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Introduction

The assay quality metric Z’ was introduced in 1999 by 
Zhang et al.1 in a paper that has so far been cited almost 
6000 times. Z’ is defined as:
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where σ and µ represent the standard deviation and mean, 
respectively. Z’ defines a separation band between normal-
ized positive (pc) and negative control (nc) populations, and 
unlike other measures of assay quality such as the signal-to-
noise and signal-to-background ratios, it takes into account 
not only the amplitude of responses but also their variance.

Z’ has come to exert a very prominent role in determin-
ing whether assays are considered suitable for high-through-
put screening (HTS). Despite the fact that there is no direct 
relationship between Z’ and the probability of correctly 
declaring a compound a hit,2 it is now essentially a univer-
sal requirement that for an assay to advance to HTS, Z’ 
must be > 0.5 (see https://www.europeanleadfactory.eu/
how-submit/drug-target-assays/requirements and https://
grants.nih.gov/grants/guide/pa-files/par-17-331.html for 
examples). In the authoritative Assay Guidance Manual, 
four chapters state that Z’ should be > 0.5 without provid-
ing a rationale for the cutoff,3–6 although two of these3,6 

point out problems that can arise if unrealistically strong 
controls are used to achieve Z’ > 0.5. A fifth chapter7 rec-
ommends Z’ > 0.4. This recommendation emerges from 
two papers; the first defined the ability of an earlier param-
eter, the signal window (SW), to correctly identify hits,8 and 
the second estimated the relationship between SW and Z’.9

Why care if the requirement for Z’ > 0.5 is not firmly 
rooted in analysis of assay performance? Is it not best to 
conduct only “excellent” assays? We see two serious nega-
tive consequences of rigidly requiring Z’ > 0.5. First, it 
likely bars many potentially valuable assays from ever 
advancing to HTS. Cell-based assays are inherently more 
variable than biochemical assays10 and therefore may be 
more likely to have Z’ between 0 and 0.5, as has been noted 
by Bray et al.3 While target-based screens conducted in 
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vitro with purified proteins have dominated HTS in the 
recent past, there is a growing sense that drug discovery 
efforts based on this paradigm have been less successful 
than anticipated.11 Phenotypic screening, which is an alter-
native approach, has to be conducted in cells, in organoids, 
or even in some cases model organisms. It therefore seems 
likely that requiring Z’ > 0.5 is preventing important and 
useful phenotypic assays from being done, leaving poten-
tially valuable compounds undiscovered. It is impossible to 
know how many assays have failed to go forward because 
of the requirement for Z’ > 0.5, either in assay originators’ 
labs or during the transition to HTS format in screening 
centers. We also cannot know how much time has been 
spent trying to optimize assays unnecessarily to get them to 
have Z’ > 0.5; our direct experience suggests this might be 
substantial. Second, and related, the requirement that Z’ be 
> 0.5 may lead researchers to conduct assays under condi-
tions that maximize Z’ but hinder detection of useful com-
pounds, as has been noted by Glickman6 and Bray et al.3 As 
an example of our experience with this, we recently devel-
oped a screen for compounds that act as antagonists of 
phorbol dibutyrate (PDBU) binding to C1 domains.12 To 
achieve Z’ > 0.5, we conducted the screen with a very high 
concentration (100 nM) of the activator PDBU. Since the 
Kd for PDBU binding is in the low nM range,13 however, 
we speculate that using PDBU in excess may have pre-
vented us from finding competitive antagonists.

Here, we have explored the effects of Z’ on assay per-
formance using power analysis and a novel computational 
approach we developed, seeking to determine the practical 
differences in performance between assays with different 
Z’ and different distributions of σ. While our results show 
that assays with Z’ > 0.5 do perform better than assays 
with Z’ < 0.5, they do not support the use of a strict cutoff 
based on Z’. Instead, they are consistent with the idea that 
when an appropriate threshold is chosen, assays with Z’ < 
0.5 can have significant ability to detect hits while still 
generating a manageable number of false positives. We 
propose that researchers should take a more nuanced 
approach to using Z’ to assess assay quality, matching 
threshold selection to assay performance in the context of 
the unmet need for the assay. Those in a position to deter-
mine whether assays are conducted should use these argu-
ments when they make decisions rather than relying on a 
single metric.

