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Abstract

Purpose

During resections of brain tumors, neurosurgeons have to weigh the risk between residual

tumor and damage to brain functions. Different perspectives on these risks result in practice

variation. We present statistical methods to localize differences in extent of resection

between institutions which should enable to reveal brain regions affected by such practice

variation.

Methods

Synthetic data were generated by simulating spheres for brain, tumors, resection cavities,

and an effect region in which a likelihood of surgical avoidance could be varied between

institutions. Three statistical methods were investigated: a non-parametric permutation

based approach, Fisher’s exact test, and a full Bayesian Markov chain Monte Carlo

(MCMC) model. For all three methods the false discovery rate (FDR) was determined as a

function of the cut-off value for the q-value or the highest density interval, and receiver oper-

ating characteristic and precision recall curves were created. Sensitivity to variations in the

parameters of the synthetic model were investigated. Finally, all these methods were

applied to retrospectively collected data of 77 brain tumor resections in two academic

hospitals.

Results

Fisher’s method provided an accurate estimation of observed FDR in the synthetic data,

whereas the permutation approach was too liberal and underestimated FDR. AUC values

were similar for Fisher and Bayes methods, and superior to the permutation approach. Fish-

er’s method deteriorated and became too liberal for reduced tumor size, a smaller size of
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the effect region, a lower overall extent of resection, fewer patients per cohort, and a smaller

discrepancy in surgical avoidance probabilities between the different surgical practices. In

the retrospective patient data, all three methods identified a similar effect region, with lower

estimated FDR in Fisher’s method than using the permutation method.

Conclusions

Differences in surgical practice may be detected using voxel statistics. Fisher’s test provides

a fast method to localize differences but could underestimate true FDR. Bayesian MCMC is

more flexible and easily extendable, and leads to similar results, but at increased computa-

tional cost.

Introduction

Despite intensive chemotherapy, radiotherapy, and surgery regimens, prognosis for glioblas-

toma patients remains poor. Further escalation of treatment might improve disease specific

survival, but would likely come at the expense of increased toxicities, reducing quality of life.

For a surgeon performing a glioblastoma resection the dilemma is where to stop tumor

removal. Stopping early may incur earlier tumor recurrence, while stopping late may compro-

mise tumor-infiltrated functional brain tissues. Such decisions are generally discussed within a

surgical team, based on the available MR imaging and clinical status. The result of such a dis-

cussion is a surgical plan, aiming for the maximum extent of resection attainable for that

patient. However, another team presented with the same patient might well make other deci-

sions, and come to a different surgical plan. For a single patient it is not possible to say which

plan would be superior, but using larger cohorts of patients it should be possible to compare

the surgical practices of two teams and learn how to strike a better compromise between

tumor control and toxicity.

The difficulty in such comparisons is that tumors have different shapes and sizes for each

patient. To address this, we proposed the use of resection probability maps [1], in which surgi-

cal results (tumor and residue) are aggregated in atlas space over cohorts of patients. In such a

resection probability map it is essentially assumed that the likelihood of a piece of tumor to be

removed depends on its anatomical location only. Identified differences in the probability of

tumor removal at a given anatomical location can help focus further research to determine if

either pattern is associated with improved outcome in multivariate analyses. This data could

consequently help to arrive at consensus of the best practice for patients with a tumor in that

region. Ultimately, the best practice should be based on a collaborative body of objective data,

rather than the intuition of a surgical team.

In a previous publication [2], a proof of concept was presented for the use of resection prob-

ability maps to compare and discuss the patterns of current care. In that work, the metric for

comparison was a non-parametric permutation approach based on ‘risk-minus’ values,

defined as the voxelwise difference in resection probabilities between practices. Differentially

resected regions between two hospitals were identified in the anterior limb of the right internal

capsule and the right caudate nucleus, indicating practice variation. The permutation method

in that work was designed to provide a q-value that could be thresholded into a set of voxels

with a given estimated false discovery rate [3, 4], however its validity had not yet been investi-

gated. In brain tumor resection, the presence of residual tumor after surgery in a voxel is sub-

ject to the presence of tumor before surgery, and the tumor location varies from patient to
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patient. This means that discrete statistics should be applied, and that the number of experi-

ment repetitions varies from voxel to voxel. This complicates the correction for multiple test-

ing, and sets the voxel statistics of brain tumor resections apart from those of e.g. voxel-based

lesion-symptom mapping [5, 6]. Resection probability maps provide information about the

ratios of residues and tumors rather than their absolute numbers, and so does the permutation

statistic based on risk-minus. In an attempt to limit the bias which might be introduced by this

underlying discreteness, the permutation statistic only considered voxels with sufficiently large

numbers of observed tumors (6 or more).

