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1  | INTRODUC TION

Most natural and artificial habitats of terrestrial ecosystems are cov-
ered by soils (Bai, Wang, Deng, and He (2017)). Since precipitation, 
illumination, and temperature within an area are similar, high spatial 

heterogeneity and physiochemical properties are responsible for the 
diverse range of microorganisms found in soil ecosystems (Schimel & 
Schaeffer, 2012). Soil microorganisms are considered to be important 
indicators of soil fertility and quality (Paula, Rodrigues, Zhou, & Wu, 
2014). Recent studies based on culture-independent techniques have 
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Abstract
Soil microorganisms are considered to be important indicators of soil fertility and soil 
quality. Most previous studies have focused solely on surface soil, but there were nu-
merous active cells in deeper soil layers. However, studies regarding microbial com-
munities in deeper soil layers were not comprehensive and sufficient. In this study, 
phylogenetic	molecular	ecological	networks	(pMENs)	based	on	the	16S	rRNA	Miseq	
sequencing technique were applied to study the response of soil microbial commu-
nities to depth gradients and the changes of key genera along 3 meter depth gradi-
ents	 (0–0.2	m,	0.2–0.4	m	0.4–0.6	m,	0.6–0.8	m,	0.8–1.0	m,	1.0–1.3	m,	1.3–1.6	m,	
1.6–2.0	m,	2.0–2.5	m,	and	2.5–3.0	m).	The	results	showed	that	the	modularity	of	mi-
crobial communities was consistently high in all soil layers and each layer was similar, 
which indicated that microbial communities were more resistant to depth changes. 
The	pMENs	further	demonstrated	that	microbial	community	interactions	were	stable	
as the depth increased and they cooperated well to adapt to changes in different soil 
gradients. This was evidenced by similar positive links, average degree, and average 
clustering coefficient. In addition, key genera were obtained by analyzing module 
hubs	 in	 the	pMENs.	There	may	be	at	 least	one	dominant	genus	 in	each	 layer	 that	
adapted to and resisted changes in the soil environment. It seems microbial com-
munities demonstrate a stable and strong adaptability to depth gradients in farmland 
soils.
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shown that large-scale soil microbial diversity and community com-
position were predominantly driven by soil pH (Griffiths, Thomson, 
James, & Bell, 2011) and other soil properties, such as organic matter 
and salinity (Campbell & Kirchman, 2013; Tripathi, Kim, Tateno, & Kim, 
2015;	Zheng,	Xue,	Li,	&	Deng,	2017).	It	was	known	that	biogeochem-
ical processes were mainly driven by microorganisms throughout the 
soil profile; however, previous studies on the structure and diversity of 
soil microbial communities had solely focused on the top 15 cm of the 
soil	column	(Eilers,	Debenport,	Anderson,	&	Fierer,	2012).	Numerous	
studies have suggested that microorganisms living in deeper soil layers 
were generally considered to be unimportant due to their low biomass 
density and low activity levels (Blume, Bischoff, Reichert, & Moorman, 
2002;	 Fierer,	 Schimel,	 &	 Holden,	 2003;	 Hartmann,	 Lee,	 Hallam,	 &	
Mohn,	2009).	However,	Fierer	et	al.	(Fierer,	Schimel,	et	al.,	2003)	noted	
that not only was a large number of microorganisms present in the un-
derground soil but also that the potential activity of these underground 
microorganisms might be higher than that of surface microorganisms. 
Although	 microbial	 biomass	 generally	 exponentially	 decreased	 with	
depth	(Blume	et	al.,	2002;	Fierer,	Schimel,	et	al.,	2003;	Hartmann	et	
al., 2009), in deeper soil layers, there were numerous active cells (Buss, 
Bruns, Schultz, & Moore, 2005; Richter & Markewitz, 1995), which may 
have a greater impact on the soil formation process than their surface 
counterparts because of their proximity to parent material (Buss et al., 
2005).	 Fierer,	 Allen,	 Schimel,	 and	Holden	 (2003)	 also	 demonstrated	
that deep microbial communities differed in composition from those in 
the surface layer. On a depth-weighted basis, deep microbial commu-
nities	have	also	been	found	to	be	diverse	and	abundant	(Li,	Yan,	Tang,	
&	Jia,	2014;	Will,	Thürmer,	Wollherr,	&	Nacke,	2010).	Previous	studies	
have reported that in forest soil, soil depth affected the diversity and 
composition of the archaea community (Thoms, Gattinger, & Jacob, 
2010;	Too,	Keller,	Sickel,	&	Lee,	2018).	Specific	bacterial	communities	
in deep wetland soils have been detected, and the interaction between 
these communities was more noticeable than that of the surface 
layer communities (Steinmuller, Dittmer, White, & Chambers, 2019). 
However, how a microbial community adapts to soil depth gradients 
through community-level adjustment of compositions and interactions 
has not yet been completely elucidated.