Materials and Methods

For all of our simulations, we used the R software, Version 
3.4.4.14 In our simulations we generated 40,000 compounds 
so that half were set to be inactive (0% inhibition) and half 
were simulated to be active. Among the active compounds, 
19,800 were generated by drawing random values, xi, from 

a geometric distribution with a probability parameter of 
0.05. Since this generates positive integers, we transformed 
these values to yi = 1−xi/max(xi), so that yi are all between 0 
and 1, and they are concentrated very close to 1. The other 
200 active compounds were drawn from a standard uniform 
distribution, to ensure that if we divide the [0,1] segment to 
50 bins, there will be a small number of active compounds 
in every bin. These values were then converted to percent 
inhibition (% inhibition).

For each Z’ between 0.1 and 0.9 (in increments of 0.1), 
we calculated the corresponding σ nc  and σ pc  and intro-
duced Gaussian noise with appropriate σ. We explored 
two main scenarios. In the first, we assumed constant stan-
dard deviation ( ( / ) .σ σnc pc =1  In this case, at any level of 
activity, σ = ( ) / .1 6− Z′  In the second, we set the standard 
deviation to be proportional to the % inhibition, so that the 
average standard deviation is determined by the assays Z’ 
and thus is equal to (1 − Z’)/6. For some constant, C, we 
calculate σ as a function of the % inhibition, p, as follows:
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With this formulation, when C = 1, we get the constant vari-
ance case, because σ σp( ) = 0  for all p. In general, σ p( )  

is a linear function of p, and 
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example, for Z’ = 0.4, we get σ 0 0 1= . ,  and if C = 5, 

σ 0 1 6( ) = /  and σ 100 0 2 6( ) = . / .  Supplemental Figure 1 
shows the values of σ p( )  when Z’ = 0.3, for C = 1, 2.5, 5, 
10, and ∞, to illustrate the procedure’s output. Note that for 
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 For each level of 
compound activity, we then introduced Gaussian noise 
using the calculated σ.

Results

Estimating Assay Power When the Standard 
Deviation Is Constant

Z’ is a normalized measure that in the simplest case assumes 
constant σ regardless of response amplitude.15 Under the 
conditions of these assumptions, Z’ depends (linearly) on σ 
alone. One way to assess the effect of Z’ on assay perfor-
mance is to estimate power (1 − β, where β is the type II 
error rate), which is the ability to correctly reject the null 
hypothesis and detect genuine hits. If one sets α, the type I 
error rate (which is the probability of incorrectly rejecting 
the null hypothesis, or accepting a false positive), to a 
desired value, this can be done for different effect sizes and 
Z’ using Equation (3):
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where µ <1  is the activity under the alternative, and we use 
the one-sided cα  cutoff to control the probability of a Type 
I error at the α level, under the null hypothesis of no activity 
[mean = 1; see Equation (4)]
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and σ = (1-Z’)/6 is determined from the Z’ value as 
described above.

