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Osteoporosis is one of the most frequent skeletal disorders and a major cause of morbidity
and mortality in the expanding aging population. Evidence suggests that hesperidin may
have a therapeutic impact on osteoporosis. Nevertheless, little is known about the role of
hesperidin in the development of osteoporosis. Bioinformatics analyses were carried out to
explore the functions and possible molecular mechanisms by which hesperidin regulates
osteogenic differentiation. In the present study, we screened and harvested 12 KEGG
pathways that were shared by hesperidin-targeted genes and osteoporosis. The p53
signaling pathway was considered to be a key mechanism. Our in vitro results showed that
hesperidin partially reversed dexamethasone-induced inhibition of osteogenic
differentiation by suppressing the activation of p53, and suggest that hesperidin may
be a promising candidate for the treatment against dexamethasone-induced
osteoporosis.
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INTRODUCTION

Millions of individuals suffer from skeletal disorders each year, which result in severe morbidity
and mortality in the elderly (Kannegaard et al., 2010; Marrinan et al., 2015). Osteoporosis is one
of the most frequent skeletal disorders characterized by decreased bone mass and deteriorated
bone microarchitecture, leading to skeletal fragility and increased susceptibility to fractures
(Golob and Laya, 2015; Qiu et al., 2021). Globally, more than 200 million individuals are affected
with osteoporosis, impairing quality of life and imposing a heavy economic burden on
individuals and society (Johnell and Kanis, 2006). With the expanding aging population,
osteoporotic fractures increase dramatically each year. Currently, the approaches to treat
osteoporosis work primarily through inhibiting bone absorption and promoting bone
formation (Langdahl, 2021). However, the side effects of anti-osteoporosis drugs pose a
huge challenge to the prevention and treatment of osteoporosis in clinical practice (Cuzick,
2001; McClung et al., 2019). As a result, it is extremely important to explore new treatment
strategies for osteoporosis.

Hesperidin (hesperetin-7-O-rutinoside), a flavanone glycoside highly abundant in citrus fruits,
particularly in oranges, has gained considerable attention in recent years due to its diverse
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bioactivities (Gattuso et al., 2007). Hesperidin exhibits a variety of
potential positive benefits, including antioxidant, anti-
inflammatory, anti-atherogenic, and neuroprotective properties,
therefore may serve as a promising therapeutic approach for a
wide range of disorders (Li et al., 2008; Yamamoto et al., 2013;
Semis et al., 2021). Accumulating evidence suggests that hesperidin
plays an important role in regulating bone metabolism and bone
formation, which may contribute to ameliorate or prevent the onset
of osteoporosis. It has been found that hesperidin appears to regulate
cell differentiation through Wnt/β-catenin signaling pathway while
also influence themineralization process by increasing the expression
of osteogenic gene (ALP, OCN, Osx, and Runx2) in human alveolar
osteoblasts (Hong and Zhang, 2020). In a previous study, hesperidin
protected bone mass loss by alleviating oxidative stress and
inflammation in an ovariectomy rat model (Zhang et al., 2021).
Hesperidin could upregulate the expression of osteogenic markers
and promote the maturation of bone organic matrix, thus exerting
anti-osteoporosis effects in vitro and in vivo (Miguez et al., 2021). In
an experimental rat model, hesperidin intake resulted in bone mass
gain in young rats and protected against ovariectomy-induced bone
loss in adult rats, as well as reduced oxidative stress and total lipid
content (Horcajada et al., 2008). However, the molecular and cellular
mechanisms underlying the osteogenic effect of hesperidin are still
largely unknown.

In the present study, we identified the targets genes of
hesperidin using the STITCH database, followed by the
construction of protein–protein interaction (PPI) network
to investigate the protein interactions. In addition, Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment

analysis was carried out to identify pathways that are
involved in hesperidin targeted genes and osteoporosis.
According to the bioinformatics analyses results, we finally
conducted in vitro experiments to further investigate the
potential molecular mechanisms underlying hesperidin’s
anti-osteoporosis effects. The schematic flow chart of this
work is shown in Figure 1.

MATERIALS AND METHODS

Regents
Hesperidin was purchased from Herbpurify (Chengdu, China)
and dissolved in dimethyl sulphoxide (DMSO). Ascorbic acid
phosphate, β-glycerophosphate, and dexamethasone used in this
study were purchased from Sigma-Aldrich.

