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Abstract: Modifications to the traditional Onsager theory for modeling isotropic–nematic phase
transitions in hard prolate spheroidal systems are presented. Pure component systems are used to
identify the need to update the Lee–Parsons resummation term. The Lee–Parsons resummation term
uses the Carnahan–Starling equation of state to approximate higher-order virial coefficients beyond
the second virial coefficient employed in Onsager’s original theoretical approach. As more exact
ways of calculating the excluded volume of two hard prolate spheroids of a given orientation are
used, the division of the excluded volume by eight, which is an empirical correction used in the
original Lee–Parsons resummation term, must be replaced by six to yield a better match between
the theoretical and simulation results. These modifications are also extended to binary mixtures of
hard prolate spheroids using the Boublík–Mansoori–Carnahan–Starling–Leland (BMCSL) equation
of state.

Keywords: liquid crystals; phase transitions; field theory; thermodynamics; entropic control

1. Introduction

Systems with hard particle interactions have free energies that are purely entropic. As
a result, they provide the simplest non-trivial systems for studying the effects of entropy
on, or the entropic control of the thermodynamic and structural phase behavior of various
complex fluids. Here, we consider a fluid comprised of hard prolate spheroids that has been
used to model lyotropic liquid crystals that exhibit an isotropic–nematic phase transition.

In the 1940s, Lars Onsager originally developed a microscopic theory to capture the
isotropic–nematic phase transition of hard cylindrical rods [1]. Onsager’s theory provides
an example of a purely entropic phase transition. In contrast to the competition between the
energetic and entropic contributions to the free energy that drives the liquid–vapor phase
transition, the Onsager theory describes a phase transition that is instead driven by the
competition between the orientational and correlational contributions to only entropy [2].
Onsager’s theory has additional historical significance as one of the first examples of a
density functional theory of inhomogeneous fluids (in this case, the inhomogeneity arises
from the orientations of the particles). Onsager considered suspensions of very long rods
that allowed him to express the free energy as a sum of an ideal contribution and an excess
term related to the second virial coefficient of two long rods. The second virial coefficient
was determined from an integral over the excluded volume or overlap volume of two hard
rods. The excluded volume of the two hard rods depends on their relative orientation. By
assuming sufficiently large aspect ratios, Onsager was able to obtain a simple analytical
expression for the excluded volume of the two long rods in contact as a function of the
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angle between them [1,2]. The ideal term in the free energy has the lowest numerical value
for an isotropic distribution, and the excess term captured by the second viral coefficient
decreases as the orientational order increases. The relative weight of the excess term
compared to the ideal term increases with increasing density of the fluid until the loss of
orientational entropy is compensated by minimization of the rods’ mutual hindrance [2].
The balance between the orientational entropy (favoring the isotropic phase) and the excess
term (favoring the nematic phase by lowering the repulsions between the molecules) is
determined from functional minimization.

Later work utilizing more sophisticated theoretical techniques [3] and molecular sim-
ulations [4] demonstrated that predictions of the Onsager theory are quantitively reliable
only for aspect ratios larger than 100. One of the several ways that the Onsager theory has
been improved upon is through the determination of more accurate expressions for the
excess term, which was accomplished by the inclusion of higher-order viral coefficients,
although in an approximate manner [5–7]. In particular, the Lee–Parsons resummation
method used the Carnahan–Starling (CS) equation of state [8] for hard spheres to effectively
include these higher-order virial coefficients [6,7]. The specifics of the Lee–Parsons resum-
mation term are discussed in greater detail in the following section of this manuscript. By
including a more accurate excess term to the total free energy of the system, a broader
range of systems can be potentially modeled such as rods with smaller aspect ratios and
particles with other shapes that are more experimentally relevant, including hard ellipsoids
of revolution [9–11]. Lee [7] demonstrated that the approximations introduced by the
resummation term using the CS equation of state worked extremely well for modeling the
isotropic–nematic transition for pure component hard prolate spheroids in comparison to
the simulation data. In Reference [7], Lee used the Berne and Pechukas (BP) approximation
(also called the Gaussian overlap model) [12] to capture the orientational dependence of
the excluded volume of spheroids.

