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Abstract

Aseptic loosening of total joint arthroplastics due to periprosthetic osteolysis is a frequent
cause of implant failure. The absence of clinical interventions to arrest or prevent this
complication limits the use of total joint replacement especially in younger patients. Here we
review recent studies implicating tumor necrosis factor (TNF)-α in periprosthetic osteolysis
and the rationale for clinical studies of anti-TNF therapy and other interventions for peri-
prosthetic loosening.
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Introduction
Joint destruction from various pathologies, most notably
rheumatoid arthritis (RA) and osteoarthritis, leads many
individuals to elect total joint replacement. Worldwide,
more than 1.3 million total joint arthroplasties are per-
formed each year [1]. This number can be expected to
increase dramatically in the 21st century. While total joint
replacement is remarkably effective in relieving pain and
improving function and mobility, it is not without complica-
tions. Up to 20% of patients so treated will show evidence
of osteolysis within 10 years [2–4]. This osteolysis usually
leads to implant failure and need for revision arthroplasty,
which has a poorer clinical result and a shorter duration of
survival than primary total joint replacement [5,6]. Because
of such failures, many younger people who would other-
wise be excellent candidates for surgery are told to wait,
because they might need two or three revisions in their
lifetime. Therefore, a clinical intervention to prevent pros-
thetic implant loosening is greatly needed.

Prosthesis failure results from multiple factors, including
those relating to materials, biomechanics, and host
responses. The quest for more durable and wear-resistant
materials, as well as for better implant designs, and the
study of the forces involved in implant integration and pros-
thesis failure continue to be areas of active investigation.
Several groups, however, have focused on the host
response to debris produced by wearing of the joint, postu-
lating that wear-debris-induced osteolysis is the main cause
of failure of prosthetic implants [7]. In this model, wear
debris generated from the prosthesis is phagocytosed by
macrophages and initiates an inflammatory response that
leads to the recruitment of activated osteoclasts and to
osteolysis at the bone–implant interface. Several lines of evi-
dence support this model. First, as many as 109 particles
per gram of tissue can be recovered from the inflamed
membrane attached to the failed prosthesis after revision
surgery [8]. Second, ingestion of wear-debris particles
induces cytokine production by mononuclear phagocytes in
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vitro [9]. Third, high concentrations of cytokines, includ-
ing TNF-α, that are produced by macrophages are found
in the fluid and tissue surrounding loose implants
[10–12]. Fourth, conditioned medium from monocytes
stimulated by wear debris can stimulate increased bone
resorption in vitro [13]. Fifth, animal models of wear-debris-
induced osteolysis have demonstrated the importance of
cytokines in this process [14,15].

This wear-debris-induced osteolysis, which is associated
with aseptic loosening, is very different from the phenomenon
of stress shielding. In stress shielding, an implant takes on
a portion of the mechanical load transmitted to the skele-
ton and shields bone from this stress [16–18]. Since bone
metabolism is dependent upon mechanical load, bone
density decreases in the affected area. Stress shielding is
different in several ways from the inflammatory bone loss
that occurs in response to particulate debris. First, stress
shielding occurs in the absence of inflammation [18].
Second, it occurs around implants (such as rods, plates
and screws) that do not release particles [19]. Third, it is
not influenced by polyethylene or the bearing surface, but
is reduced by using implants that have a lower modulus of
elasticity so that bone takes on more of the mechanical
load [16,17]. Fourth, like disuse osteopenia or osteoporo-
sis, stress shielding increases the general porosity of
bone, whereas aseptic loosening is associated with local-
ized endosteal bone erosions [20]. Fifth, and most impor-
tantly, stress shielding has not been associated with
mechanical loosening of the implant [17,18,21,22].

The first clinical manifestation of prosthesis failure is pain
with associated radiographic evidence of osteolysis
(Fig. 1a). If the volume of osteolysis is small (up to 2 mm in
diameter), osteolysis often does not progress and the
implant remains fixed. However, when the lesion is greater
than 2 mm, osteolysis usually continues rapidly, leading to
implant failure. In these lesions, bone is resorbed by
osteoclasts and is replaced by a fibro-inflammatory mem-
brane containing lymphocytes, macrophages, and fibro-
blasts (Fig. 1b) [7]. Although the histopathology and
initiating mechanisms differ from those for RA, the tissue
reaction in peri-implant osteolysis resembles the pannus of
RA in its tendency to produce localized cytokine-mediated
bone loss. Thus, a central aim in developing a therapeutic
intervention for aseptic loosening is to identify a drug that
will eliminate or dramatically reduce inflammation in the
periprosthetic synovium-like membrane.

TNF-α has been identified as a drug target in aseptic loos-
ening for many of the same reasons it has been a focus in
RA. First, since addition of anti-TNF-α antibodies inhibits
the production of other pro-inflammatory cytokines such as
IL-1, IL-6, IL-8, and GM-CSF (granulocyte-macrophage
colony-stimulating factor) by synovial tissue, it has been
proposed that this factor is at the apex of the pro-inflamma-

tory cytokine cascade in the synovium [23–25]. Another
reason is that TNF-α can induce joint inflammation and pro-
liferation of joint cells [26]. Also, it can stimulate bone
resorption by inducing osteoclastogenesis and activating
mature osteoclasts [27]. A fourth reason is that TNF recep-
tor I knockout mice have virtually no osteolytic response to
polymethylmethacrylate [15] or titanium [14]. And finally, in
animal models, the TNF-α antagonist etanercept has been
used to prevent wear-debris-induced osteolysis [28,29].