In another study the Fisher’s exact test was used as metric for comparison of resection prob-

ability maps, combined with a permutation based multiple testing correction. [1] This metric

does take into account the absolute numbers of residues and tumors, however its validity had

not yet been investigated either.

In this work we generated synthetic data from a model to determine the accuracy of the per-

mutation statistic and compared this to the Fisher’s exact test [1] and a full Bayesian Markov

Chain Monte Carlo approach. The proposed full Bayesian approach uses a hierarchical model

and tests the probability of zero effect falling inside the largest highest density interval (HDI)

of the difference between the estimated success rates. Benchmarking these methods will aid to

evaluate variations in localized extent of resection in clinical practice using large patient

registries.

Methods and materials

Custom software modules were written in C++ and connected using a Python scripting layer.

False discovery rate using a permutation approach

For two patient cohorts from practices A and B, the numbers of tumors t and residues r for

each brain voxel were stored as a vector of rational numbers. Elements with fewer than 6

patients (tA + tB < 6) were removed. Risk-minus values for the remaining elements were evalu-

ated as
rA
tA
�

rB
tB

�
�
�

�
�
�. Next, permutations were performed by shuffling (relabeling) patients between

practices. Risk-minus values over all elements and all (1000) permutations were collected in a

cumulative histogram, representing the null distribution. p-values per element were derived by

looking up the cumulative count at the observed risk-minus. A computationally efficient

implementation of this histogram was created using rational number arithmetic and a C++

map structure. A q-value estimating the FDR was evaluated. For each unique p-value the num-

ber of falsely declared significant voxels was estimated from the cumulative histogram of p-val-

ues and divided by the number of declared voxels at that p.

False discovery rate using Fisher’s exact test

A second method was implemented to compute the exact null distribution over all voxels,

thereby explicitly taking into account that measurements are discrete (and typically small),

and that the numbers of measurements differ between voxels. For each voxel the numbers of

observed tumors and residues per practice can be summarized in Table 1. For fixed marginals

(i.e. numbers of tumors per practice tA, tB and total number of residues r per voxel), the num-

ber of residues in practice A (rA) follows the hypergeometric distribution under the null

hypothesis (no difference in resection probability between the practices), and p-values can be

derived using Fisher’s exact test. The two-sided p for an observed rA,obs was computed by first

evaluating the hypergeometric probability Pr(rA) for each possible observation 0� rA� r, and

a one-sided p evaluated as the smaller of
PrA;obs

0 PrðrAÞ and
Pr

rA;obs
PrðrAÞ. To form a two-sided
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p, values of Pr(rA) smaller than the one for the observed rA value were added from the oppos-

ing side (starting at either 0 or r), terminating just before the resulting p would exceed twice

the value of the single sided p [7]. Next, a cumulative null histogram of all possible p(rA) values

over all tested voxels was constructed to estimate the expected abundance of p-values under

the null hypothesis [8, 9]. q-values were determined from these as q ¼ N0 f0
i ¼

ðN� NaÞf0
i , with N0

the true number of null voxels, Na the number of true associated voxels, N the total number of

voxels, f0 the fraction falsely declared non-null (at the given cut-off value q), and i the number

of voxels declared associated. Noting that Na = i − iq, we can solve q ¼ f0
1� f0

N� i
i .