Despite the success of the Lee–Parsons resummation term and the Gaussian overlap
model, recent work has nonetheless focused on generating and evaluating exact expressions
for the excluded volume. Such expressions will be presumably necessary when attempting
to extend the previously discussed work to mixtures and even more complicated systems
(e.g., particles with different shapes). As these exact relations have been analyzed in some
detail, though, some interesting inconsistencies have arisen between them and the previous
work of Lee. In the sections that follow, we demonstrate that, if a rigorous method is
employed to obtain the excluded volume of a given mutual orientation of spheroids [10,11],
the division by eight as in the Lee–Parsons resummation term, which is included as an
empirical correction and yields excellent agreement when using the Gaussian overlap
model approximation, is nonetheless better replaced by a division by six when using the
actual (i.e., rigorously obtained) excluded volume. We then demonstrate how to extend
the updated resummation term method to the case of mixtures of hard prolate spheroids
using the Boublík–Mansoori–Carnahan–Starling–Leland (BMSCL) equation of state [13].
To our knowledge, this is the first time that the BMCSL equation of state has been used for
modeling mixtures of liquid crystals. Apart from direct application to prolate spheroids,
this analysis should be of importance to several other soft matter systems, including lipid
bilayer mechanics [14], liquid–crystalline polymers [3], the modeling of chemical reactions
with accurate non-ideal interactions [15], and mixtures of rod-like or ellipsoidal liquid
crystal molecules with other shaped particles such as hard spheres [16], to name a few
examples.

2. Theoretical Methods
2.1. Calculating the Excluded Volume of Two Prolate Spheroids Given a Relative Orientation

The volume of a single prolate spheroid is vlc =
4
3 πa2c, where a is the radius of the

minor axis and c is the radius of the major axis. We define the orientation of a prolate
spheroid with a unit vector that points normal to the surface of the spheroid through the
major axis. We use two spherical coordinates to define the direction of that unit vector
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expressed as
→
Ω = (θ, φ), where θ is the polar angle that is valued from 0 to π and φ is the

azimuthal angle that runs from 0 to 2π. The differential of
→
Ω is d

→
Ω = sinθdθdφ. To aid the

reader, we provides examples of the relative orientation of two prolate spheroids and how
this maps to the dot product of the two unit vectors in Figure 1. In this work, the excluded
volume (vex) is the volume around a given particle that is inaccessible to the center of
mass of another particle due to the nature of the hard particle interaction potential. When

two prolate spheroids of the same size are aligned (
→
Ω1·

→
Ω2 = 1), the excluded volume is

vex(
→
Ω1·

→
Ω2 = 1) = 8vlc. Note that, when two identical perfect spheres are in contact, the

excluded volume is also 8 times the volume of a single sphere. In fact, the result that the
excluded volume is 8 times the volume of a single spheroid is valid for any two identical

spheroidal objects that are aligned (
→
Ω1·

→
Ω2 = 1). This leads to the empirical correction of

dividing by 8 that was used in the original resummation term.
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from this model is 

Figure 1. Examples of relative orientations of prolate spheroids and how this maps to the dot product of the spheroids
directional unit vectors. The example on the left is for two aligned spheroids. When the spheroid directional unit vectors
both point in the same direction, then the dot product is unity, and this relative orientation leads to the lowest excluded
volume state. The example on the right is when directional vectors are orthogonal, and this leads to the highest excluded
volume state. The dashed lines represent the excluded volume around particle 1 due to particle 2 when they are in a
particular relative orientation.