Many network analysis approaches have been developed, such 
as	 the	 equation-based	 network	 (Gardner,	 Di,	 Lorenz,	 &	 Collins,	
2003;	Yeung,	Tegner,	&	Collins,	2002),	the	related/co-expression	
network	(Horvath,	Zhang,	Carlson,	&	Lu,	2006;	Oldham,	Horvath,	
&	 Geschwind,	 2006),	 and	 Bayesian	 network	 (Gerstung,	 Baudis,	
Moch, & Beerenwinkel, 2009). One frequently studied and widely 
used method is the phylogenetic molecular ecological networks 
(pMENs)	proposed	by	Deng,	Jiang,	Yang,	and	He	(2012),	who	were	
the first to apply metagenomic techniques (such as sequencing 
and	 microarrays)	 (Deng,	 Zhang,	 Qin,	 &	 Tu,	 2016;	 Faust	 &	 Raes,	
2012). In the entire network, various parameters, such as topol-
ogy, node modules, topological roles, and network composition, 
better reflect the relationship between microbial communities and 
their	associated	niche	functions	(Hahn,	Konwar,	Louca,	&	Hanson,	
2016;	Zhou,	Deng,	Luo,	&	He,	2010,	2011).	Thus,	 in	 the	present	
study,	 the	 pMENs	were	 applied	 to	 investigate	 the	 responses	 of	

soil microbial communities to soil depth gradients and the under-
lying microbial interactions, including the following: (a) phyloge-
netic diversity and structure of microbial community shift; and (b) 
changes of key genera in microbial network interactions along soil 
depth gradients.

2  | MATERIAL AND METHODS

2.1 | Study sites and soil sample collection

The study sites were located in Tianjin, a municipality close to Bohai 
Bay, which is influenced by a continental monsoon climate. Both 
hydrology and climate played the significant roles on the physi-
cal	and	chemical	properties	of	soil.	 In	November	2013,	soil	samples	
were collected from eight farmland sites in five regions of Tianjin, 
China	 (S1:	 39°36′54.49″N,	 116°58′04.20″E;	 S2:	 39°32′09.31″N,	
116°59′32.31″E;	 S3:	 39°40′37.50″N,	 117°21′03.07″E;	
S4:	 39°40′32.66″N,	 117°20′39.53″E;	 S5:	 40°04′14.87″N,	
117°20′01.90″E;	 S6:	 40°05′25.91″N,	 117°38′10.21″E;	 S7:	
38°43′09.78″N,	117°26′44.00″E;	S8:38°43′06.33″N,	117°26′20.41″E;	
Figure	1).	Soil	samples	were	continuously	collected	using	a	5.5-cm-di-
ameter hollow-stem hand auger in a vertical profile of 10 layers (from 
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the	ground	surface	to	a	depth	of	3	m),	including	layer	A:	0–0.2	m,	layer	
B:	0.2–0.4	m,	layer	C:	0.4–0.6	m,	layer	D:	0.6–0.8	m,	layer	E:	0.8–1.0	m,	
layer	F:	1.0–1.3	m,	layer	G:	1.3–1.6	m,	layer	H:	1.6–2.0	m,	layer	I:	2.0–
2.5 m, and layer J: 2.5–3.0 m (the soil profile was over 3 m, as the shal-
low groundwater table is close to this depth). The 80 collected samples 
were stored in polyethylene bags. The physicochemical parameters of 
soil water extracts were determined by adding 200 ml Milli-Q water to 
100 g soil sample, followed by shaking (45 min at room temperature), 
centrifuging (2,057 g), and filtering. The pH and salinity were deter-
mined	by	a	portable	 analyzer	 (Orion	Star	A329,	Thermo,	USA).	The	
cation concentrations of K+,	Na+, Ca2+, and Mg2+ were determined by 
an inductively coupled plasma atomic emission spectrometer (Optima 
8300,	PE,	USA),	and	anion	concentrations	of	SO2−

4
 and Cl− were deter-

mined	by	ion	chromatography	(ICS-2100,	Dionex,	USA).	NO−

3
, NO−

2
, and 

NH
+

4
	were	determined	by	a	continuous	flow	analyzer	(Auto	Analyzer	3,	

Seal, Germany). Part of the soil samples were freeze-dried and stored 
at	−20°C	for	genomic	DNA	extraction.

