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Effect of heat shield locations 
on rework‑induced thermal 
management in ball grid array 
solder joint
Adlil Aizat Ismail1,2, Maria Abu Bakar2*, Abang Annuar Ehsan2,4, Azman Jalar2,3,4, 
John Burke1,4, Zol Effendi Zolkefli1,4 & Erwan Basiron1,4

This study investigated the effectiveness of heat shield placement locations during the rework 
process to avoid thermal and mechanical damage to adjacent ball grid array components and their 
solder joints on double-sided printed circuit board assembly. Three types of heat shield placement 
locations were used: sample X, individual heat shield placement on adjacent components of the 
rework location; sample Y, a U-shaped, and sample Z, a square-shaped heat shield placed respectively 
at the heat source location. The dye and pull test results, infrared thermography, and temperature 
measurements were analysed to understand the relationship between the location of the heat 
shield and solder joint damage during rework. Heat shield placement at the heat source location 
on the reworked component can reduce the peak temperatures on the adjacent rework component 
locations by up to 8.18%. The peak temperatures of the centre and corner of the BGA component 
can be maintained below 195 °C and 210 °C, respectively to improve the adjacent rework component 
locations’ solder joint quality by reducing solder joint damage by more than 50% solder cracks. This 
is useful for thermal management during rework involving high-density ball grid array component 
placements on double-sided printed circuit board assembly.

Printed circuit board assembly (PCBA) rework is frequently used in the manufacturing industry as a beneficial 
effort to reduce waste and as a result, to boost total company revenue. PCBA rework is becoming increasingly 
crucial in times of difficulty in obtaining components, increased demand for flexibility, and short product devel-
opment cycles for the product to be ready for the market1,2. The main advantage of reworking a PCBA is that 
depending on the extent of damage, it can be performed faster than replacing it3.

The process of reworking ball grid array (BGA) components is known as an area array rework. The solder 
joints are concealed beneath the component body making the rework of area-array devices more challenging4. 
The combination of the higher operating temperature requirements of lead-free soldering and the sensitive nature 
of area-array components makes defining a rework procedure for lead-free BGA components difficult5. In high-
density product design, multiple BGA components are placed close to each other; hence, the adjacent rework 
component locations have a high risk of being exposed to thermal reflows during rework6. Several obstacles can 
only be overcome by introducing new or revised methods, such as tighter thermal profiles and extreme precision 
during PCBA rework procedures7.

A heat shield is used to avoid thermal or mechanical damage to the component, printed circuit board (PCB), 
adjacent rework component locations, and solder joints. The heat shield can minimize the temperature delta 
between the bottom and top sides of the PCBA during the rework hot air reflow process for BGA removal and 
assembly, thereby reducing the exposure of heat transfer to adjacent components8. Component damage and 
solder joint cracks can be caused by unintentional reflow of adjacent component solder joints9. Due to the 
interaction between tin-based solder and copper pads, intermetallic compound (IMC) will occur during the 
assembly process and in service of the solder joints10. Low mechanical characteristics of solder may be caused by 
a very thick IMC layer. Additionally, the IMC’s form has a big impact on how reliable solder joints are11. Because 
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of their intrinsic brittleness, thick IMC is easily broken, and longitudinal transform-induced stress caused by 
minus volume reaction accumulating at the solder/IMC interface and within the IMC layer can cause mechanical 
property degradation12. The heat shield during the rework process also prevents the IMC layers on solder joints 
of the adjacent components from growing too thick, which could impact the solder joint quality and reliability13. 
Limited studies have addressed thermal management using heat shield during rework involving high-density 
component placement on double-sided PCBA14,15.

The main objective of this study is to investigate the effectiveness of the heat shield placement locations during 
the rework process to avoid thermal and mechanical damage to the adjacent components of the rework location 
and their solder joints on both the top and bottom PCBA sides. For this purpose, (a) an infrared thermography 
camera was used to obtain the thermal distribution on the surface of the BGA components during the rework 
process; (b) the thermal distribution on the solder joint array was validated using temperature measurements via 
thermocouple (TC) wires; (c) dye and pull tests were used to determine the post-rework solder joint cracks; and 
(d) the dye and pull test results and temperature measurements were analyzed qualitatively and quantitatively to 
further understand the correlation between the heat shield placement locations and the damage to the adjacent 
components’ solder joints during rework.

Results and discussion
The peak temperature results for all samples are shown in Fig. 1a, for the surrounding components located on 
the top PCBA side. Fig. 1b shows the peak temperature results for the mirror component locations located on 
the bottom side of the PCBA. The variability charts indicate that there was an interaction between the type of 
heat shield placement locations and the peak temperature for both the centre and corner of the BGA for the top 
and bottom PCBA sides during the rework process. The highest peak temperature was detected for sample W, 
which was reworked without a heat shield. For samples X, Y, and Z, reworking by applying heat shield(s) caused 
the centre and corner temperatures on surrounding components to be significantly lower than sample W.