Note that for this and all results described below, we 
have adopted the convention that we are screening for 
inhibitors. The exact same logic applies, however, for acti-
vator screens. We also multiply power by 100 and report it 
as a percentage to simplify written descriptions. Figure 1 
shows plots of power as a function of Z’ and inhibitory 
effect calculated for α < 0.05, 0.01, and 0.001 for Z’ rang-
ing from 0 to 0.9. An assay with a Z’ of 1, where σ is 0, 
would be able to detect any level of inhibition with a power 
of 1 and a false positive rate of α < 0.05. Such an assay is 
indeed “ideal” in the sense that it likely cannot be achieved 
in the real world. The calculations show that for α < 0.05, 
an assay with Z’ = 0.9 will reach 80% power for levels of 
inhibition greater than ~4%. As Z’ is decreased in steps of 
0.1, the level of inhibition needed to achieve 80% power 
increases linearly, but by only ~4% per step. An assay with 
Z’ = 0.5 thus reaches 80% power when compounds inhibit 
by > ~20%. Assays with Z’ < 0.5 behave surprisingly well 
by this measure. An assay with Z’ = 0.1 reaches 80% power 
when inhibition is > ~36%.

Because the vast majority of compounds are likely with-
out effect (see below), it is generally accepted that α = 0.05 

would result in too many false positives. Higher activity 
levels are required if either lower α or more power is 
desired, but assays with Z’ < 0.5 still appear to perform 
well. For α < 0.001 (which corresponds to the > 3σ 
assumption that is implicit in the definition of Z’), an assay 
with Z’ = 0.9 reaches 80% power for compounds that 
inhibit by > 6.7%. As Z’ decreases in steps of 0.1, the level 
of inhibition required for 80% power increases, but only in 
steps of ~6%. Thus, for Z’ = 0.5, inhibition by >32% is 
required for 80% power, but an assay with Z’ = 0.1 reaches 
80% power when inhibition is >58%. To achieve 90% 
power, these values increase to 35% and 65%, respectively. 
Assays with higher Z’ clearly perform better by this analy-
sis, but there does not seem to be a compelling rationale for 
rejecting assays with Z’ below 0.5.

A Novel Approach to Simulating Assay 
Performance under the Assumption of  
Constant Standard Deviation

Power analysis is most applicable when trying to distin-
guish between two normally distributed populations. In 
terms of screening, those populations would be “active” and 
“inactive” compounds. In screening, however, compounds 
can have a range of effects. When analyzing assay perfor-
mance, what we really would like to know is not just how 
many active compounds assays with different Z’ will find 
but also how active those hits are likely to really be, since 
compounds with low levels of activity may not be any more 
desirable than completely inactive ones. This is a complex 
problem depending on both the properties of the assay and 
the distribution of activities in the compound library being 
screened, and analytic solutions are impossible. It is possi-
ble, however, to solve the problem numerically, provided 
we try to duplicate what happens in an assay and are willing 
to make some assumptions about the distribution of activity 
in the compound library. Taking the assay component first, 
Z’ is commonly understood as defining a separation band 

Figure 1. Assays with Z’ < 0.5 have significant statistical power when the standard deviation is constant. Plots of percent inhibition 
versus power for α < 0.05, 0.01, and 0.001 allow determination of the level of inhibition needed to generate a desired statistical 
power level.
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between the positive and negative controls,1 which it does. 
The σ we measure when we assess how the sum of all of the 
errors in the system (liquid handling, compound dispensing, 
measurement instrumentation, biology, etc.) introduces 
uncertainty into defined control signals, however, also 
applies to our estimates of the effects of test compounds 
throughout the entire signal range of the assay. This means 
that when we measure the effect of a compound in an assay, 
we do not obtain the “true” value of its effect (unless our 
assay has a Z’ of 1 and therefore a σ of 0). Instead, we get a 
noisy estimate; the “true” effect of a given compound lies 
probabilistically within a normal distribution (whose width 
is defined by σ) that includes the measured value. Turning 
to the compound library, the number of both active com-
pounds found and false positives generated obviously 
depends on the distribution of compound activities in the 
collection being screened. There can be no genuine hits in a 
library with no active compounds, and there will be no false 
positives if all compounds are active. Unfortunately, we do 
not know the true distribution of compound activities for 
any compound library, because this is always measured in 
the presence of noise introduced by an assay.