2.2 | DNA extraction, Illumina MiSeq 
sequencing and analysis

DNA	of	the	microorganisms	in	80	soil	samples	was	extracted	by	bi-
otechnological	methods	using	the	Ezup	Genomic	DNA	Extraction	
Kit	 (Sangon	 Biotech,	 China,	 Cat#	 SK8264).	 After	 extraction,	 a	
NanoDrop	Spectrophotometer	was	used	to	detect	the	concentra-
tion	and	mass	of	DNA.	The	DNA	extraction	was	diluted	to	10	ng/
μl.

The	 operational	 taxonomic	 unit	 (OTU)	 data	 used	 to	 con-
struct	 the	 pMENs	 were	 generated	 by	 the	 16S	 rRNA	 gene.	
Miseq sequencing of the V4 hypervariable region of the 
16S	 rRNA	 gene	 was	 performed	 using	 the	 universal	 prim-
ers	 515F	 (5'-GTGCCAGCMGCCGCGGTAA-3')	 and	 806R	
(5'-GGACTACHVGGGTWTCTAAT-3'):	 Amplification	 was	 then	
measured	using	a	MiSeq	sequencer	(Caporaso,	Lauber,	&	Walters,	
2011;	Lin,	De,	Li,	&	Li,	2016;	Zheng	et	al.,	2017).	Ten	nanograms	
of	 soil	 genomic	DNA,	 0.4	mM	of	 each	 deoxynucleotide	 triphos-
phate, 1.0 μM	of	each	primer,	0.5	U	of	Ex	Taq	(TaKaRa,	Dalian),	1×	
PCR buffer, and 1.5 mM MgCl2 were completely mixed in a 25 μl 
mixture for performing PCR (Zheng et al., 2017). The PCR ampli-
fication	was	conducted	as	described	by	Li,	Rui,	Mao,	and	Yannarel	
(2014).	Under	 the	 reading	conditions	with	 the	unique	 identifica-
tion bar code of the sample, sequencing was performed on the 
Illumina Miseq platform of the Environmental Genome Platform of 
the Chengdu Institute of Biology. Eighty samples were sequenced 
using	the	Reagent	Kit	v2	2	×	250	bp.	The	results	were	processed	
by QIIME pipeline version 1.7.0 (http://qiime.org/). The original 
data were first screened, and an average base quality score of 20 
was the lowest; when the low-quality scoring sequence was re-
moved, the sequence length was at least 300 bp and without an 
ambiguous	base	“N.”	These	sequences	were	used	for	downstream	
analysis	 (Zheng	 et	 al.,	 2017).	 Next,	 the	 chimeric	 sequence	 was	
removed	 using	 the	 UCHIME	 algorithm	 (Edgar,	 Haas,	 Clemente,	

& Quince, 2011). The processed sequence was clustered by the 
complete-linkage clustering method of the Ribosomal Database 
project	pyro	pipeline.	A	97%	nucleotide	sequence	similarity	cutoff	
was	used	to	classify	OTUs.	The	RDP	classifier	was	used	to	assign	
taxonomy (Wang, Garrity, Tiedje, & Cole, 2007). Re-sampling was 
performed to a total of 2,590 reads of the same sequence depth. 
Chao1 estimator of richness and Shannon index were calculated 
using the RDP classifier. The original sequence data were depos-
ited	at	the	European	Nucleotide	Archive	by	accession	PRJEB21751	
(http://www.ebi.ac.uk/ena/data/view/PRJEB 21751 ) (Zheng et al., 
2017).

2.3 | Statistical analysis

Microbial community diversity was compared using IBM SPSS 20 
with	a	univariate	ANOVA	based	on	Chao1	richness	and	Shannon	di-
versity indices. Correlation analysis between microbial communities 
and environmental variables was performed by the Mantel test, con-
ducted	by	PCORD	5.0.	In	addition,	based	on	the	study	of	Fukuyama	
(Fukuyama,	Mcmurdie,	Dethlefsen,	Relman,	&	Holmes,	2012),	dou-
ble	 principal	 coordinate	 analysis	 (DPCoA)	 was	 performed	 on	 the	
relative	abundance	data	of	the	OTUs.