Cell Culture and Treatment
Bone marrow mesenchymal stem cells (BMSCs) were
harvested from C57BL/6 mice and were kept in α-MEM
supplemented with 10% fetal bovine serum (FBS) and 1%
penicillin/streptomycin according to a previous work (Case
et al., 2010). The third to sixth generations of BMSCs were used
for our subsequent experiments. To induce osteogenic
differentiation, the medium was changed to osteogenic
induction medium (OIM) containing 20 mM β-
glycerophosphate, 100 nM dexamethasone (DEX), and
50 μM ascorbic acid phosphate once the cells reached
subconfluence. BMSCs were co-incubated with DEX (1 μM)

FIGURE 1 | Flowchart of the bioinformatics analyses and experimental validation in this study.
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and different concentrations of hesperidin (5 and 10 μM) for
7 days or 14 days for further analysis.

Alkaline Phosphatase and Alizarin Red S
Staining
BMSCs were seeded and cultured in OIM on indicated days, then
washed with PBS and fixed with 4% paraformaldehyde for 15min.
After 7 days of osteogenic differentiation, alkaline phosphatase (ALP)
staining was performed using a BCIP/NBT Kit (C3206, Beyotime)
following themanufacturer’s instructions. After 14 days of osteogenic
differentiation, alizarin red S (ARS) staining was performed to
evaluate the mineralized matrix formation.

Quantitative Real-Time Polymerase Chain
Reaction
The BMSCs were seeded into and cultured in 6-well plates, co-
incubated with DEX and different concentrations of hesperidin
for 7 days. Total RNA was extracted from the cells using the
NucleoZOL Reagent (Machery-Nagel GmbH, Düren, Germany).
Next, 1 μg of total RNA from each sample was reverse transcribed
into cDNA using the Hifair® II 1st Strand cDNA Synthesis
SuperMix for qPCR (YEASON, Shanghai, China). Quantitative
real-time polymerase chain reaction (qRT-PCR) was performed
on an ABI Stepone plus real-time PCR system (Applied
Biosystems, Foster City, CA) with Hieff® qPCR SYBR Green
Master Mix (YEASON, Shanghai, China). Relative expression of
each gene was analyzed using the 2−ΔΔCt method. The primer
sequences were listed in Supplementary Table S1.

Western Blot
The BMSCs were seeded into and cultured in 6-well plates, co-
incubated with DEX and different concentrations of hesperidin
for 7 days. Total cell lysates from BMSCs were extracted using
RIPA lysis buffer supplemented with protease inhibitors. The
protein concentrations were measured with the use of a BCA
protein assay kit (Beyotime, Shanghai, China) according to the
manufacturer’s protocol. Equal amounts of protein from each
sample were then separated by SDS-PAGE gel and subjected to
standard western blot procedures. Protein bands were visualized
using an ECL kit (BeyoECL Plus, Beyotime Biotechnology) and
quantitatively analyzed with Image Lab 3.0 software (Bio-Rad).
The antibodies against P53 and GAPDH were purchased from
Proteintech (Wuhan, China).

Immunofluorescence
For immunofluorescence, BMSCs were washed and fixed with 4%
paraformaldehyde at room temperature for 30 min, followed by
permeabilization with 0.3% Triton X-100 for 10 min. After
blocking with 3% BSA for 30 min, the cells were incubated
with anti-Runx2 antibody overnight at 4°C. Subsequently, the
cells were washed with PBS and incubated with corresponding
secondary antibody for 1 h at room temperature, then mounted
with DAPI contained fluorescent mounting solution (F6057,
Sigma-Aldrich). All images were viewed and photoed with a
fluorescence microscope (Olympus).

Identification of Hesperidin-Targeted
Genes and Construction of Protein–Protein
Interaction Network
Target genes related to hesperidin were obtained from STITCH
(http://stitch.embl.de/) based on the following settings: three shells
with a maximum interaction number of 10 for each shell, while the
parameter organism was limited to “Homo sapiens” (Szklarczyk
et al., 2016). Then, the interactive network map of hesperidin and its
targeted genes was constructed, while the degree value in the
protein–protein interaction (PPI) network was calculated with the
help of the Cytoscape 3.7.2 software. Furthermore, Gephi software
was used to establish and visualize a weighted network between
hesperidin and targeted genes.

Identification of Shared KEGG Pathways
Involved Both in Osteoporosis and
Hesperidin-Targeted Genes
Hesperidin-targeted genes were imported into DAVID database
(https://david.ncifcrf.gov/) (Huang et al., 2007), and the KEGG
pathway enrichment analysis was carried out to explore the most
significantly enriched pathways with a p-value of ≤0.05. The
miRWalk2.0 database was used to identify KEGG pathways
associated with human osteoporosis (Dweep and Gretz, 2015).
Subsequently, the overlapping KEGG pathways between
osteoporosis and hesperidin-targeted genes were displayed by
using Venn diagram webtool (http://bioinformatics.psb.ugent.be/
webtools/Venn/).