We put these two pieces together as follows to mimic an 
assay in silico. We first modeled a modestly sized “typical” 

screening collection composed of 40,000 compounds, 
assuming that compound activity would be distributed in a 
more-or-less exponential fashion with fewer and fewer 
compounds demonstrating progressively higher levels of 
inhibition. We assigned about half the compounds to have 
absolutely no inhibitory effect at all, another ~18,000 com-
pounds to inhibit by 25% or less, ~1900 compounds to 
inhibit between 25% and 50%, and only ~100 compounds 
to inhibit by > 50%. The final distribution of activities in 
our model compound collection is shown in two forms in 
Figure 2A. Then, for Z’ ranging from 0 to 0.9, we took the 
“true” assigned inhibitory effect of each compound and 
assigned the compound a second “assayed” value obtained 
probabilistically from a normal distribution (whose width 
was determined by the σ associated with that Z’) containing 
the “true” value. This procedure converts each of the 
defined bins of activity in Figure 2A into a normal distribu-
tion with σ determined by Z’. For bins with hundreds or 
thousands of compounds, the procedure results in a fairly 
well-defined probability distribution for the “assayed” val-
ues. Because, however, we assumed that there are relatively 
few compounds producing higher levels of inhibition, the 
resulting “assayed” distributions were sparse. To circum-
vent this, we repeated the overall procedure 100 times for 

Figure 2. Assay-introduced noise makes a simulated compound collection appear normally distributed. (A) A histogram and a log-
scaled cumulative density function display a simulated collection composed of 40,000 compounds. (B) Histograms demonstrate how 
assays with different Z’ and thus different standard deviations change the apparent distribution of compound activities.
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each Z’ and averaged the results. The effects of this proce-
dure on the apparent distribution of compound activities in 
the set is shown in Figure 2B. As Z’ decreases, the apparent 
distribution changes fairly dramatically, coming to look 
more and more like a normal distribution centered on 0% 
inhibition.

In Figure 3A, we show plots for several different Z’ for 
three parameters that we calculated as we decreased the 
observed apparent “assayed” % inhibition from 100%. The 
first parameter (displayed as a solid line that goes up) is the 
cumulative total number of apparently active compounds 
found. Of course, the “true” activity of these compounds 
may be different than this apparent value. The second (dis-
played as a dashed line that goes down) is the cumulative 
number of the 20,000 completely inactive compounds that 
are mistakenly identified as active as a result of the noise 
that was added. The final parameter (displayed as a dotted 
line that goes up) is the cumulative total number of com-
pounds found whose “true” inhibitory activity (i.e., prior to 
noise addition) is actually ≥ 50%. We included this param-
eter because it gives us insight as to how assays behave with 
respect to finding compounds that, while not completely 
inactive, may be less active than desired. The choice of 50% 
apparent inhibition was arbitrary but informed by our expe-
rience that in many cases, screens are conducted with the 
intention of finding compounds that inhibit by 50% or 

more. The utility of this parameter is most readily appreci-
ated in the plot for Z’ = 0 (Fig. 3A, bottom right). As appar-
ent % inhibition decreases from 100, we initially detect 
active compounds, almost all of which “truly” inhibit by > 
50%, as evidenced by the overlap between the solid and 
dashed lines. At around 80% inhibition, the curves start to 
diverge, as we start discovering significant numbers of 
compounds that “truly” inhibit < 50%, but whose “assayed” 
values have spread probabilistically so that they falsely 
appear to produce higher levels of inhibition. By 72% inhi-
bition, only 80% of the compounds that we detect as appar-
ently inhibiting ≥ 50% in fact do so. The other 20% that we 
thought we found “truly” inhibit less. Since we know how 
many compounds there are in our set that inhibit ≥ 50%, we 
can determine that we have found only ~53% of them at this 
threshold of 72% apparent inhibition. In terms of our 
40,000-compound set, this equates to identifying 74 com-
pounds that appear to inhibit ≥ 50% in a primary screen and 
then having 59 of them confirmed with retesting; 53 com-
pounds that really inhibit ≥ 50% remain undiscovered. We 
could find more and more of them if we set progressively 
less stringent thresholds, but then we would mistakenly find 
relatively more compounds that inhibit < 50% as we went, 
so our success rate on retesting would decrease. We arbi-
trarily chose the threshold at which 80% of the compounds 
identified as inhibiting ≥ 50% actually do so (referred to 