2.4 | Establishment and analysis of pMENs

Construction	 of	 pMENs	 is	 based	 on	 the	 random	 matrix	 theory	
(RMT). The network was built using the online pipeline provided 
by	 the	 Institute	of	Environmental	Genomics	at	 the	University	of	
Oklahoma	 (http://ieg2.ou.edu/MENA)	 (Deng	 et	 al.,	 2012;	 Zhou,	
Deng,	Luo,	&	He,	2010,	2011).	The	establishment	of	pMENs	was	
divided into nine key steps, namely collection of metagenomic 
sequences,	 data	 standardization,	 Pearson's	 correlation	 estima-
tion, adjacency matrix determination by an RMT-based approach, 
network characterization, module detection, eigengene network 
analysis, network comparison, and correlation based on the RMT 
method	(Zhou,	Deng,	Luo,	&	He,	2011).	High-throughput	metagen-
omic	data	were	collected	and	transformed	to	construct	Pearson's	
correlation	matrix	(Zhou,	Deng,	Luo,	&	He,	2010),	which	was	fur-
ther converted into a similarity matrix. The method of RMT is to 
automatically select the optimal threshold of the network accord-
ing to the data to build an optimal network. The automatically de-
termined threshold was used to derive the adjacency matrix from 
the	 similarity	 matrix.	 Using	 the	 adjacency	matrix	 to	 encode	 the	
strength of the connection between each pair of nodes, module 
analysis and network characterization were performed to gen-
erate different network topology attributes. The procedure was 
detailed	 in	a	previous	MENA	study	(Deng	et	al.,	2012).	Different	
topological roles were described by the following two parameters: 
the within-module connectivity (Zi) and among-module con-
nectivity (Pi). The Zi reflected the degree to which nodes were 
connected to other nodes within their own module, while the Pi 
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reflected the degree to which nodes were connected to different 
modules. Since we were primarily interested in the impact of soil 
depth	 on	 network	 interactions,	 pMENs	were	 constructed	 based	
on the relative abundance of samples obtained from each layer of 
the 8 sampling sites.

3  | RESULTS

A	 total	 of	 834,485	 high-quality	 16S	 rRNA	 gene	 sequences	 were	
obtained for 80 samples. They were resampled to 2,590 sequences 
per	sample,	which	were	clustered	into	7,403	OTUs.	The	rarefaction	
curves	showed	that	the	number	of	samples	was	reasonable	(Figure	
A1).	Both	Shannon	and	Chao1	indices	showed	no	significant	differ-
ences	between	 the	depth	 layers	 (Table	A1).	To	understand	 the	ef-
fects	of	 soil	depth	on	 the	 linkages	between	microorganisms,	OTU	
data obtained from MiSeq sequencing was used to construct the 
microbial	pMENs	based	on	10	layers	of	the	8	sampling	sites	(Table	1).	
One	node	represented	an	OTU,	with	each	link	representing	the	cor-
relation between two connected nodes. The results presented in 
Table 1 showed that microbial connectivity had similar thresholds 
(0.930–0.960).	Modularity	acted	as	an	indicator	of	system	resistance	
(Carpenter,	Arrow,	Barrett,	&	Biggs,	2012).	In	our	study,	the	modu-
larity values were similar (0.771–0.810) and higher than 0.4, which 
indicated	the	modular	structure	of	the	network	(Newman,	2006)	and	
the strong resistance to environmental changes (Bai et al., 2017). 
The numbers of module hubs varied from 1 to 5, which indicated 
that the degree of soil generalization differed from that in the 10 lay-
ers, with smaller values representing lower degrees of generalization 
(Wang,	Zhang,	Zheng,	&	Deng,	2016).	The	average	clustering	coef-
ficient (avgCC) described the relationship between a particular node 
and	its	adjacent	node	(Shen,	Huang,	Zeng,	&	Yu,	2016).	The	avgCC	
values	varied	over	a	similar	range	from	0.240	to	0.365	in	the	10	lay-
ers, showing connections similar to that of the neighbors (Deng et 
al., 2012). The avgKK values varied from 3.973 to 5.559, which indi-
cated that each layer of the network had different degrees of com-
plexity. The R-squared values were all greater than 0.700, implying 
that the RMT-based ecological network should be scale-free (Zhou 
et al., 2010). Scale-free implied that most nodes in the network had 
limited connections with other nodes, while a few nodes had many 
connections	 (Sun,	Wang,	Lin,	&	Zhou,	2015).	As	shown	 in	Table	1,	
the	percentages	of	positive	links	(70%–86%)	were	much	higher	than	
those	of	the	negative	links	(14%–30%),	which	indicated	that	the	re-
lationship between microbial communities was based more on mu-
tual	 cooperation	 than	 competition	 (Newman,	 2006).	 Alternatively,	
positive links have also been found to be related to mutualism among 
genes	during	coevolution	processes	(Faust	&	Raes,	2012).