Therapies for aseptic loosening
There are currently no drugs specifically approved for the
treatment of aseptic loosening of prostheses. However,
the above paradigm for loosening (ie wear-debris-induced,
TNF-α-mediated inflammation resulting in osteoclast acti-
vation) suggests that three categories of drugs should be
tested for their ability to prevent or treat loosening of pros-
thetic joints. The first category is the bisphosphonates.
These drugs inhibit osteoclasts, are effective, and are
widely used to prevent or treat osteoporosis. A small,
recent clinical study has shown that alendronate can

Figure 1

Radiographic and histologic findings in periprosthetic osteolysis and
loosening of the prosthesis. (a) The radiograph demonstrates
periprosthetic bone erosions along both the medial and lateral
endosteal bone surfaces. The femoral head is eccentrically placed in a
superior position in the acetabular cup, indicating polyethylene wear
and the generation of particles. (b) The bone in the osteolytic lesions is
replaced by fibro-inflammatory tissue (arrow) consisting of a
background of fibroblasts with a diffuse infiltrate of inflammatory cells
(lymphocytes, plasma cells, and macrophages), which is most intense
in the top left-hand quadrant of this micrograph. Released particles of
wear debris accumulate in this tissue, which acts as a reservoir for
them and thus enhances the progression of the bone loss and further
loosening. This patient underwent a revision arthroplasty.
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reduce the periprosthetic bone loss that develops soon
after total hip replacement [30]. However, as the authors
of that study pointed out, this early bone loss is probably
secondary to stress shielding rather than to wear-debris-
induced inflammation. Indeed, patients who had had a
total hip replacement more than 5 years previously or who
were awaiting revision surgery for loosening did not have a
similar increase in periprosthetic bone density when
treated with alendronate. Unfortunately, periprosthetic
osteolysis was not an end point in that study. The effect of
bisphosphonates on inflammation-induced osteolysis has
also been evaluated in patients with RA. In three studies,
the effects of bisphosphonates on radiographically evalu-
ated erosions have varied but have been predominantly
negative. In one small study (a total of 27 patients random-
ized to either pamidronate, 1000 mg/day by mouth, or a
placebo, for a year), erosions in the treated group pro-
gressed less rapidly [31]. However, no such effect was
found in two larger studies (a total of 40 patients given
pamidronate, 30 mg, intravenously per month or placebo
by monthly infusion, and a total of 105 patients given
pamidronate, 300 mg/day by mouth, or a placebo for
3 years) [32,33]. In this last study, spinal and femoral bone
mineral density significantly improved in the treated group,
even though the erosions progressed. Although it is
possible that the doses used were inadequate to block
osteolysis, these studies in humans suggest that bisphos-
phonates may be less effective for use against inflammation-
induced osteolysis than against generalized osteoporosis.
On the other hand, a report that zoledronate blocks bone
resorption in a rabbit/carrageenan model of inflammatory
arthritis [34] indicates that bisphosphonates may be effec-
tive in some types of inflammation-induced osteolysis.

A second category of drugs for the treatment of prosthetic
loosening are those designed to inhibit TNF (etanercept
and infliximab). Both of these agents are potent inhibitors
of synovial inflammation [35,36] and both have been
approved worldwide for the treatment of RA. Importantly,
recent studies have shown that both can block erosions in
this disease [37,38]. Because of their effects on erosions
in RA and on wear-debris-induced osteolysis in animals
[28,29], these anti-TNF agents are the most promising
medications already available for the treatment of estab-
lished loosening. However, they are also remarkably
expensive and therefore should not be used to treat loos-
ening until their efficacy is proven in clinical trials.

Finally, a third category of drugs to treat prosthetic loosen-
ing are the biologics being developed that interfere with
RANK/RANK-ligand signaling. RANK (receptor activator
of NFκB) [39] is a receptor on osteoclasts and osteoclast
precursors that transmits a signal required during osteo-
clast and lymph node development [40]. RANK ligand
(also known as OPGL, ODF, and TRANCE) is an agonist
for RANK, and is expressed on osteoblasts and activated

T cells [41]; it provides the essential signal for osteoclast
differentiation and survival [27]. Osteoprotegerin (OPG) is
a natural decoy receptor that binds to RANK ligand and
prevents its interaction with RANK [42]. The biologics
being developed to inhibit osteoclasts include recombi-
nant OPG and a soluble form of RANK. The potency of
these molecules is best illustrated by the phenotype of
transgenic mice that overexpress these factors and suffer
from severe osteopetrosis [42,43]. Preliminary studies in
an animal model indicate that a soluble chimeric RANK:Fc
molecule has no effect on inflammation but completely
inhibits osteoclast induction and wear-debris-induced
osteolysis in vivo [29]. Thus, these new RANK-based bio-
logics, which are even more potent inhibitors of osteo-
clasts than the bisphosphonates, may offer another future
approach to the treatment of established loosening or to
its prevention.

Based on the animal studies summarized above, a strong
case can be made for the involvement of TNF in at least
some models of wear-debris-induced osteolysis. We
believe that clinical studies with TNF inhibitors will be a
direct way of testing the validity of anti-TNF therapy in pre-
venting prosthetic hip loosening.
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