Bayesian model with partial pooling for repeated binary trials

We set up a full Bayesian model for Markov chain Monte Carlo sampling using a no-U-turn

sampler in the Stan software package [10]. A hierarchical model was used which treats voxels

as belonging to a population, estimating the properties of this population along with voxel

properties. The amount of pooling between voxels is thus implicitly controlled, which is

referred to as partial pooling (see http://mc-stan.org/users/documentation/case-studies/pool-

binary-trials.html). Given the number of patients with a tumor in each institution, tA and tB,

and the number of observed residues, rA and rB, a trial for each institution is observed in a

voxel with a success rate of
tA � rA
tA

and
tB � rB
tB

. The parameter of interest was the difference between

these success rates of institutions in voxels. Given the success rates and the number of tumors,

the number of residues was represented by a binomial distribution. The logit-transformed

overall success rate μ was assumed to be normally distributed with unknown mean and stan-

dard deviation, using mean 0 and standard deviation 1 as vague priors. For efficiency of con-

vergence, a non-centered parameterization was adopted for voxelwise random effects with

mean 0 and standard deviation 1 [11]. Vague priors were chosen to primarily reflect inference

from the observed data without substantive prior knowledge. The Stan code that was used is

listed in the supporting information. Four parallel chains of 500 Hamiltonian Monte Carlo

simulation samples were executed, of which the first 50% were discarded as burn-in. The

remaining 50% (1000 samples in total) were considered to be draws from the posterior distri-

bution. An estimator for the difference in success rates in a voxel was computed by evaluating

the probability level of the largest highest density interval (HDI) centered within the posterior

difference distribution which would exclude zero difference. The potential multiple compari-

son problem is addressed by the partial pooling because the estimates for differences are

shrunk towards the background institutional success rate [12].

Synthetic tumor resection data

Fig 1 shows a schematic illustration of the model used to generate generate synthetic data on

which to test the statistical methods. A spherical brain was created with the same number of

voxels (1.7M) as the brain mask of a 1 mm resolution MNI atlas [13]. To simulate surgical

treatment of a patient, a spherical tumor was generated with its center at a random location

Table 1. Contingency table for the observed numbers of tumors t and residues r in a voxel.

Residue Practice Total

A B

Yes rA rB r
No tA − rA tB − rB t − r

Total tA tB t

https://doi.org/10.1371/journal.pone.0222939.t001
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within this spherical brain. Next, a spherical resection cavity was placed with its center at a ran-

dom location within this tumor, and with a diameter (depending on this location) such that it

encompassed a certain fraction of the tumor, thus leaving a crescent residue. Tumor and resi-

due protruding outside the brain sphere were cropped. A spherical surgical avoidance region

was designated in which a probability could be set that a planned resection would not be exe-

cuted. In such a case this avoidance region was removed from the sphere representing the

resection cavity before being applied to the tumor. Two patient cohorts were then generated

with a different surgical avoidance probability, simulating a different surgical practice. The

resulting voxelwise tumor incidence Pr(t) and resection probability Pr(r) were the same for

the two centers, except in the avoidance region where the resection probabilities were Pr(rA) =

Pr(r)�Pr(avoidA) and Pr(rB) = Pr(r)�Pr(avoidB) in centers A and B, respectively. The model

parameters were set to values similar to those observed in clinical practice when including

biopsy patients: the number of patients per cohort (50), the tumor diameter (8cm), and the

extent of resection (60%). The size of the surgical avoidance region was unknown and set to a

sphere of 4 cm diameter. The different voxelwise statistical tests were then performed, and

cumulative histograms generated for both the voxels inside and the voxels outside the avoid-

ance region. As a function of the cut-off value for the q-value or the highest density interval,

the observed false discovery ratio was determined, and receiver operator characteristic (ROC)

as well as precision recall (PRC) curves were created; the latter are deemed more important

given skewness of the data. By repeating the synthetic model generation 1000 times, confi-

dence intervals on these curves were constructed.

Patients

The patient cohorts were previously described in [2]. In total 77 adults with first-time surgical

(sub)total resection of a right sided glioblastoma in 2012-2013 were selected, resulting in 48

patients treated by neuro-oncological hospital A, and 29 by hospital B. Preoperative tumors

and postoperative residues had been segmented on MRI in 3D, registered to standard brain

1) Generate a spherical tumor at
a random location 

2) Generate a spherical resection 
at a random location in the 
tumor, such that 40% residue 
remains

Tumor Resection cavity Surgical residu Resected tumor Avoidance area

3) Tumor inside the avoidance
area is not resected with hospital 
dependent probability Pr(avoid).