Results of the Pi and Zi analysis, as depicted in the Z-P diagram 
(Figure	2),	revealed	that	different	nodes	played	different	roles	in	the	
pMENs.	From	an	ecological	point	of	view,	each	module	in	the	pMENs	
indicated one niche (Wang et al., 2007). Peripherals (Zi < 2.5 and 
Pi	<	0.625)	referred	to	specialists,	while	module	hubs	(Zi	>	2.5	and	
Pi	<	0.625)	and	connectors	(Zi	<	2.5	and	Pi	>	0.625)	showed	more	 TA
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generalists,	and	network	hubs	 (Zi	>	2.5	and	Pi	>	0.625)	embodied	
supergeneralists	 (Deng	et	al.,	2012;	Lewinsohn,	Prado,	 Jordano,	&	
Bascompte,	2006).	No	network	hubs	were	found	in	the	Z-P	diagram	
in	all	ten	layers.	The	vast	majority	of	OTUs	in	each	layer	occurred	in	
peripherals, which represented most of their links inside their own 
modules (Deng et al., 2012). The module hubs and connectors, which 
occurred	in	each	layer	of	the	community,	as	shown	in	Figure	2,	indi-
cated that the microbial communities in all ten layers were stable. 
According	 to	 the	module	 hubs	 in	 the	 Z-P	 diagram,	 corresponding	
OTUs	 can	 be	 used	 to	 determine	 the	 key	 genus	 of	 each	 layer	 (see	
Table 2). It can be observed that the key genus in each layer was basi-
cally different and will be further discussed in the discussion section.

The Mantel test was applied to determine the relationship be-
tween microbial communities and environmental factors (K+, Ca2+, 
Na+, Mg2+, NH+

4
, NO−

2
, NO−

3
, Cl−, SO2−

4
, total organic carbon (TOC), 

total	nitrogen	(TN),	pH	and	salinity).	As	shown	in	Table	3,	most	of	the	
environmental factors did not have significant effects on microbial 
communities in each layer, excluding Mg2+	 in	 layer	A,	Ca2+ in layer 
C, NO−

2
	 in	layer	F,	TOC	and	TN	in	layer	B,	and	pH	in	layers	E	and	I.	

It was obvious that the microbial communities in all ten layers were 
adapted to depth gradients and demonstrated stable resistance to 
environmental	changes	in	oil	profiles	(Table	3).	 In	addition,	DPCoA	
was	performed	on	the	microbial	communities	in	each	layer	(Figure	3).	
The	DPCoA	results	revealed	an	independent	relationship	among	the	
ten layers of microbial communities.

4  | DISCUSSION

According	to	the	results	of	the	pMEN	analysis,	the	modularity	values	
of each layer in our study were relatively high and close, reflecting 
habitat heterogeneity, different selection mechanisms, and phyloge-
netic	clustering	of	closely	related	species	 (Lewinsohn	et	al.,	2006),	
which might lead to nonrandom interaction patterns and ecological 
network complexity (Olesen, Bascompte, Dupont, & Jordano, 2007). 
This can be explained as follows: (1) modules with closely linked 

species may be the key units of coevolution, in which reciprocal se-
lection leads to trait convergence of unrelated species (Olesen et 
al., 2007); (2) species converge on a combination of related traits 
shaped by similar interaction patterns (Olesen et al., 2007); and (3) 
such a process may result in an interactive heterogeneous network, 
with taxonomically or functionally related taxa packed into different 
modules (Deng et al., 2012). In this study, modularity values were 
high, which indicated that the ecological network was complex, and 
the microbial community can fully adapt to the environment. Wang 
et al. (2007) suggested that the lack of module hubs would lead to 
fragmentation of the module, and essentially there was no cascad-
ing	 effect	 on	 other	modules.	 Furthermore,	 the	modular	 structure	
exists to dampen the rapid spread of disturbance in the community 
(Wang et al., 2007). Module hubs were detected in each layer in our 
study, indicating cascade effects between modules and strong re-
sistance of the microbial community to the environment. In addi-
tion, positive links can be explained by the mutualism among genes 
in coevolution (Zhang, Zhao, & Dai, 2014), or to have similar niches 
(Zheng et al., 2017) or cross-feeding (Sun et al., 2015), while negative 
relationships	 are	 due	 to	 competition	 (Faust	&	Raes,	 2012).	 Strong	
positive links were detected in all networks in this study, which 
implied that microbial communities were potentially more inclined 
to function together to adapt to depth-changing environments. In 
contrast, some microbes that did not possess the ability to compete 
with	other	microbes	were	filtered	out	(Pointing,	Chan,	Lacap,	&	Lau,	
2009).	Although	modularity	 changes	 in	our	 study	were	not	 as	 ap-
parent as the changes reported in the study conducted by Bai et 
al.	(2017)	(Figure	4),	most	molecular	ecological	network	parameters	
varied over a relatively narrow range, which showed that the mi-
crobial communities in our study were more stable and adaptable 
to environmental changes. This was related to many reasons, such 
as microbial diversity, soil parent material, availability of resources 
along soil depth gradients, and environmental conditions, which re-
quired further research in the future.