The range of corner peak temperature for both top and bottom PCBA sides in all samples was smaller than 
the range of centre peak temperature. This observation agrees with Sommerer et al.16, where the position of the 
TC wires from the heat source location was correlated with the amount of heat absorption. Weng and Martin17 
also reported that TC temperature readings varied depending on the heat shield locations from the heat source. 
Samples X and Z had less variation in the centre and corner peak temperatures for both the top and bottom PCBA 
sides, but sample Z had a lower peak temperature range. Sample Y had a lower minimum peak temperature than 
samples X and Z, but the variability in the peak temperature range in sample Y was higher with the highest peak 
temperature, making it ineffective in controlling heat dissipation. The mean for the peak temperatures indicated 
by the triangular shapes showed a downward trend, indicating a temperature reduction by using the heat shield 
during the rework process.

Validation by infrared thermography confirmed the heat dissipation of the components in the PCBA samples 
during rework18. Warmer temperatures, where more heat and infrared radiation are emitted, are indicated by 
brighter colours (red, orange, and yellow), while cooler temperatures are indicated by purple and dark blue or 
black where less heat and infrared radiation are emitted19. Here below show pictures of the temperature distribu-
tion without heat shield application and Fig. 2 and the heat shield application in Fig. 3. Photographs of the BGA 
components on the top PCBA side during the rework process were taken with a regular camera as a reference 
for the infrared thermography images.

The bright yellow colour was the same as the heat source which came from the hot air nozzle can be seen 
on the side of the adjacent components of the rework location for sample W in Fig. 2b, indicating a surface 
temperature of 293.1 °C. This was due to the rapid temperature increase along the side of the adjacent BGA 
components’ surface during the rework process. The bright yellow colour from the heat source indicated the 
surface temperature of 333.9 °C according to the heat scale was properly contained in sample Z, as shown in 
Fig. 3b. The adjacent components of the rework location were dark orange indicating that the temperature was 
lower than the heat source. With the heat shield application during the rework process, the temperature of the 
adjacent BGA components of the rework location decreased, as did the active heat-spreading area.

Figure 4 shows the number of BGA solder joints affected by dye penetration for both top and bottom PBCA 
sides in all samples. The number of solder joints affected in samples Y and Z was reduced from sample W, which 
showed that the heat shields enabled the reduction of thermal damage on the solder joints. Sample X, using an 
individual heat shield located on each adjacent component of the rework location, has the highest number of 
solder joints affected by the dye penetration, despite the temperature of the adjacent components of the rework 
location being much lower than sample W. This result has deviated from the expected outcome of the heat shield 
placement location.

The inner heat shield wall generates radiation heat from the hot air convection heat interacting with the 
outside heat shield wall. The interaction created transient heat transfer from the outside to the inside of the heat 
shield wall thereby transferring conductive heat toward the PCBA surface and BGA solder joints, as shown in 
Fig. 5. This aligns with the findings of Stein et al.20 on the temperature distribution conditions within the heat 
shield. Kong et al.21 reported that thermal fatigue failure of solder joints can occur in a lower temperature vari-
ation range.

The severity of the dye penetration percentage and its correlation with the centre and corner temperatures 
of each adjacent component of the rework location are shown in Figs. 6a and b, respectively. Sample W had 
the most severe dye penetration at 76–100% and mainly occurred at the bottom side. This was because no heat 
shield was applied during rework. Samples X and Y had the same dye penetration percentages at the bottom and 
top, respectively. In addition, 51–75% dye penetration was observed on the bottom side of sample X. The dye 
penetration percentage of sample Z was less than 50% on the bottom side. Dye penetration of 51% and above 
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occurred when the centre temperature of the adjacent components of the rework location exceeded 195 °C. 
Similar results were observed when the corner temperature of the adjacent BGA component exceeded 210 °C.

In this study, the temperature of the adjacent components of the rework location during the rework process 
can be reduced by addressing the heat shield placement locations. Infrared thermographic images were validated 
using the TC wires temperature reading to integrate the heat distribution image of the surface temperature of 
the BGA components and the actual peak temperature of the solder joint array. The sample Z heat shield place-
ment location had the most effective heat reduction on the adjacent components of the rework location, where 
the mean peak temperatures on the top PCBA side for the BGA component centre and corner were reduced by 
6.70% and 6.85%, respectively.