Identification of Hub Genes and KEGG
Pathways Related to Hesperidin-Targeted
Genes
The top five shared KEGG pathways ranked by the smallest p
values calculated in the KEGG pathway analysis were
screened out, followed by graphically visualizing the
enrichment information using the bioinformatics platform
(http://www.bioinformatics.com.cn/). Hub genes were
defined as those genes included in each of the top five
shared KEGG pathways.

Data Analysis
The data was displayed as mean ± standard deviation (SD) and
statistically analyzed with GraphPad Prism 8.0 (GraphPad).
Statistically differences between two groups were evaluated by
Student’s t-test, while comparisons among multiple groups were
estimated by one-way analyses of variance (ANOVA). A p-value
of less than 0.05 indicated statistical significance.

RESULTS

Bioinformatics Analyses of
Hesperidin-Targeted Genes
Based on a three shell limit screening criteria, a total of
30 hesperidin-targeted genes were obtained from online
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database STITCH. Subsequently, a network map of the
interactions between hesperidin and the targeted genes was
constructed the STITCH online tool (Figure 2A). Members in
the first shell (chemical-protein), including NOS3, PPARG,
PTGS2, SIRT1, SIRT3, TP53, AKT1, PTGS1, ESR1 and SIRT5,
were considered to be closely related to hesperidin. The second
shell (protein-protein) were composed of ATM, BRCA1, EP300,
FOXO1, RICTOR, KAT2B, FOXO3, MTOR, CDKN1A, and

MDM2, whereas HSP90AA1, CDKN2A, HIPK2, SRC, RCHY1,
NCOA3, MAPK8, CREBBP, USP7, and SP1 were found in the
third shell (protein-protein and chemical). To facilitate
exploration and comprehension of the complicated
connections between targeted genes, a visual network based on
interaction weights was established (Figure 2B). Further analysis
revealed that TP53 was the most highly weighted gene, making it
a significant part of the network.

FIGURE 2 | The interaction networks of hesperidin-targeted genes (A) Interaction network constructed by Cytoscape (B) Weighted interaction network
constructed by Gephi.

FIGURE 3 | PPI network of hesperidin-targeted genes (A) PPI network of hesperidin-targeted genes was constructed by Cytoscape (B) PPI network of hesperidin-
targeted genes was shown according to degree connectivity. The top ten hesperidin-targeted genes ranked by degree connectivity were displayed as green color.
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PPI Network of Hesperidin-Targeted Genes
A visualized PPI network of hesperidin-targeted genes was
constructed by using Cytoscape (Figure 3A). Subsequently, the
hesperidin-targeted genes were ranked according to degree values
(Figure 3B). Due to the fact that CDKN2A, KAT2B and SP1 had
the same degree value, the top 10 genes were TP53, CDKN1A,
BCL2, EP300, MDM2, ATM, ESR1, HSP90AA1, BRCA1,
CDKN2A, KAT2B, and SP1.

Enrichment Analysis of KEGG Pathways
and Identification of Shared KEGG
Pathways Between Hesperidin-Targeted
Genes and Osteoporosis
We used DAVID to perform KEGG pathway enrichment
analysis. 39 hesperidin-related KEGG pathways were
obtained, and 33 KEGG pathways with p-value < 0.05 were
finally selected. Additionally, 110 KEGG pathways associated
with osteoporosis were identified using the miRwalk database.
With the help of a Venn Diagram, we were able to identify 12
KEGG pathways that were shared by hesperidin-targeted genes
and osteoporosis (Figure 4A). The enrichment information of
hesperidin-related KEGG pathways involved in 12 KEGG

pathways was shown in Figure 4B. As shown in Table 1,
the top five shared KEGG pathways were prostate cancer
signaling pathway, pathways in cancer, glioma signaling
pathway, p53 signaling pathway, and cell cycle signaling
pathway.

Identification of Hesperidin-Targeted Hub
Genes
Among the 30 hesperidin-targeted genes, TP53, CDKN1A, BCL2,
EP300, MDM2, ATM, HSP90AA1, CDKN2A, CREBBP, CHEK2,
PRKDC, MAPK8, CASP3, MDM4, MMP9, and RCHY1 were
involved in the top five shared KEGG pathways. The enrichment
analysis results of these genes were shown in Figure 5.
Importantly, TP53, CDKN1A, and MDM2 were involved in all
top five KEGG pathways and were considered as hub genes.