Since module hubs represented key species in the network (Bai 
et al., 2017), we obtained key genera that corresponded to key 

F I G U R E  2  The	network	of	the	pMENs	
of ten layers. The Z-P plot showing the 
topological	roles	of	each	OTU	based	on	
Zi (within-module connectivity) and Pi 
(among-module connectivity) of microbial 
communities	in	ten	soil	layers.	According	
to	values	of	Zi	(2.5)	and	Pi	(0.625),	the	
roles of nodes were classified into four 
categories
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nodes at different soil layers (Table 2). It was evident that multi-
ple module hubs occurred in most layers excluding those of D, H 
and	J	with	only	1-2	module	hubs.	A	total	of	16	module	hubs	were	
found	from	layers	A	to	E,	which	was	consistent	with	other	studies	
that showed microbial communities were more active within one 
meter	 (Blume	et	 al.,	 2002;	Eilers	 et	 al.,	 2012;	 Fierer,	 Schimel,	 et	
al.,	2003;	Hartmann	et	al.,	2009).	However,	a	total	number	of	16	
module	hubs	were	obtained	 from	 layers	F	 to	 J	 indicating	poten-
tial	activity	of	subsurface	microorganisms.	Approximately,	56%	of	
the key genera belonged to the phyla Acidobacteria, Actinobacteria 
and Proteobacteria. Acidobacteria	 appeared	 in	 layers	A,	C,	 F,	 and	
G with the dominant species, being Gp25, Gp4, Gp7, and Gp18, 

respectively. These microbiota are particularly sensitive to pH 
variations	(Pointing	et	al.,	2009).	Although	Acidobacteria was dis-
covered	 from	 layers	A	 to	J,	 it	was	not	 the	 invariably	key	phylum	
in module hubs. The key genus in each layer was potentially re-
lated to microorganism diversity, their related network, and en-
vironmental conditions, resulting in different module hubs in 
each layer. The classes Gammaproteobacteria, Deltaproteobacteria, 
Alphaproteobacteria and Betaproteobacteria belong to the phylum 
Proteobacteria. Gammaproteobacteria was found in layers E and G 
and was the aerobic nitrogen-fixing bacteria involved in soil nitro-
gen	cycling	(Tsoy,	Ravcheev,	&	Cuklina,	2016).	Deltaproteobacteria, 
which was also present in layer B, was considered a major choline 

TA B L E  2  Operational	taxonomic	units	(OTUs)	and	corresponding	keystone	genus	in	ten	layers	(A	to	J)