As mentioned previously, one widely used method of determining the excluded
volume of two prolate spheroids of the same size in any orientation is to use the Gaussian
overlap model [12]. The expression for the excluded volume of two spheroids that follows
from this model is

vex(
→
Ω1·

→
Ω2) = 8vlc

√√√√1− χ2(
→
Ω1·

→
Ω2)

2

1− χ2 ; where χ =
(c/a)2 − 1

(c/a)2 + 1
. (1)

In 1990, Tjipto-Margo and Evans published two papers [10,11] demonstrating how to
calculate the exact excluded volume of two ellipsoids of revolution by transforming from
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center-to-center coordinates to apse vector-based coordinates. We reproduce the required
integral for two prolate spheroids here for completeness:

vex(
→
Ω1·

→
Ω2) =

1
3

∫ 2π

0

∫ π

0
h12

{
F[F + g1 + g2] + h′′1 h′′2 λ2

ee

}
sinθkdθkdφk , (2)

where

xi =
→
k ·
→
Ωi, εi =

c2
i

a2
i
− 1 , hi = ai

√
1 + εix2

i , h′i =
xia2

i εi

hi
, h′′i =

a4
i εi

h3
i

, λee = (
→
Ω1·

→
Ω2)·

→
k

F = h1 − x1h′1 + h2 − x2h′2 , h12 = h1 + h2 , gi = (1− x2
i )h

′′
i . (3)

Equation (2) can be numerically integrated into the desired accuracy.

2.2. Onsager Theory with the Lee–Parsons Resummation Term for a Pure Component Liquid
Crystal Phase

The residual or excess Helmholtz free energy that follows from the CS equation of
state (FCS) for a pure component hard sphere fluid is given by [8,17,18]

βFCS

V
= ρη

(4− 3η)

(1− η)2 , (4)

where β = 1/kBT, kB is the Boltzmann constant, T is the absolute temperature, V is the
volume of the system, ρ is the number density, and η = ρvsphere is the packing fraction.
To use Equation (4) to model liquid crystals, Lee redefined the packing fraction to be
η = ρvlc. Recall that the original Onsager approach [1,2] uses the second virial coefficient
to account for the excess free energy. The second virial coefficient for hard particle systems
requires an integral of the excluded volume of two hard particles. When the system
includes non-spherical molecules, the second virial coefficient requires integrals over
the relative orientations of the molecules as well. Thus, to keep the general structure
of the excess free energy, Lee [6,7] replaced vlc in η = ρvlc with the average excluded
volume of two liquid crystal molecules 〈vex〉. Although, considering 〈vex〉 > vlc, Lee
divided by 8 to approximately correct for this additional volume [6,7]. The number 8
has no fundamental significance beyond the fact that, when the hard spheroidal particles

are aligned (
→
Ω1·

→
Ω2 = 1), the excluded volume is vex(

→
Ω1·

→
Ω2 = 1) = 8vlc. However, as

recognized by Lee [6], this correction is only true for that one orientation; thus, the fact that
it worked so well for the purpose of correcting the resummation term in the free energy is
purely coincidental. Finally, for the Lee–Parsons resummation (L-P), Equation (4) becomes:

βFL−P

V
=

1
2

ρ2 (4− 3η)

z(1− η)2 〈v
ex〉, (5)

where z = 4. We introduce z to keep the formal structure of the excess free energy term
similar to previous theoretical work on modeling the isotropic–nematic transition. The
excess free energy term in the Onsager theory is always presented with a 1

2 multiplied by
the ensemble average excluded volume to maintain the general structure of the second
virial coefficient. We factor out the 1

2 to remain consistent and therefore must introduce z in
the resummation term.