Hesperidin Partially Reverses
Dexamethasone-Induced Inhibition of
Osteogenic Differentiation
ALP staining and ARS staining results showed that dexamethasone
exposure significantly inhibited the osteogenic differentiation of

FIGURE 4 | Enrichment analysis of KEGG pathways (A) Common shared KEGG pathways between hesperidin-targeted genes and osteoporosis was showed by
Venn diagram (B) Enrichment information of hesperidin-related KEGG pathways involved in 12 KEGG pathways.

TABLE 1 | Top five KEGG pathways and related genes.

Term KEGG Pathway Hesperidin-Targeted Genes p-Value

hsa04115 p53 signaling pathway CDKN1A, CDKN2A, TP53, MDM2, RCHY1, ATM 1.40E-10
hsa04110 Cell cycle signaling pathway CDKN1A, CDKN2A, EP300, CREBBP, TP53, MDM2, ATM 2.04E-08
hsa05215 Prostate cancer pathway AKT1, CDKN1A, HSP90AA1, EP300, CREBBP, TP53, FOXO1, MDM2, MTOR 1.11E-06
hsa05200 Pathways in cancer FOXO1, AKT1, CDKN1A, EP300, CDKN2A, MDM2, MAPK8, MTOR 1.71E-06
hsa05219 Bladder cancer CDKN1A, CDKN2A, MDM2, TP53, MMP9 2.01E-05
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BMSCs, whereas hesperidin partially promoted nodule formation
against dexamethasone treatment (Figure 5A and Figure 6B).
Furthermore, qRT-PCR analysis results showed that the
dexamethasone treatment dramatically downregulated the
mRNA levels of osteogenic genes such as ALP, Runx2, Osx, and
OPN in BMSCs, but further incubation with hesperidin partially
reversed the inhibitory effect of dexamethasone (Figure 6C).

Hesperidin Partially Reverses
Dexamethasone-Induced Osteoporosis by
Inhibiting p53 Expression
Immunofluorescence staining results demonstrated that
dexamethasone dramatically inhibited the protein levels of
Runx2 during the osteogenic differentiation of BMSCs, while
higher levels of Runx2 protein expression were observed after
hesperidin treatment (Figure 7A). Besides, treated with
dexamethasone significantly increased the mRNA level of p53
compared with OIM group, but hesperidin partially inhibited the
p53 activation in the dexamethasone group in a dose-dependent
manner (Figure 7B). Similar results were also observed regarding
the protein expression of p53 detected by Western blot

(Figure 7C). Thus, it can be assumed that downregulation of
p53 expression alleviated dexamethasone-induced osteogenic
reduction.

DISCUSSION

Osteoporosis is a chronic metabolic bone disorder associated
with aging, resulting in functional disability and a decrease in
quality of life. As the population ages, a rising number of
people currently suffer from osteoporosis substantially. Up to
date, there is still no effective treatment for osteoporosis.
Furthermore, the mechanisms responsible for osteoporosis
remain largely unknown. In the present study, the
molecular mechanisms behind hesperidin’s anti-
osteoporosis benefits were explored using bioinformatics
analyses and in vitro studies.

Hesperidin, a flavanone glycoside with a wide range of
biological activities, is widely used in the treatment of
various diseases. In recent years, emerging studies highlight
the importance of hesperidin in the regulation and bone
metabolism. Hesperidin has been shown to protect male

FIGURE 5 | Enrichment analysis of hesperidin-targeted genes. TP53, CDKN1A, and MDM2 were involved in all five shared KEGG pathways. The top three genes
by degree were TP53, CDKN1A, and BCL2.
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mice against androgen deficiency-induced bone loss by
inhibiting bone resorption and hyperlipidemia (Chiba et al.,
2014). It has been reported that hesperidin alleviated diabetic
osteoporosis via reducing the expression level of TNF-α and
NF-κB in rat bone and increasing the expression of OPN and
OCN in serum (Shehata et al., 2017). In addition, calcium
supplementation along with hesperidin was effective to
improve bone health in postmenopausal women (Martin
et al., 2016). However, the exact mechanisms through which
hesperidin exerts its anti-osteoporosis effects are still needed
to be explored.

In this study, 110 KEGG pathways associated with
osteoporosis and 33 KEGG pathways associated with
hesperidin-targeted genes were screened out by KEGG
pathway enrichment analysis. A total of 13 KEGG pathways
were commonly shared by these two groups. Among them, the
top five KEGG pathways with the smallest p-values were the p53
signaling pathway, Cell cycle signaling pathway, Prostate cancer
pathway, Pathways in cancer, and Bladder cancer. The hub genes
involved in all five KEGG pathways were TP53, CDKN1A, and
MDM2. These findings suggested that hesperidin may exert its
biological activity by regulating the p53 signaling pathway.