Depth
Numbers of 
module hubs OTU Phylum Class Genera

A 3 OTU832 Gemmatimonadetes Gemmatimonadetes Gemmatimonas

OTU2510 Acidobacteria Acidobacteria_Gp25 Gp25

OTU4954 Bacteroidetes Bacteroidetes_incertae_sedis Ohtaekwangia

B 4 OTU71 Spirochetes Spirochaetia Treponema

OTU498 Thaumarchaeota – Nitrosopumilus

OTU774 Proteobacteria Deltaproteobacteria –

OTU1532 Actinobacteria Actinobacteria –

C 3 OTU650 Actinobacteria Actinobacteria –

OTU1466 Acidobacteria Acidobacteria Gp4

OTU1457 Proteobacteria Proteobacteria Cystobacter

D 2 OTU723 Actinobacteria Actinobacteria –

OTU967 Chloroplast Chloroplast –

E 4 OTU631 Proteobacteria Gammaproteobacteria –

OTU1510 Proteobacteria Betaproteobacteria –

OTU1853 Verrucomicrobia Spartobacteria Spartobacteria_gen-
era_incertae_sedis

OTU4767 Chloroflexi – –

F 4 OTU396 Spirochetes Spirochaetia Treponema

OTU1362 Acidobacteria Acidobacteria_Gp7 Gp7

OTU1366 Actinobacteria Actinobacteria Gaiella

OTU2089 Actinobacteria Actinobacteria Gaiella

G 5 OTU316 Proteobacteria Gammaproteobacteria Steroidobacter

OTU1664 Actinobacteria Actinobacteria  

OTU2980 Gemmatimonadetes Gemmatimonadetes Gemmatimonas

OTU1853 Verrucomicrobia Spartobacteria Spartobacteria_gen-
era_incertae_sedis

OTU2885 Firmicutes Clostridia Ruminococcus2

H 1 OTU679 – – –

I 5 OTU15 – – –

OTU156 Bacteroidetes Flavobacteriia Croceibacter

OTU570 Proteobacteria Betaproteobacteria –

OTU408 Proteobacteria Betaproteobacteria –

OTU2365 Proteobacteria Alphaproteobacteria Sphingomonas

J 1 OTU2930 Acidobacteria Acidobacteria_Gp18 Gp18
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user. These results provided new insights into our understand-
ing of the use of choline by soil microorganisms (Eleanor, Jason, 
& Helen, 2018). Moreover, choline may be involved in the car-
bon mineralization process (Mussmann, Ishii, & Rabus, 2005). 
Betaproteobacteria, which preferred relatively oxygen-rich condi-
tions	(Lüdemann,	Arth,	&	Liesack,	2000),	appeared	in	both	layers	
E and I. Similarly, Sphingomonas was likely to occur under aerobic 
conditions	(White,	Sutton,	&	Ringelberg,	1996),	but	was	found	in	
layer I and requires further study. The dominant genera found in 
layers	B,	C,	D,	F,	and	G	were	members	of	the	phylum	Actinobacteria. 
Most Actinobacteria appeared in the upper soil, which was related 

to aerobic degree (Eilers et al., 2012), and its presence may accel-
erate the decay of animal and plant remains in soil (Stackebrandt, 
Rainey, & Ward-Rainey, 1997). Firmicutes and Chloroflexi appeared 
in the layers G and E, which can be explained by their adapta-
tion to low-nutrient environments (Holanda & Hedrich, 2015). 
Nitrosopumilus was found in layer B and was involved in ammo-
nia	oxidation	in	the	nitrogen	cycle	of	the	ecosystem	(Nakagawa	&	
Stahl, 2013). The phylum Verrucomicrobia appeared in the layers E 
and G, which was consistent with previous studies reported that 
they were prone to occur in relatively anoxic environments (Eilers 
et al., 2012). Therefore, there should be at least one dominant 

TA B L E  3   Correlations between environmental variables and the microbial community composition by the Mantel test

Environmental 
variable A B C D E F G H I J

K+ −0.2526 0.2784 0.0069 0.2629 0.0323 0.1102 0.2133 −0.1142 −0.2386 −0.1356

Ca2+ 0.1232 0.1828 −0.3250* −0.0835 0.4148 0.3644 0.3378 0.0620 0.2396 0.2697

Na+ 0.1031 0.0392 0.1531 −0.0123 0.1002 0.1490 0.2646 0.6197 0.0087 0.0022

Mg2+ 0.4541** −0.0086 0.0099 −0.0211 0.0160 0.1873 0.0447 −0.0481 0.0403 0.0567

NH
+

4
−0.1450 −0.0292 −0.1802 −0.2909 0.0031 −0.2291 −0.1221 – −0.2189 0.0495

NO
−

2
−0.0023 −0.2641 −0.2089 −0.1498 −0.3799 0.0259** −0.0240 0.0773 0.3007 0.3038

NO
−

3
−0.0503 0.0296 – 0.0295 −0.0436 0.0573 0.4301 0.0077 0.3232 0.1084

Cl− −0.0296 −0.0215 0.0336 0.0990 0.1781 0.0962 0.2342 0.4263 −0.0937 0.1597

SO
2−

4
−0.2695 −0.1983 0.0338 0.0487 −0.1010 −0.0365 0.0196 0.0316 −0.0016 0.1273

TOC 0.2977 −0.3063** −0.1422 0.2033 −0.2898 −0.2273 −0.3077 −0.2347 −0.0410 0.2256

TN 0.2379 −0.3035* 0.0121 0.2963 −0.2296 −0.2503 – 0.0370 0.1700 0.0865

pH 0.2063 0.3800 −0.1289 −0.0567 0.5459* 0.4617 0.0454 0.1930 0.4508* −0.0622

salinity −0.3322 −0.0446 0.3782 0.1613 0.1321 0.1311 0.3876 0.1579 −0.0108 0.1887

Bold: P-value of the correlation between physical and chemical factors and microorganisms in each layer.
*p < .05. 
**p < .01. 