For the bottom PCBA side, the heat reduction for the BGA component’s mean peak temperature was 7.58% 
at the centre and 8.18% at the corner. Dye penetration of more than 50% due to the solder joint crack can be 
prevented as long as the adjacent components of the rework location temperature can be maintained below 195 °C 
and 210 °C for the centre and corner of the BGA component, respectively, during the rework process. This finding 
is in line with Chen et al.22, that lowering the temperature exposure to the solder joints will reduce the impact 
of reliability issues, such as the thickening of the IMC layer that affects the shear strength of the solder joints.

Figure 1.   Variability chart for peak temperature on centre and corner of BGA for all samples: (a)—top PCBA 
side; (b)—bottom PCBA side.
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Conclusion
This study provides a method to address the issue of heat shield placement locations while reworking high-density 
BGA components placement populated on double-sided PCBA. Thermal management during the rework pro-
cess was performed effectively using heat shields. Placing the heat shield at the heat source location can reduce 
the temperature of adjacent components of the rework location during the rework process. This method can be 
successfully used for reworking high-density BGA components populated on double-sided PCBA. Combining a 
square-shaped heat shield with placement at the heat source location where the reworked component is located 
can reduce the peak temperatures on the adjacent components of the rework location by up to 8.18%. It can 
also maintain a peak temperature below 195 °C and 210 °C for the centre and corner of the BGA component 
respectively, to improve the solder joint quality by reducing solder joint damage.

Methods
Materials and sample description.  Four variables were used as test vehicles, as shown in Table 1: sam-
ple W: rework without a heat shield as a control sample; sample X: rework by placing heat shields on adjacent 
components of the rework location; sample Y: rework by placing a U-shaped heat shield at the heat source, and 
sample Z: rework by placing a square-shaped heat shield at the heat source. Twelve BGA components were 
located at the top and bottom of the PCBA for each sample. There were six BGA components on each side of 
the PCBA, which mirror each other. For this research, ten adjacent BGA components from the rework area on 
the top (U1, U2, U4, U5, U6) and bottom (U7, U8, U9, U11, U12) PCBA were studied. The measurement gap 
between the BGAs is shown in Fig. 7. A BGA component (U3) on the top side of the PCBA was reworked using 
a rework machine. Alphabet “U” is selected since it is a standard reference designator for an integrated circuit 
component as per ASME Y14.44-200823.

Each BGA component consists of 132 solder balls with one central column unpopulated. The BGA com-
ponent solder ball diameter was 0.49 ± 0.5 mm. Both material composition details for the lead-free solder ball 
and solder paste are listed in Table 2. The solder paste was used for the BGA components assembly before the 

Figure 2.   Photograph (a) and infrared thermography image (b) during the rework process for sample W (no 
heat shield).
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Figure 3.   Photograph (a) and infrared thermography image (b) during the rework process for sample Z (with a 
square-shaped heat shield.

Figure 4.   Bar chart on quantity solder joints affected with dye penetration across all samples.
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Figure 5.   Schematic of the combination of convection, radiation, and conduction heat interactions on the BGA 
component solder joints in sample X during rework.

Figure 6.   Dye penetration% with the impact of temperature differences at the BGA component area: (a)—
centre of the BGA components; (b)—corner of the BGA components.
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rework process. The PCB has 14 layers, and the finishing is an organic solderability preservative (OSP) with 
solder mask-defined lands.

The reflow profile was based on a lead-free rework process temperature profile, which required preheating 
between 100 and 190 °C. The soaking or preheating activation temperature was 140–220 °C for 90 seconds. The 
component ramp rate was 2–4 °C per second. The reflow dwell temperature was 220–230 °C for 80 seconds. The 
solder joint peak temperature was maintained at 230 °C for 15 seconds.

Heat shield material and placement location.  Heat shields were made from stainless steel sheet metal 
due to their reflectivity, emissivity, thermal conductivity, and specific heat capacity24. It is also cost-effective, 
durable, and adaptable to customization25. Three types of heat shield placement locations were used: sample 
X using individual heat shield placement on adjacent components of the rework location, as shown in Fig. 8a; 
sample Y using a U-shaped heat shield placement at the heat source location, as shown in Fig. 8b; and sample 
Z using a square-shaped heat shield placement at the heat source location, as shown in Fig. 8c. The thickness of 
the stainless steel sheet metal was 0.8 mm. The dimensions of the heat shield were 5 mm in height, 12.69 mm in 
width, and 18 mm long.

Rework temperature profiling.  The TC wires were used for rework temperature profiling. The PCBA 
sample was drilled to properly place the TC bead and wires on the solder joint of the BGA component, which 
needs to be monitored as per the schematic in Fig. 9. The holes from the drilling process were covered with epoxy 
resin. The TC wires were placed on the rework, mirror rework, and five adjacent components on both the top 
and bottom PCBA sides, as shown in Fig. 10. TC wire placements were based on the IPC-7095D-WAM1 recom-
mendations to represent the lowest to highest thermal mass areas26. The TC wires were attached to the rework 
machine to monitor the temperature of the reworked and adjacent components while exposing the targeted 
rework BGA component location with hot air coming from the hot air nozzle and bottom convection heater. For 
this experiment, only temperatures of adjacent BGA components of the rework location on the top and bottom 
PCBA were recorded and analyzed.