FIGURE 6 | The effect of hesperidin on DEX-induced osteogenic differentiation of BMSCs (A) ALP staining was conducted on day 7 (B) ARS staining was
conducted on day 14 (C) ThemRNA expression of ALP, Runx2, Osx andOPNwere detected by qRT-PCR on day 7. ***p < 0.001, ****p < 0.0001 vs OIM; #p < 0.05, ##p <
0.01, ###p < 0.001, ####p < 0.0001 vs DEX.
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Glucocorticoids, most commonly dexamethasone, have been
widely used to treat a variety of diseases due to their significant
anti-inflammatory, immunosuppressive, and metabolic regulator
effects (Schacke et al., 2002; Giles et al., 2018). It has been well
accepted that there is a strong correlation between long-term
glucocorticoids therapy and the development of osteoporosis
(Ding et al., 2015; Liu et al., 2018). Growing evidence from
in vitro and in vivo studies shows that glucocorticoids can
inhibit osteoblast proliferation and promote its apoptosis,
subsequently resulting in the suppression of bone production
and growth (Wang Y. et al., 2020; Wang L. et al., 2020).

Consistent with previous findings, the results of the present
study suggest that dexamethasone treatment significantly
inhibited the osteogenic differentiation of BMSCs following
ALP Staining and ARS Staining, as well as downregulated the
expression of osteogenic genes such as ALP and Runx2,

implying that dexamethasone inhibited osteogenic
differentiation of BMSCs in vitro. Notably, hesperidin
treatment partially alleviated the dexamethasone-induced
suppression of osteogenic differentiation, showing the
positive effect of hesperidin on dexamethasone-induced
bone deterioration.

The p53 tumor suppressor has long been recognized as critical
in cancer prevention (Vogelstein et al., 2000; Qin et al., 2018). In
recent years, increasing attention has been paid to the role of p53 in
skeletal disorders. Several studies conducted in vitro have
demonstrated that p53 plays a negative role in the
differentiation of MSCs(Molchadsky et al., 2010). It was
observed that the expression of p53 was increased in patients
with osteoporosis, and upregulation of p53 was associated with a
decrease bone mass (Yu et al., 2020). Emerging evidence suggests
that glucocorticoids can lead to upregulation of p53, causing

FIGURE 7 | Involvement of the p53 signaling pathway in the regulation of hesperidin (A) The typical image of immunofluorescence staining of Runx2. Scale bars =
50 μm (B) The relative expression of p53 in the different groups. ***p < 0.001, ****p < 0.0001 vs OIM; #p < 0.05, ##p < 0.01, ###p < 0.001, ####p < 0.0001 vs DEX (C) The
level of p53 was detected by western blot.
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activation of the p53 signaling pathway (Li et al., 2012; Zhen et al.,
2014). Therefore, we investigated whether hesperidin could exert
its anti-osteoporosis effects via the p53 signaling pathway. In this
study, p53 was identified as the hub gene with the highest degree
value in the PPI network. qRT-PCR and western blot analysis
confirmed that the expression of p53 was upregulated in BMSCs
during osteogenic differentiation after dexamethasone’s treatment.
The results indicated that dexamethasone treatment activated the
p53 signaling pathway, leading to inhibition of osteogenic
differentiation in vitro. However, treated with hesperidin
partially inhibited both the mRNA and protein level of p53.
Thus, when combined with our findings, this evidence suggests
that hesperidin may protect against dexamethasone-induced
osteoporosis by inhibiting the p53 signaling pathway.

Some concerns and limitations in this study should be
acknowledged. Firstly, we did not perform quantitative
analysis of the ALP and ARS staining results. Second, the
effects of hesperidin on osteogenic differentiation were not
investigated while activating or inhibiting the p53 signaling
pathway. Furthermore, no in vivo evidence was presented
regarding the beneficial effects of hesperidin on osteoporosis.

CONCLUSION

In summary, our study determined that dexamethasone
activated the p53 signaling pathway in BMSCs, causing
downregulation of osteogenic markers and suppression of
extracellular matrix mineralization during osteogenic
differentiation, while hesperidin exerted anti-osteoporosis
effects by inhibiting the p53 signaling pathway. Collectively,
our study demonstrated that hesperidin could be a potential
candidate for the treatment against dexamethasone-induced
osteoporosis.
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