Again, by including the resummation term, the higher-order viral coefficients are
approximately accounted for in the free energy expression. Hence, with the Lee–Parsons
term, the total Helmholtz free energy can be expressed as [6,7,9]
βF
V = ρln(ρλ3)− ρ + ρ

4π

∫ 2π
0

∫ π
0 f (θ, φ)ln[ f (θ, φ)]sinθdθdφ+

1
2

1
(4π)2 ρ2 (4−3η)

z(1−η)2

∫ 2π
0

∫ π
0 f (θ, φ)

∫ 2π
0

∫ π
0 f (θ′, φ′)vex(θ, φ, θ′, φ′)sinθ′dθ′dφ′sinθdθdφ + ψ[1−

1
4π

∫ 2π
0

∫ π
0 f (θ, φ)sinθdθdφ],

(6)
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where λ is the de Broglie wavelength, f (θ, φ) is a distribution function describing the
average orientation of the prolate spheroids, and ψ is a Lagrange multiplier that is used
to ensure that the distribution function is properly normalized. The distribution function
equals unity for all angles when the liquid crystal system is in the isotropic phase. In
addition, the distribution function takes on the appropriate structure when in the nematic
phase and when the liquid crystal molecules are aligned along a director.

The equilibrium distribution function for a given packing fraction (or density) is
determined by functional minimization. By taking the functional derivative of Equation (6)
with respect to f (θ, φ) and by setting the result equal to 0, we find that

f (θ, φ) =
exp(− ρ

4π
(4−3η)

z(1−η)2

∫ 2π
0

∫ π
0 f (θ′, φ′)vex(θ, φ, θ′, φ′)sinθ′dθ′dφ′)

q
, (7)

where

q =
1

4π

∫ 2π

0

∫ π

0
exp(− ρ

4π

(4− 3η)

z(1− η)2

∫ 2π

0

∫ π

0
f (θ′, φ′)vex(θ, φ, θ′, φ′)sinθ′dθ′dφ′)sinθdθdφ. (8)

The remaining thermodynamic expressions necessary to find the isotropic–nematic
phase transition are the chemical potential and pressure. The chemical potential (µ) is
determined by taking the derivative of the free energy (Equation (6)) with respect to the
density at a constant volume and temperature. The pressure (P) is then determined by
subtracting the Helmholtz free energy from the Gibbs free energy. The two expressions are

µ− lnλ3 = lnρ− lnq +
1
2

1

(4π)2 η2 (5− 3η)

vlcz(1− η)3

∫ 2π

0

∫ π

0
f (θ, φ)

∫ 2π

0

∫ π

0
f (θ′, φ′)vex(θ, φ, θ′, φ′)sinθ′dθ′dφ′sinθdθdφ (9)

and

βP = ρ +
1
2

1

(4π)2

{
ρη(4− 3η)

vlcz(1− η)2 +
ρη2(5− 3η)

vlcz(1− η)3

} ∫ 2π

0

∫ π

0
f (θ, φ)

∫ 2π

0

∫ π

0
f (θ′, φ′)vex(θ, φ, θ′, φ′)sinθ′dθ′dφ′sinθdθdφ.

(10)
The second Legendre polynomial is used to generate the following order parameter

(S) to assess the ensemble average alignment of uniaxial liquid crystal molecules along a
director [2,3,6,7,9]:

S =
3
2

1
4π

∫ 2π

0

∫ π

0
f (θ, φ)[cos2θ]sinθdθdφ− 1

2
. (11)

where S is zero in the isotropic phase and non-zero in the nematic phase. A value of unity
indicates strict adherence to the orientation of 0 in the polar angle.

2.3. Onsager Theory with the Lee–Parsons Resummation Terms Derived from the BMCSL
Equation of State for a Liquid Crystal Mixture

Following the same procedure outlined above for introducing the CS equation of state
for hard spheres into the Onsager theory for pure hard ellipsoids of revolution, we derive a
new resummation procedure that uses the BMCSL equation of state [13,19]. The BMSCL
equation of state is formulated similarly to the CS equation of state with a focus on hard
sphere mixtures. Our resummation derivation procedure also selects a packing fraction
and substitutes an ensemble-averaged excluded volume of two spheroids for the volume
of a single spheroid. We also must divide by a constant to correct for the additional volume.
The Helmholtz free energy is now written as