Figure 3. Simulations indicate assays with Z’ < 0.5 have significant ability to find compounds when the standard deviation is 
constant. (A) Plots of the total number of compounds found (solid line, upward), the total number of completely inactive compounds 
misidentified as active (dashed line, downward), and the number of compounds found that actually inhibit ≥ 50% (dotted line, 
upward) as a function of apparent percent inhibition for the indicated Z’. The vertical lines indicate the percent inhibition at which 
80% of the compounds identified as active in fact inhibit ≥ 50%. This parameter, which we call T80%≥50, is used to characterize assay 
performance. (B) Plots of the fraction of the compounds that inhibit ≥ 50% found as a function of T80%≥50 for assays, with the Z’ 
indicated slightly below and to the right of each symbol.
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from here onward as T80%≥50, as described above = 72% 
for Z’ = 0) as a means of comparing performance of assays 
at different Z’. This parameter is not calculated; it is deter-
mined analytically based on our knowledge of each com-
pound’s “true” and “assayed” inhibitory activity. For an 
assay with Z’ = 0.9, T80%≥50 is 49%, at which point we will 
have discovered ~99% of all of the compounds that inhibit 
by ≥ 50%. For an assay with Z’ = 0.5, T80%≥50 is 53%, at 
which point 84% of all the compounds that inhibit ≥ 50% 
will have been found. For an assay with Z’ = 0.1, T80%≥50 
is ~68% inhibition, by which point 58% of the compounds 
that inhibit by ≥ 50% will have been discovered, which 
does not seem too bad. Overall, while this analysis indicates 
that assays with higher Z’ do a better job of finding all of the 
compounds that we want to find, it also demonstrates that if 
an appropriate threshold is selected, assays with Z’ < 0.5 
are still capable of finding many useful compounds without 
also identifying an overwhelming number of less active 
compounds that will need to be retested and discarded. 
Values for T80%≥50 and the total fraction found of com-
pounds that inhibit ≥ 50% for different Z’ are presented in 
Table 1 in the column labeled σ σnc pc/ .=1

Assay Performance When the Standard 
Deviation Is Not Constant

So far, we have considered only assays in which the stan-
dard deviation is constant. As Sui and Wu have noted, how-
ever, it is often the case that σ varies with signal amplitude, 
and they demonstrated that this can profoundly affect assay 
power.15 To examine how unequal standard deviation affects 
assay performance, we repeated both our power analysis 
and our simulations under conditions in which σ increased 
linearly with signal amplitude from a low value of σ pc  (i.e., 
100% inhibition) to a high of σ nc ,  so that σ σnc pc/  was 

2.5, 5, or 10. We also simulated the most extreme case pos-
sible, in which σ pc  = 0 and thus σ σnc pc/  = ∞.

