IL-22 in viral infections, where this cytokine
promotes pathogen spread to the CNS, but also limits
inflammatory damage within the brain once the BBB has
been breached.

THE ROLE OF IL-20 AND IL-24 IN THE CNS
REMAINS UNCLEAR

While a considerable amount of evidence supports the protective
immunosuppressive effects of IL-10 and IL-19 within the CNS,
and at least some evidence supports a similar function for IL-22
in the brain, the role of IL-20 and IL-24 at this site remain
largely unknown. Whereas IL-20 was first identified based upon
a gene sequence predicted to yield a helical protein structure
similar to IL-10 (Blumberg et al., 2001), the discovery of IL-24
was based upon its ability to induce apoptosis in cancer cells
(Wang and Liang, 2005; Persaud et al., 2016) and this protein
remains the subject of extensive research as an oncolytic therapy
(Fisher et al., 2003; Sauane et al., 2003; Fisher, 2005; Buzas et al.,
2011; Persaud et al., 2016; Ma et al., 2018). These studies have
extended to brain cancers, including neuroblastomas and IL-24
was found to induce apoptosis in these cells when overexpressed
following gene delivery using viral vectors (Bhoopathi et al.,
2017).

Both IL-20 and IL-24 are expressed in myeloid cells following
stimulation with TLR ligands, activated TH2 lymphocytes
(Wolk et al., 2002; Rutz et al., 2014), and non-leukocytic
cells such as keratinocytes (Wolk et al., 2009; Martin et al.,
2017). Interestingly, the expression of IL-20 and IL-24 by
keratinocytes has been reported to be induced by IL-22
suggesting an ability of IL-10 family members to function
in a cooperative manner (Wolk et al., 2009; Martin et al.,
2017). However, there are few reports of the expression of
these cytokines within the CNS. Hypoxia has been shown
to induce the expression of IL-20 mRNA and protein by
glioblastoma cells (Chen and Chang, 2009), while mixed primary
glia show a rapid (within 2 h) and transient expression of
mRNA encoding IL-20 following challenge with bacterial
LPS (Hosoi et al., 2004). Similarly, we have reported the
expression of IL-20 mRNA by murine astrocytes exposed
to Neisseria meningitidis (Cooley et al., 2014; Table 1).
While IL-24 mRNA expression has also been demonstrated
in murine astrocytes following alphavirus infection (Das
et al., 2015) or bacterial challenge (Cooley et al., 2014), our
recent observations indicate that such expression is delayed
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with kinetics of induction that resemble IL-10 and IL-19
(Burmeister et al., unpublished observations). Additionally,
pulsed electromagnetic field treatment following cerebral
ischemia has been associated with upregulated mRNA encoding
IL-24 within brain tissue at 7 days post-treatment (Pena-
Philippides et al., 2014).

Neither IL-20 nor IL-24 signal via either of the IL-10R
subunits (Zhang et al., 2000), but unlike the other members
of the IL-10 cytokine family that have been discussed thus
far, IL-20 and IL-24 can both signal through two different
heterodimeric receptors, IL-20 receptor types 1 and 2, which are
composed of IL-20R1 and IL-20R2, and IL-22R1 and IL-20R2
subunits, respectively (Ouyang et al., 2011; Rutz et al., 2014;
Figure 1). As mentioned earlier, these receptor subunits are
primarily expressed by non-hematopoietic cells, and have been
reported to be present in microglia, astrocytes and an astrocytic
glioblastoma (Dumoutier et al., 2001; Wolk et al., 2002; Cooley
et al., 2014; Horiuchi et al., 2015; Perriard et al., 2015). Following
cytokine binding, these receptors initiate JAK/STAT signaling
pathways in the target cell. IL-20 and IL-24 utilizes JAK1 and
STAT1 or, more predominantly, STAT3, in embryonic kidney
cells and colonic epithelial cells (Dumoutier et al., 2001; Parrish-
Novak et al., 2002; Andoh et al., 2009), and can also initiate the
phosphorylation of ERK1/2 and p38 in keratinocytes (Andoh
et al., 2009; Lee et al., 2013; Hsu et al., 2015). Similarly,

glioblastoma cells exposed to IL-20 demonstrate phosphorylation
of STAT3, ERK and Akt (Chen and Chang, 2009). To date,
however, the signaling pathways activated in glial cells by IL-24
have not been defined.