βF
V = ∑B

i=A

{
ρiln(ρiλ

3
i )− ρi +

ρi
4π

∫ 2π
0

∫ π
0 fi(θ, φ)ln[ fi(θ, φ)]sinθdθdφ

}
+

∑B
i=A ∑B

j=A
1
2

1
(4π)2 ρiρjgij

∫ 2π
0

∫ π
0 fi(θ, φ)

∫ 2π
0

∫ π
0 f j(θ

′, φ′)vex
ij (θ, φ, θ′, φ′)sinθ′dθ′dφ′sinθdθdφ+

∑B
i=A ψi

[
1− 1

4π

∫ 2π
0

∫ π
0 fi(θ, φ)sinθdθdφ

]
,

(12)
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where gij is the resummation term that follows from the BMCSL equation of state and is
given as follows:

gAA =
− ln (1− n3)

z ηA
+

3
z(1− n3)

+
ηA
z

[
ln (1− n3)

n2
3

+
1

n3(1− n3)
2

]

gAB =
3 σA

σB

z(1− n3)
+

3ηA(
σA
σB
)

z

[
ln (1− n3)

n2
3

+
1

n3(1− n3)
2

]

gAB =
3 σA

σB

z(1− n3)
+

3ηA(
σA
σB
)

z

[
ln (1− n3)

n2
3

+
1

n3(1− n3)
2

]

gBB =
− ln (1− n3)

z ηB
+

3
z(1− n3)

+
ηB
z

[
ln (1− n3)

n2
3

+
1

n3(1− n3)
2

]
, (13)

where n3 = ηA + ηB and where σi =
3
√

8cia2
i is an effective diameter for the prolate spheroid

(i). In Equation (13), there is a natural asymmetry that occurs from the spheroids having
different sizes.

The equilibrium distribution functions and the thermodynamic variables are derived
in the same manner as in the pure component case. The results are

fA(θ, φ) =
exp(− ρA

4π gAA
∫ 2π

0
∫ π

0 fA(θ
′ ,φ′)vex

AA(θ,φ,θ′ ,φ′)sinθ′dθ′dφ′− 1
2 [

ρB
4π gAB+

ρB
4π gBA]

∫ 2π
0
∫ π

0 fB(θ
′ ,φ′)vex

AB(θ,φ,θ′ ,φ′)sinθ′dθ′dφ′)
qA

qA = 1
4π

∫ 2π
0

∫ π
0 exp

(
− ρA

4π gAA
∫ 2π

0

∫ π
0 fA(θ

′, φ′)vex
AA(θ, φ, θ′, φ′)sinθ′dθ′dφ′

− 1
2
[ ρB

4π gAB + ρB
4π gBA

] ∫ 2π
0

∫ π
0 fB(θ

′, φ′)vex
AB(θ, φ, θ′, φ′)sinθ′dθ′dφ′

)
sinθdθdφ

fB(θ, φ)

=
exp(− ρB

4π gBB
∫ 2π

0
∫ π

0 fB(θ
′ ,φ′)vex

BB(θ,φ,θ′ ,φ′)sinθ′dθ′dφ′− 1
2 [

ρA
4π gAB+

ρA
4π gBA]

∫ 2π
0
∫ π

0 fA(θ
′ ,φ′)vex

AB(θ,φ,θ′ ,φ′)sinθ′dθ′dφ′)
qB

qB = 1
4π

∫ 2π
0

∫ π
0 exp

(
− ρB

4π gBB
∫ 2π

0

∫ π
0 fB(θ

′, φ′)vex
BB(θ, φ, θ′, φ′)sinθ′dθ′dφ′

− 1
2
[ ρA

4π gAB + ρA
4π gBA

] ∫ 2π
0

∫ π
0 fA(θ

′, φ′)vex
AB(θ, φ, θ′, φ′)sinθ′dθ′dφ′

)
sinθdθdφ

βµi − lnλ3
i = lnρi − lnqi

+∑B
i=A ∑B

j=A
1
2

1
(4π)2 ρiρj(

∂gij
∂ρi

)
β,V,ρk 6=i

∫ 2π
0

∫ π
0 fi(θ, φ)