Power analysis suggests that unequal σ has relatively 
small effects when Z’ is > 0.5, but degrades assay perfor-
mance when Z’ < 0.5 (Fig. 4A). As stated above, for α < 
0.001, an assay with Z’ = 0.5 reaches 80% power for com-
pounds that inhibit > 32% when σ σnc pc/ .=1  This 
increases as σ σnc pc/ increases, reaching a value of ~55% 
for σ σnc pc/ = ∞. In comparison, when Z’ = 0.1, the percent 
inhibition required to reach 80% power increases from 58% 
at σ σnc pc/ = 1 to ~92% when σ σnc pc/ = ∞. Results using 
the simulation approach also indicate a substantial degrada-
tion in assay performance that is particularly pronounced 
when Z’ < 0.5 (Fig. 4B and Table 1). An assay with Z’ = 
0.5 has a T80%≥50 of 53% and will detect 84% of the com-
pounds that inhibit ≥ 50% when σ σnc pc/ .=1  When 
σ σnc pc/ = ∞, T80%≥50 increases to 65% inhibition and the 
assay will detect only 65% of the compounds that inhibit 
>50%. In contrast, an assay with Z’ of 0.1 has T80%≥50 = 
67% and will detect almost 58% of the compounds that 
inhibit ≥ 50% when σ σnc pc/ .=1  These values change to 
a T80%≥50 = 90% and 24% of total compounds that inhibit 
> 50% when σ σnc pc/ = 10. When σ σnc pc/ = ∞, there is no 
T80%≥50, because at every possible level of inhibition, more 
than 20% compounds that “truly” inhibit < 50% will be 
mistakenly found. Of course, the expectation that >80% of 
the compounds must inhibit ≥ 50% could be relaxed if one 
were willing to accept the costs of more compounds failing 
on retest.

Discussion

Our goal in this work was to determine whether assays 
should be required to have Z’ > 0.5. We find two compel-
ling reasons why they should not. First, whether assessed by 
analyzing statistical power or by the simulation approach 

Table 1. Calculated Performance of Assays with Different Z’.

σ σnc pc/ 1 2.5 5 10 ∞  

Z' T80%≥50 Fraction T80%≥50 Fraction T80%≥50 Fraction T80%≥50 Fraction T80%≥50 Fraction

0 72.4074 0.526786 81.8769 0.348214 92.007 0.205357 97.953 0.169643 — —
0.1 66.9019 0.580357 74.3894 0.446429 82.978 0.339286 89.6947 0.241071 — —
0.2 62.8278 0.642857 66.6817 0.589286 74.7197 0.4375 80.2252 0.375 83.5285 0.321429
0.3 58.7538 0.723214 62.7177 0.625 65.5806 0.589286 70.6456 0.482143 74.7197 0.5
0.4 56.1111 0.767857 58.0931 0.732143 61.0661 0.660714 63.1582 0.607143 73.7287 0.508929
0.5 52.9179 0.839286 54.7898 0.776786 56.992 0.732143 58.4234 0.732143 64.3694 0.651786
0.6 50.6056 0.919643 51.7067 0.875 52.1471 0.839286 53.5786 0.803571 57.5425 0.767857
0.7 48.7337 0.955357 50.1652 0.928571 50.8258 0.919643 49.7247 0.928571 53.3584 0.875
0.8 48.6236 0.964286 49.7247 0.9375 50.0551 0.928571 50.2753 0.928571 52.1471 0.946429
0.9 49.1742 1 49.8348 0.991071 49.9449 0.982143 50.1652 0.982143 50.6056 0.982143

Fraction: The fraction of all of the compounds that really inhibit ≥ 50% that are identified at T80%≥50; σ σnc pc/ :  the ratio of the standard deviations 
at the negative and positive control levels; T80%≥50: the percent inhibition at which 80% of the compounds identified as active really inhibit ≥ 50%.
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we developed, it is clear that, except in extreme circum-
stances, assays with Z’ < 0.5 can find useful compounds 
without also finding too many unwanted, less active com-
pounds, provided an appropriate activity threshold is 
selected. Second, Z’ does not serve to allow meaningful 
comparison of assay performance, assessed either by power 
calculations or by our simulation method, except when 
assays have the same σ σnc pc/ ,  and even then it provides 
no useful information as to how they will perform at finding 
active compounds. It seems unlikely that Zhang et al. ever 
intended Z’ to be used as a strict criterion for whether assays 
should be performed or that they intended Z’ = 0.5 to be 
used as a cutoff, since they mention having successfully 
conducted screens with Z’ ranging from 0.2 to 0.6.1 We sus-
pect that a great deal of confusion was caused by their 
description of assays with 0 < Z’ < 0.5 as “double” assays, 
which was a typographical error in the original article (K. 
Oldenburg, email to A. Zweifach, August, 2, 2018); the 
intent was to describe these assays as “doable.” Although 
Iversen et al.9 and Sui and Wu15 correctly deciphered the 
meaning of this, we speculate that others may not have, and 
the confusion this caused may have contributed to the idea 
that Z’ has to be > 0.5.