Fig 1. Schematic illustration of the generative model for brain tumor resections.

https://doi.org/10.1371/journal.pone.0222939.g001
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space with a resolution of 1 × 1 × 1 mm, and sub-sampled for analyses to 2 × 2 × 2 mm voxels.

Mean tumor volumes were 41 cm3 and 48 cm3, extents of resection 95% and 96% in hospitals

A and B respectively. As these cohorts did not include patients for whom only a biopsy was

performed, tumor volumes were smaller and extents of resection larger than on average for the

entire population of GBM patients.

Results

Fig 2 shows the cumulative tumor and residue maps for the case of 0% avoidance (i.e. no dif-

ference with surrounding brain) in practice A, and 100% avoidance (i.e. tumor is always left as

residue) in practice B. As an example, the resulting q-map based on Fisher’s exact test for these

data is shown in panel Fig 2c, which can be used to evaluate the numbers of true and false posi-

tives as a function of q-cut-off. Voxels inside the boundaries of the effect region mainly have

low q-values and contribute to true positives, however some appear dark and lead to false neg-

atives. On the other hand, outside the effect region some clusters of voxels acquired low q-val-

ues by chance, resulting in false positive detections.

The computational effort for the three statistical methods varied considerably, and at the

full scan resolution of 1 mm3 voxels proved prohibitive for both the permutation and Bayesian

methods. Therefore, a sub-sampling to voxels of 4 × 4 × 4 mm was performed. For 1000 repeti-

tions of the synthetic data generating model this resulted in computation times on a dual ten-

core Intel Xeon workstation on the order of minutes for Fisher’s method, hours for the permu-

tation method, and weeks for the Bayesian method. Consequently, further evaluations of varia-

tions of the generative model parameters were only feasible with Fisher’s method. In S1 Fig in

the supporting information results of Fisher’s test for 2 × 2 × 2 mm and 1 × 1 × 1 mm voxel

resolutions are demonstrated.

Permutation approach

Observed FDR for the permutation approach indicated that the estimated q-values were too

liberal (Fig 3a). The method rarely generated q-values below 0.35 and never below the value of

0.25, which resulted in the jagged appearance of the curve. The ROC curve (Fig 3b) still shows

a predictive power for the model, with an AUC of 0.80, however the PRC curve (Fig 3c) indi-

cates it has quite low precision.

Fig 2. A synthetic model for brain tumor resections. Cumulative maps of tumors (purple) and residues (green) are overlaid for 50 patients in practice

A (a) and 50 in practice B (b). A yellow dashed line marks a spherical region in which practice B does not resect. Locations where most tumors were

resected appear purple, locations where all tumor was left as residue show up gray. c) Estimated q-values using Fisher’s exact test.

https://doi.org/10.1371/journal.pone.0222939.g002
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Fisher’s test

Corresponding results for Fisher’s test show that the estimated q-values on average provide a

slightly conservative estimate of observed FDR (Fig 3d). ROC and PRC curves (Fig 3e and 3f)

show an improved performance compared to the permutation approach, with an AUC of 0.93.

Bayesian Monte Carlo

As a small highest density interval which excludes zero difference implies a difference distribu-

tion which is centered closely to zero, setting a low HDI probability level threshold results in

high FDR. Fig 3g therefore shows a declining curve. Performance was similar to Fisher’s

method in terms of ROC (Fig 3h) and PRC Fig 3i), with a similarly high AUC of 0.92.