∫ 2π
0

∫ π
0 f j(θ

′, φ′)vex
ij (θ, φ, θ′, φ′)sinθ′dθ′dφ′sinθdθdφ

βP = ρA + ρB + ∑B
i=A ∑B

j=A
1
2

1
(4π)2

{
ρiρjgij + ρAρiρj(

∂gij
∂ρA

)
β,V,ρB

+

ρBρiρj(
∂gij
∂ρB

)
β,V,ρA

}∫ 2π
0

∫ π
0 fi(θ, φ)

∫ 2π
0

∫ π
0 f j(θ

′, φ′)vex
ij (θ, φ, θ′, φ′)sinθ′dθ′dφ′sinθdθdφ,

(14)

where vi is the volume of molecule i and the derivatives are

( ∂gAA
∂ρA

)
β,V,ρB

= ln (1−n3)vA
zη2

A
+ vA

z(1−n3)ηA
+ 3vA

z(1−n3)
2 +

vA
z

[
ln (1−n3)

n2
3

+ 1
n3(1−n3)

2

]
+ ηAvA

z

[
− 2 ln (1−n3)

n3
3

+ 2
n3(1−n3)

3 − 1
n2

3(1−n3)
− 1

n2
3(1−n3)

2

]
( ∂gAB

∂ρA
)

β,V,ρB
=

3( σA
σB

)vA

z(1−n3)
2 +

3( σA
σB

)vA

z

[
ln n(1−n3)

n2
3

+ 1
n3(1−n3)

2

]
+

3ηA(
σA
σB

)vA

z

[
− 2 ln (1−n3)

n3
3

+ 2
n3(1−n3)

3 − 1
n2

3(1−n3)
− 1

n2
3(1−n3)

2

]

(
∂gBA
∂ρA

)
β,V,ρB

=
3( σB

σA
)vA

z(1− n3)
2 +

3ηB(
σB
σA
)vA

z

[
−2 ln (1− n3)

n3
3

+
2

n3(1− n3)
3 −

1
n2

3(1− n3)
− 1

n2
3(1− n3)

2

]
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(
∂gBB
∂ρA

)
β,V,ρB

=
vA

z(1− n3)ηB
+

3vA

z(1− n3)
2 +

ηBvA
z

[
−2 ln (1− n3)

n3
3

+
2

n3(1− n3)
3 −

1
n2

3(1− n3)
− 1

n2
3(1− n3)

2

]

(
∂gAA
∂ρB

)
β,V,ρA

=
vB

z(1− n3)ηA
+

3vB

z(1− n3)
2 +

ηAvB
z

[
−2 ln (1− n3)

n3
3

+
2

n3(1− n3)
3 −

1
n2

3(1− n3)
− 1

n2
3(1− n3)

2

]

(
∂gAB
∂ρB

)
β,V,ρA

=
3( σA

σB
)vB

z(1− n3)
2 +

3ηA(
σA
σB
)vB

z

[
−2 ln (1− n3)

n3
3

+
2

n3(1− n3)
3 −

1
n2

3(1− n3)
− 1

n2
3(1− n3)

2

]

( ∂gBA
∂ρB

)
β,V,ρA

=
3( σB

σA
)vB

z(1−n3)
2 +

3( σB
σA

)vB

z

[
ln (1−n3)

n2
3

+ 1
n3(1−n3)

2

]
+

3ηB(
σB
σA

)vB

z

[
− 2 ln (1−n3)

n3
3

+ 2
n3(1−n3)

3 − 1
n2

3(1−n3)
− 1

n2
3(1−n3)

2

]
( ∂gBB

∂ρB
)

β,V,ρA
= ln (1−n3)vB

zη2
B

+ vB
z(1−n3)ηB

+ 3vB
z(1−n3)

2 +
vB
z

[
ln (1−n3)

n2
3

+ 1
n3(1−n3)

2

]
+ ηBvB

z

[
− 2 ln (1−n3)

n3
3

+ 2
n3(1−n3)

3−

1
n2

3(1−n3)
− 1

n2
3(1−n3)

2

]
.