Rework method.  The PCBA samples were baked in an oven for 9 hours at 125 °C to remove moisture and 
prevent thermal shock on the PCBA27. The sample was secured with a rework pallet and placed onto the rework 

Table 1.   Material samples and variables.

Sample Variable

W Rework without a heat shield (Control)

X Rework by placing heat shields at adjacent components of the rework location

Y Rework by a placing U-shaped heat shield at the heat source

Z Rework by placing a square-shaped heat shield at the heat source

Figure 7.   Schematic of BGA components position and reworked component location (U3).

Table 2.   Solder paste and BGA component solder ball material composition.

Details Solder paste Solder joint (ball type)

Alloy composition (wt%) Sn96.5 Ag3.0 Cu0.5 Sn97.18 Ag2.0 Cu0.75 Ni0.07

Melting temperature (°C) 217 218
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machine. The rework process involved the removal of the defective component, cleaning the component pads 
from the solder residue, replacing the component, and reflowing the component solder joints. The targeted 
reworked component, U3, was removed from the PCBA using a hot-air nozzle along with vacuum suction. 
Solder residues on the PCBA were removed by applying paste flux on the area and using a soldering iron and 
desoldering braid. The flux residue was then cleaned using a cleaning solution.

The reworked BGA components were assembled by applying a paste flux at the solder joints of the BGA com-
ponents and then applying hot air reflow via the rework machine28. The hot-air source for removal and assembly 
came from the top nozzle and bottom convection heater of the rework machine, as shown in Figs. 11a–c. During 
component assembly, all solder joints must meet the melting point of lead-free alloys in the range of 217–220 
°C to obtain good metallurgical bonding (IMC formation) between the solder alloys and base metals of the PCB 

Figure 8.   Schematic of heat shield(s) placement locations: (a)—an individual heat shield on adjacent 
components of the rework location; (b)—a U-shaped heat shield on the rework component; (c)—a square-
shaped heat shield on the rework component.

Figure 9.   Schematic of TC wire placement on BGA component solder joint.
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Figure 10.   Schematic of TC wires placement locations on reworked and adjacent BGA components of the 
rework location.

Figure 11.   Schematic of BGA component being rework: (a)—without using the heat shield (sample W); (b)—
with the heat shield on adjacent components of the rework location (sample X); (c)—with the heat shield on the 
heat source (sample Y and Z).
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pads29. For samples X, Y, and Z, both the removal and assembly of the component used heat shields to protect 
the adjacent components of the rework location from overheating.

Infrared thermography.  An infrared thermographic camera Fluke Ti400 was used to capture the thermal 
distribution on the surface of the locations of the BGA components during the rework process. Thermal imaging 
technology not only measures the BGA surface temperature but also provides information about heat intrusions 
and heterogeneity in the object’s interior or subsurface30. This infrared thermographic camera can measure and 
capture the infrared radiation emitted by the BGA components during the rework process. The temperature 
range of this camera is from −20 to +1200 °C, which meets the rework soldering temperature range of the BGA 
components for the analysis.

Dye and pull test.  Dye and pull tests were held on all samples and BGA components to observe potential 
solder joint cracks indicators for rework and adjacent BGA components31. Initial optical and X-ray inspections 
were performed on the PCBA samples to determine signs of physical damage or stress on the reworked and 
adjacent components. A pull tester was used to separate the BGA components from the PCB pads. The BGA 
components were examined for dye indications using a Nikon Eclipse LV150NL optical microscope32.

Dye penetration coverage inspection.  The BGA component solder joint was inspected for dye penetra-
tion after the BGA components were removed. The locations and percentages of dye indications were recorded 
and analyzed. The percentage of dye penetration coverage was calculated based on the dye coverage filling the 
circle quadrant, as shown in Fig. 1233. The percentage of dye penetration coverage values is listed in Table 3.

Quantitative analysis.  For quantitative analysis and calculations, the Minitab and JMP software were 
used complementarily. The rework-induced thermal management results were analyzed; the peak temperature 
variance, bar chart on quantity solder joints affected, and variability chart for dye and pull test results were 
generated34.

Data availability
The data that support the findings of this study are available from Western Digital®, but restrictions apply to the 
availability of these data, which were used under license for the current study, and so are not publicly available. 
Data are however available from the authors upon reasonable request and with permission of Western Digital®. 
All data will be available on reasonable request from corresponding author.
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