Synthetic model parameter variations

To illustrate the applicability of the statistical tests to data sets with other characteristics,

Fisher’s test was repeated for several variations of the synthetic model. S2 Fig through S7 Fig in

the supporting information show the FDR, ROC and PRC curves for these results. Better

Fig 3. Statistics for synthetic tumor resection data. a) Observed FDR vs. cut-off on the q-value using a permutation

approach. b) and c) Corresponding ROC and PRC curves.d) Observed FDR vs. cut-off on the q-value using Fisher’s

test. e) and f) Corresponding ROC and PRC curves. g) Observed FDR vs. cut-off on the highest density interval

excluding 0 for a hierarchical full Bayesian model. h) and i) Corresponding ROC and PRC curves.

https://doi.org/10.1371/journal.pone.0222939.g003
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accuracies were observed for larger tumors (S2b Fig), an increased patient cohort size (S3b

Fig), larger effect region size in which a difference in practice exists (S4b Fig), and increased

extent of resection (S5b Fig). On the other hand, overly liberal FDR estimates were seen for ;

6 cm tumors (AUC = 0.74, S2a Fig), for cohorts of 25 patients (AUC = 0.78, S3a Fig), when

decreasing the region with a difference in practice to 2 cm diameter (AUC = 0.84 S4a Fig), or

when using a 30% extent of resection (AUC = 0.69, S5a Fig).

A reduced contrast between the practices’ surgical avoidance probabilities is expected to

reduce the ability of the statistical methods to detect the effect region. For both Fisher’s test

and the Bayesian method, simulations were performed for surgical avoidance probabilities of

10% versus 90%, 20% versus 80%, 30% versus 70%, and 40% versus 60%. The results are

shown in S6 and S7 Figs. Both methods show reduced performance at lower avoidance proba-

bility contrast, with somewhat higher AUC values for the Bayesian method.

Patient data

Application of the three statistical methods to the cohorts of right sided GBM patients is

illustrated in Fig 4. For each method cut-off levels were scaled to accommodate the observed

values. Notably, the q levels found using Fisher’s test were much lower than using the permuta-

tions. However, Fisher’s method may underestimate true FDR, depending on the details of the

underlying effect. A region with low q in Fisher’s test (red in Fig 4b) was left out in the permu-

tation test (Fig 4a) due to the small number of total tumors (<6) in these voxels. In the Bayes-

ian approach this same region also has high HDI, however there are additional regions deeper

in the brain which were not prominent in the first two methods yet reach similar HDI proba-

bility level (Fig 4c).

Fig 4. Voxelwise statistical methods detecting differences in surgical practice, showing regions considered significantly different

for a given cut-off. a) A non-parametric permutation approach and b) Fisher’s exact test using a cut-off for estimated FDR, c) a full

Bayesian model using Markov chain Monte Carlo methods and a cut-off on the probability level of the highest density interval

excluding zero.

https://doi.org/10.1371/journal.pone.0222939.g004
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Discussion

In this work we developed an efficient implementation of voxelwise statistical tests for applica-

tion to the field of radiological evaluation of glioma surgery, thereby enabling an extensive

benchmarking of their performances. Application to patient data led to identification of simi-

lar regions, however the quantitative assessments of these regions differed between the

methods.

The first permutation-based method had been used in previous analyses and was based on

permutations of patients between practices. This method was set up to generate a q map that

could provide estimated false discovery rates. Our results indicate that these were likely under-

estimated. A methodological drawback of the comparison of risk-minus values is that the

number of tests per practice in a voxel is not taken into account in the statistic (one residue

out of two tumors has similar weight to ten out of twenty). Furthermore, when performing

permutations on a patient level the numbers of tumors per practice are necessarily also shuf-

fled. This implies that the derived statistics will also harbor information about the likelihood of

observing a certain asymmetry in the numbers of tumors per practice in a voxel.

These issues were mitigated by considering a method based on Fisher’s exact test, which

takes the numbers of tests and observations explicitly into account, and which considers the

marginals (total tumor and residue counts) in a voxel to be fixed. FDR was estimated by explic-

itly calculating expected rates of p-values under the null hypothesis. [14] consider the depen-

dency of p-values on the marginals and arrive at a similar expression by using a maximum

likelihood estimate for the marginals. [15] show that in symptom lesion mapping Fisher’s

exact test is overly conservative, whereas the Liebermeister test (considering non-fixed margin-

als) provides additional statistical power. In our application to brain surgery we did not

observe a conservative tendency of Fisher’s test, possibly due to the way we perform a multiple