(15)

Finally, the order parameters for each molecule are defined as

Si =
3
2

1
4π

∫ 2π

0

∫ π

0
fi(θ, φ)[cos2θ]sinθdθdφ− 1

2
. (16)

3. Results and Discussion

The excluded volume of two liquid crystal molecules is a fundamental input for the
Onsager theory administered with the Lee–Parsons resummation procedure. The excluded
volume of two prolate spheroids determined with Equations (1) and (2) are plotted in
Figure 2. The approximate Gaussian overlap method (Equation (1)) is plotted with dotted
lines, and the rigorous method (Equation (2)) is plotted with solid lines. Note that we are
limited to plotting the Gaussian overlap excluded volumes for two prolate spheroids of the
same size and that this restriction is not imposed in the rigorous calculation in Equation (2).
As discussed in Reference [10], the Gaussian overlap method is consistently higher than
the rigorous excluded volume as the dot product between the orientation vectors decreases.
The discrepancy increases between the two curves as the aspect ratio increases. The
values obtained using Equation (2) were also independently verified using Monte Carlo
integration using the contact function developed by Perram and Wertheim [20].

A comparison of the two excluded volume calculation methods for pure component
liquid crystal systems is shown in Table 1. Two sizes of prolate spheroids (c = 8.25 nm,
a = 3.0 nm, and c/a = 2.75; c = 9.0 nm, a = 3.0 nm, and c/a = 3) were chosen to directly for
comparison to the simulation data [21]. For our numerical calculation, we used an evenly
spaced discretization of 100 values for the polar angle and 50 evenly spaced values for the
discretization of the azimuthal angle. When using the Gaussian overlap method, our results
agree exactly with those in Reference [7] and agree extremely well with the simulation
results when dividing by eight (z = 4) in the resummation term. When the rigorous excluded
volume is used instead of the Gaussian overlap excluded volume method, the results are
no longer in agreement with the simulation results. The lower excluded volume shifts
the phase boundary to higher values of the volume fraction, and as a result, there is an
increase in the pressure and chemical potential of the phase boundary for both sizes of the
prolate spheroid. However, if we divide the resummation term by six (z = 3), the rigorous
excluded volume method results are in very good agreement with the simulation values.
We therefore conclude that, using the correction (z = 3), the resummation term should be
used whenever accurate values of the excluded volume are used. Figure 3 illustrates the
phase equilibrium result for a pure prolate spheroid system with a size of c = 15 nm and
a = 3 nm, in which z = 3. S is the second Legendre polynomial order parameter, as discussed
earlier. The solid lines are the equilibrium values, while the dashed lines correspond to the
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metastable nematic phase. As demonstrated in Table 1, the isotropic–nematic transition
occurs at a lower value of the packing fraction due to the larger excluded volume.
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Table 1. Pure component phase equilibrium results for the Lee-Parsons resummation method for two methods of deter-
mining the excluded volume. The results for dividing the resummation terms by 8 (z = 4) and by 6 (z = 3) are included for
the rigorous excluded volume method. The simulation results are from reference [21]. The units are βP* = βP(8a2c), and
βµ* = βµ − lnλ3.

Pure Component Isotropic-Nematic Transition Data

Simulation Data [21] Gaussian Overlap Excluded
Volume with z = 4

Rigorous Excluded Volume with
z = 4

Rigorous Excluded Volume with
z = 3

c = 8.25 nm, a = 3.0 nm c = 8.25 nm, a = 3.0 nm c = 8.25 nm, a = 3.0 nm c = 8.25 nm, a = 3.0 nm
ηiso = 0.561 βP* = 30.0 ηiso = 0.544 βP* = 25.2 ηiso = 0.595 βP* = 38.4 ηiso = 0.538 βP* = 29.6