We have taken two approaches to assess assay perfor-
mance: power calculations and simulations. Sui and Wu 
were the first to perform power analysis on assays with 

different Z’.15 Our results are largely in agreement with 
theirs. They found that assuming constant σ and α < 0.001, 
assays with Z’ as low as 0 retain significant power to find 
active compounds; for compounds that inhibit by 50%, we 
both estimate that power = 50%, and show that power 
increases for compounds that inhibit more than this. Further 
support for the idea that Z’ need not be > 0.5 can, as men-
tioned previously, be found by combining the results of two 
papers from a group at the Lilly Research Laboratories. The 
first explored the use of the signal window (SW) as an assay 
quality metric, finding that assays with a SW of 2 or more 
had reasonable power to identify active compounds.8 The 
second related the SW to Z’, finding that the SW of 2 cor-
responds to Z’ of ~0.3–0.4.9 Sui and Wu15 also applied 
power calculations at two signal-to-background ratios when 
assays have a constant coefficient of variation (i.e., σ is a 
constant fraction of the signal amplitude). They found that 
assay performance was substantially degraded. We applied 
power analysis under four conditions in which σ increases 
linearly with signal amplitude and also found that assay per-
formance suffers. Except in the most extreme cases, how-
ever, our results indicate that power of 80% or more can be 
achieved if a sufficiently stringent activity threshold is 
applied.

Our approach to simulating assay performance under 
different conditions is, to the best of our knowledge, novel. 

Figure 4. Performance is degraded for assays with Z’ < 0.5 when the standard deviation is not constant, but most assays can still 
find active compounds. (A) Plots of percent inhibition versus power for assays with σ σnc pc/ indicated. When σ σnc pc/ = ∞, assays 
with Z’ = 0 have essentially no power at any percent inhibition, so this curve is omitted. (B) Plots of the fraction of the compounds 
that inhibit ≥ 50% found as a function of T80%≥50 for different σ σnc pc/ .  Z’ to which each symbol corresponds is indicated below 
and to the right of the symbol. When σ σnc pc/ = ∞, there is no T80%≥50 for assays with Z’ = 0 and Z’= 0.1 (these will always find  
> 20% less active compounds), and so the symbols are omitted.
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One of the main challenges we faced was deciding on the 
composition of the model compound collection we used. 
Zhang et al. mention having assumed a normal distribution 
of compounds in which the majority have no effect,1 
although it is not clear that this played a significant role in 
their formulation of Z’. We used a pseudo-exponential dis-
tribution instead for the following reasons. It seems to us 
highly unlikely that in a properly designed screen, equal 
numbers of compounds will demonstrate blocking and 
enhancing activity (as we stated, we adopted the formalism 
of a screen for inhibitors). This would seem to argue against 
a normal distribution of compound effects. If we were to 
include enhancing compounds in our set, it would have only 
minimal effects that would be similar to those of adding 
additional inactive compounds, but with even less effect on 
a per-compound basis. Also arguing against an underlying 
normal distribution of compound activity, we note that the 
effect of increasing σ in our simulation is to cause the dis-
tribution of compound activities to appear progressively 
more normal. This effect tends to “spread” compound activ-
ities to more extreme values. For example, some inactive 
compounds are made to appear active, an effect that can be 
appreciated by examining the distribution of compounds for 
Z’= 0.5 in Figure 2B. Although there are no real enhancing 
compounds in our set, there appear to be compounds that 
enhance by more than 30%. Importantly, if the distribution 
of true compound activities started out as normal and there 
was any significant width to the distribution, this effect 
would further spread the values at the extreme of the tails. 
Since this does not seem to be the case, it suggests that if 
compounds are normally distributed around 0% inhibition, 
the width of the distribution must be small and is thus not 
likely to be a significant factor. We suspect that since the 
true distribution of activity in a compound library can never 
be observed, the impression that compound effects are nor-
mally distributed is created by the noise introduced by 
assays. Additional simulation would be needed to deter-
mine whether the details of the compound distribution 
affect results, but because we compared assays using the 
same set, we suspect any such effect would be small. We 
note that our simulated set contained ~100 out of 40,000 
total compounds that inhibit by > 50%. This would corre-
spond to a hit rate of 0.25% in a screen that set a 50% cutoff 
for activity, which is reasonable.