Despite the reported expression of IL-20, IL-24 and their
receptors by glial cells, little is known about the function of
these cytokines within the CNS. In the periphery, elevated
IL-20 and IL-24 levels have been detected in the serum
of patients with chronic inflammatory disorders, such as
Crohn’s disease, psoriasis and rheumatoid arthritis (He and
Liang, 2010; Rutz et al., 2014), and genetic polymorphisms
for these cytokines have been identified as risk factors for
some of these chronic inflammatory diseases (Kumari et al.,
2013; Khodakheir et al., 2017). Within the CNS, inhibition
of IL-20 using a neutralizing antibody has been shown to
limit the inflammatory damage associated with acute ischemic
brain injury (Chen and Chang, 2009), and IL-20 exposure
has been demonstrated to promote the release of the potent
chemoattractants MCP-1 and IL-8 by a glioblastoma cell
line (Chen and Chang, 2009). In contrast, we have recently
shown that IL-24 can induce the expression of SOCS3, a
signaling component that inhibits the effects of IL-6, in murine
astrocytes and can attenuate inflammatory mediator production
by these cells following bacterial challenge (Burmeister et al.,
unpublished observations). Furthermore, we have determined

FIGURE 2 | Members of the IL-10 family of cytokines are produced by glia in response to central nervous system (CNS) insult, either directly or in a delayed indirect
manner, to exacerbate or limit neuroinflammation. Glial cells, including microglia (Mg) and astrocytes (Ast), respond to insult via pattern recognition receptors (PRRs),
including cell surface and cytosolic receptors. Following activation, glia release pro-inflammatory cytokines, including IL-6, tumor necrosis factor-α (TNF-α), IL-20 and
perhaps IL-22. These mediators act to promote the clearance of the initial insult by altering the integrity of the blood brain barrier (BBB) and recruiting leukocytes
from the circulation. In addition, inflammatory mediators act in an autocrine and/or paracrine manner to promote the delayed expression of IL-10, IL-19 and IL-24 by
glia. These cytokines act via their cognate receptors expressed by astrocytes and microglia, and perhaps oligodendrocytes (OD) and neurons (Neu), to curtail the
inflammatory responses of these cells and/or recruited leukocytes.
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that IL-24 can also augment the expression of IL-10 by
astrocytes following activation, providing another potential
means by which this cytokine could limit neuroinflammation.
Clearly, much further work is needed to define the apparently
opposing actions of IL-20 and IL-24 on glial immune
functions.

CONCLUDING REMARKS

Within the brain, it has become increasing apparent that glial
cells contribute both to the maintenance of an immunoquiescent
environment within the CNS, and to the initiation and
progression of potentially damaging neuroinflammation. It is
clear that both microglia and astrocytes can be a source of IL-10,
and that they are responsive to the immunosuppressive actions
of this cytokine (Jack et al., 2005; Bsibsi et al., 2006; Rasley et al.,
2006; Park et al., 2007; Gautam et al., 2011; Gutierrez-Murgas
et al., 2016). The kinetics of induction of IL-10 are consistent
with a role in the resolution of glial inflammatory responses,
and the association of human patient IL-10 gene polymorphisms
with neuroinflammatory disorders support such a role (Martinez
Doncel et al., 2002; Myhr et al., 2002; Talaat et al., 2016).
Likewise, the preponderance of available evidence supports a
similar function for IL-19, which demonstrates similar delayed
kinetics of induction and can also limit inflammatory mediator
production by glial cells (Cooley et al., 2014; Nikfarjam et al.,
2014). However, the purpose of other IL-10 family members
within the CNS is far less defined, with IL-22 being suggested
to play a protective immunosuppressive role in some instances,
and a detrimental pro-inflammatory function in others, perhaps
reflecting the pleiotropic nature of these cytokines (Kebir et al.,
2007; Beyeen et al., 2010; Laaksonen et al., 2014; Akil et al., 2015;

Perriard et al., 2015). The limited information available for IL-24
suggests that it may act like IL-10 and IL-19, providing delayed
protection during CNS inflammation, while IL-20 seems to
contribute primarily to the inflammatory phase, demonstrating
rapid induction kinetics (Hosoi et al., 2004).

However, it is evident that our current understanding of
the role of IL-10 and the other members of this cytokine
family within the CNS is limited at best. While it is clear
that glia can be a significant source of IL-10, IL-19 and
perhaps IL-20 and IL-24, and these resident CNS cells are
responsive to their actions (as summarized in Figure 2),
the functions of the IL-10 cytokine family in health and
brain disorders have been understudied. Given the available
evidence that IL-10 and its relatives are present in inflammatory
diseases of peripheral organs and tissues, and that they
exert a significant effect on the incidence and severity of
such conditions, it is not unreasonable to assume that these
cytokines are similarly important within the CNS during
infection or other inflammatory brain disorders. Clearly, more
research is warranted to define the actions of the IL-10
family within the CNS and their role in the regulation of
neuroinflammation.
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