ηnem = 0.570 βµ* = 29.96 ηnem = 0.552 βµ* = 25.5 ηnem = 0.601 βµ* = 37.0 ηnem = 0.544 βµ* = 31.9

c = 9.0 nm, a = 3.0 nm c = 9.0 nm, a = 3.0 nm c = 9.0 nm, a = 3.0 nm c = 9.0 nm, a = 3.0 nm
ηiso = 0.507 βP* = 18.69 ηiso = 0.508 βP* = 19.07 ηiso = 0.561 βP* = 28.95 ηiso = 0.503 βP* = 22.38
ηnem = 0.571 βµ* = 19.27 ηnem = 0.517 βµ* = 19.77 ηnem = 0.568 βµ* = 28.81 ηnem = 0.511 βµ* = 25.01

There are a limited number of prior studies regarding mixtures of hard particle liquid
crystal mixtures. As noted previously, there has been some prior work on mixtures of
liquid crystal particles mixed with spheres [16], while limited attention has been given to
mixtures of hard rods or spherocylinders with different dimensions [22–25]. These studies
found entropy-driven demixing in either the isotropic (leading to an isotropic–isotropic
phase transition) or nematic (leading to a nematic–nematic phase transition) phases. In all
of these studies, the relative aspect ratios of the molecules needed to be above a certain
critical value in order to observe a demixing transition. To use our newly derived BMCSL
resummation terms, we chose two prolate spheroids of the same minor axis and moderately
different values of the major axis. We selected molecule A with c = 12 nm and a = 3 nm,
and molecule B with c = 9 nm and a = 3 nm. The resulting pressure–composition phase
diagram is displayed in Figure 4 in which we used the z = 3 resummation parameter.
The asymmetry in the excluded volume coupled with the asymmetry that is naturally
in the BMCSL equation of state yield a phase diagram that favors higher concentrations
of molecule A in the nematic phase for the composition space. With the chosen modest
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difference in the sizes of the two molecules, we did not observe an isotropic or nematic
demixing transition.
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Figure 3. Pure component phase equilibrium for c = 15 nm, a = 3 nm prolate spheroid system. The
rigorous excluded volume method was used with z = 3 in the resummation term. S is the second
Legendre polynomial order parameter described in the text. The dashed curve shows the metastable
nematic region. The open symbols mark the limits of metastability, and the closed symbols mark the
equilibrium points. The units for pressure and chemical potential are listed in table [1].
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Figure 4. Phase diagram for a mixture of two hard prolate spheroids. Species A is the larger spheroid
with cA = 12 nm and aA = 3 nm, and species B has cB = 9 nm and aB = 3 nm. The units for pressure
are different from the previous figures and is βP* = βP(8aAaAcA). xA is the mol fraction of species A.

4. Conclusions

The Lee–Parsons resummation term within the Onsager theory was updated for both
pure component and mixtures of hard prolate spheroids. If a rigorous method for obtaining
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the excluded volume of two spheroids is used instead of the approximate Gaussian overlap
method, the division by eight (z = 4) in the Lee–Parsons resummation term is better
replaced by a division by six (z = 3). We also demonstrated how to extend the updated
resummation term method when using the BMSCL equation of state to capture mixtures
of hard prolate spheroids. Pure component and mixture phase diagrams for hard prolate
spheroids obtained with the updated resummation terms were also presented.

Future work should involve a comprehensive comparison between the new theoretical
predictions and new simulation data in order to further validate our theoretical updates.
The extension of this work regarding the BMCSL resummation when the relative aspect
ratios of the hard prolate spheroid particles are large enough should also be studied
in greater detail to determine if nematic and isotropic demixing transitions are indeed
observed. In addition, a more robust use of the present work in recent advances in liquid
crystal research requires the ability to discretize the excluded volume in layers of varying
geometry [9]. This allows the Onsager theory to describe liquid crystal systems in complex
spatial geometries [26]. Understanding how to exactly distribute the excluded volume
can benefit both simulation and other theoretical methods for studying liquid crystal
behavior [27,28].
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