F I G U R E  3   Double principle coordinate 
analysis of microbial communities based 
on	the	OTU	relative	abundances
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F I G U R E  4  The	phylogenetic	molecular	ecological	network	parameters	change	along	the	depth	gradient.	(a)	Results	of	Bai's	study	
(A:	0	–	0.05	m,	B:	0.05	–	0.2	m,	C:	0.2	–	0.4	m,	D:	0.4	–	0.6	m),	(b)	Results	of	this	study	(A:	0	–	0.2	m,	B:	0.2	–	0.4	m,	C:	0.4	–	0.6	m,	D:	
0.6	–	0.8	m,	E:	0.8	–	1.0	m,	F:	1.0	–	1.3	m,	G:	1.3	–	1.6	m,	H:	1.6	–	2.0	m,	I:	2.0	–	2.5	m,	J:	2.5	–	3.0	m)
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genus in each layer that must adapt to and resist changes in the 
soil	 environment.	 Factors	 such	 as	 carbon	 source,	 microbial	 de-
composition, and species interactions also affect the distribution 
of microorganisms in the soil depth gradients as well (Marilley & 
Aragno,	1999).	Notably,	module	hubs	were	extremely	high	at	2	m	
soil depth. Only a few studies exist on deep microbial communi-
ties; thus, more attention should be given to the study of subsur-
face microbial communities in future.

We performed the Mantel test on key genera obtained by module 
hubs and environmental factors (K+, Ca2+,	Na+, Mg2+, NH+

4
, NO−

2
, NO−

3
, 

Cl−, SO2−

4
,	TOC,	TN,	pH,	and	salinity)	along	depth	gradients	(Table	A2).	

Most environmental factors did not have significant effects on key 
genera obtained by module hubs along depth gradients, excluding K+ 
and Mg2+	in	layer	A,	K+ in layer C, NO−

3
	in	layers	G	and	H,	Na+, Cl−, SO2−

4
, 

salinity in layer I, and K+,	Na+, and SO2−

4
 in layer J. It was evident that the 

key genera obtained by module hubs in all ten layers had no significant 
difference	in	pH,	TOC,	and	TN.	Soil	layers	dominant	with	Acidobacteria 
were	mostly	 associated	with	 potassium.	Ding,	 Jiang,	 and	Ma	 (2016)	
noted that inorganic fertilizers may lower the pH of soil and lead to its 
acidification. Members of the phylum Proteobacteria had a variety of 
metabolic	types	(Song,	Liu,	&	Liang,	2016).	This	may	affect	the	sensitiv-
ity of Proteobacteria to environmental factors. Bacteria within the phy-
lum Bacteroidetes can be distributed throughout the ecological niches 
(Garrity & Holt, 2001), some of which were likely to occur in deep soil 
layers. During the formation and development of soil, each layer has its 
own physical and chemical properties due to the migration of energy 
and	matter	(Agnelli,	Ascher,	&	Corti,	2004).	In	general,	depth-related	
differences in the physicochemical and structural characteristics of 
soil profiles can include many microenvironmentally complex micro-
bial populations that can evolve (Ranjard & Richaume, 2001). In con-
trast, by aiming to determine the correlation between each physical 
and chemical factor index in each layer for whole microorganisms in 
our study, it can be concluded that the microorganisms were generally 
stable. Therefore, some mechanisms affected the adaptation of micro-
bial communities to the environment. Our findings revealed that the 
adaptability of microbial communities to depth gradients may result 
in an approximate ten-layer network analysis. Key genera play an im-
portant	role	 in	maintaining	community	stability.	Notably,	salinity	has	
been shown to be a key driving factor for microbial communities in the 
same research region, as described by Zheng et al. (2017), but in our 
study, soil depth seems to also create important effects in the micro-
bial communities.

5  | CONCLUSIONS

In this study, based on the ecological network, we found that micro-
bial communities along the depth gradient had a strong overall re-
sistance. The change in the environmental conditions with soil depth 
represents an ecological filter; however, the microbial communities 
fully adapted to the depth gradient, which indicated that there are 
certain mechanisms that affect the adaptation of microbial commu-
nities to the environment.
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APPENDIX 

F I G U R E  A 1   Rarefaction curves in 10 
layers

TA B L E  A 1  The	univariate	ANOVA	based	on	Shannon	and	Chao1	
indices

Depth Shannon Chao1

A 7.98	±	0.26 1015.48	±	96.92

B 7.67	±	0.78 986.46	±	199.05

C 7.83 ± 0.79 1034.79	±	91.86

D 7.53 ± 0.83 1026.91	±	109.15

E 7.63	±	0.79 1025.48	±	171.69

F 7.60	±	0.60 1023.90 ± 108.78

G 7.52 ± 0.89 984.15 ± 123.27

H 7.82 ± 0.93 1040.34 ± 181.42

I 7.58 ± 0.93 1035.21 ± 171.58

J 7.81 ± 0.39 1013.16	±	78.05

The values in the table were the mean ± standard deviation (SD) of eight 
replicates.	No	significant	difference	in	depth	gradient	(p	>	.05).
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