A number of assay quality metrics have been proposed 
that could potentially be used in place of Z’. The group at 
Lilly Research Laboratories initially proposed the SW,8 
although they subsequently concluded that Z’ was a better 
metric.9 Zhang2 has proposed two parameters—strictly 
standardized mean difference (SSMD) and coefficient of 
variability in difference (CVD)—that, unlike Z’, can be 
interpreted readily in terms of probability of finding active 
compounds and thus might be better choices than Z’. Sui 

and Wu15 suggested replacing Z’ with the power at 50% 
inhibition. The screening community has so far not adopted 
any of these alternate metrics, however; acceptance and use 
of Z’ as an assay quality metric remain widespread in the 
screening community, and we therefore do not favor replac-
ing it. In fact, we are opposed to using any single assay 
metric as a strict criterion for assay acceptance. Doing so 
will continue to cause valuable assays not to be performed 
and other assays to be performed under non-ideal condi-
tions. As long as important biology is being interrogated, it 
seems better to us to perform an assay that has a chance of 
finding some active compounds, even if others will be 
missed, than not to perform the assay at all and find no com-
pounds. It may also be better in some cases to perform an 
assay under conditions that yield a lower Z’ than under con-
ditions that give a higher Z’ but may prevent compounds 
from being found. Our results demonstrate clearly that 
under almost all conditions at almost any positive Z’, assays 
can find active compounds without generating too many 
false positives as long as the threshold selected for defining 
activity is matched to assay performance.

We recommend the following. Assays with Z’> 0.5 can 
continue to be justified by this parameter, provided extreme 
conditions were not used to achieve this benchmark. For 
assays with Z’ < 0.5, we suggest researchers should use the 
data in Table 1 to determine the T80%≥50 for their assay’s Z’ 
and σ σnc pc/  (which they should calculate in addition to 
Z’). This will indicate an appropriate threshold to use for hit 
selection and provide an estimate of the fraction of active 
compounds they can expect to find. As an example, imagine 
a researcher who concludes that the best conditions for an 
assay result in a Z’ of 0.25 and σ σnc pc/ of 7. Although 
Table 1 does not list values for these conditions, rough 
interpolation of the values for Z’ = 0.2 and Z’ = 0.3 and 
σ σnc pc/ = 5 and σ σnc pc/ =10 indicate that if a threshold of 
70–75% inhibition is chosen to select hits, ~40–50% of all 
the compounds that inhibit > 50% will be found, and the 
use of T80%≥50 ensures that only 20% of apparent hit com-
pounds will fail to confirm on retesting. We suggest that this 
information should then be used as part of a detailed justifi-
cation for the assay that addresses the importance of the 
target and discusses why the assay should be performed 
under the conditions chosen, as opposed to other assays or 
conditions (if such exist) that might yield a higher Z’. 
Decision makers, rather than relying on a single metric, 
should in turn be prepared to use the sum total of their 
expertise, experience, and judgment to assess whether the 
resulting justification is convincing enough to allow the 
assay to go forward.
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