testing correction by explicitly generating a null distribution as histogram of all possible voxel

wise p values while constructing the map of q values. On the other hand, cases in which the q
values underestimated observed false discovery rates were seen for less favorable situations,

notably for cases with less contrast in surgical avoidance probabilities between practices As

this contrast is not known in clinical practice, the quantitative interpretation of a q map based

on this test should be done with caution. Note also that even though in favorable cases the

method provides a near-nominal prediction of FDR on average, there is a wide confidence

interval around this prediction, and in about half the cases the prediction would in fact be an

underestimation. A major advantage of the Fisher’s method is its calculation speed. The

method however is limited to the special case of comparing exactly two cohorts, e.g. surgical

practices here. Furthermore, the application of a hypergeometric distribution to each individ-

ual voxel does not exploit information about the ensemble of voxels as a whole, which might

result in higher power.

The Bayesian model with partial pooling was explored as a more flexible, potentially more

powerful alternative. Different from the previous methods which aim to assess the null hypoth-

esis (of no difference in resection probability between practices), the Bayesian model tries to

estimate the resection probability per practice in each voxel. The partial pooling causes these

probabilities to be similar among voxels, unless the observation in a voxel is systematically dif-

ferent from the others. While pooling has an equalizing effect on the posterior resection proba-

bility distributions and replaces the multiple testing correction that was required in the other

methods, the exact relation between q values and the Bayesian HDI statistic is not easily estab-

lished. While constructing the Bayesian model it was noticed that exclusion of voxels in which

no relevant difference between the practices could be observed (e.g. voxels with tumor but no

residue) led to different posterior resection probability distributions, and different HDI

Voxelwise statistical methods to localize practice variation in brain tumor surgery
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intervals. Inclusion of these voxels led to better models, while in Fisher’s test these voxels had

no effect on the outcome. This difference in the way non-informative voxels were handled

may also have caused the different appearance of the PRC curve towards low recall values

between Fisher’s method (Fig 3f), showing a local maximum around a recall value of 0.1, and

the Bayesian method (Fig 3i), which shows no local maximum.

As the data consisted of a subset of patients for whom a tumor resection was performed (as

opposed to a tumor biopsy), the parameters differed from those considered representative for

the entire population of surgical patients. Tumor volumes varied between patients and were

smaller than nominal, while the extent of resection was higher. Our analyses indicated that

some of these effects may improve, while others may deteriorate the statistical analyses. As a

result, there is considerable uncertainty in the quantitative interpretation of the statistical

methods applied to clinical data. Also, it should be noted that uncertainties are associated with

the delineation of pre- and post-operative tumor [16], and with the deformable registration

towards a common atlas space. While uncertainties such as these could be incorporated into

the synthetic model to determine their effect on the voxelwise statistics, those investigations

are beyond the scope of the current work.

All statistical methods we presented in this work were voxelwise, i.e. correlations between

pixels were not incorporated into the statistics. Alternative formulations might leverage the

fact that the tumor voxels are spatially clustered [17] and arrive at more powerful statistics,

and such methods are worthwhile to be considered in future research.

Based on our results, we propose avoiding the permutation method in future analyses of

surgical results for tumor resection. While previous conclusions using this method should still

hold, Fisher’s method provides a faster alternative with similar conclusions for comparison

between two cohorts. A quantitative interpretation of its q values should only be cautiously

made. To analyze more complex situations with multiple patient cohorts or voxels within ana-

tomical regions, the flexibility of the Bayesian model may be a suitable alternative, although at

the cost of increased computational time.

Supporting information

S1 Appendix. Stan code.

(EPS)

S1 Fig. Synthetic tumor model variations. Fisher’s test using a) 2 × 2 × 2 mm and b) 1 × 1 ×
1 mm voxels. Other parameters were at nominal values: ; 8 cm tumors, patient cohorts of 50

patients, a 60% extent of resection, and a ; 4 cm effect region with an avoidance probability

difference of 0% versus 100%.

(TIF)

S2 Fig. Synthetic tumor model variations. Fisher’s test using a) ; 6 cm and b) ; 10 cm

tumors. Other parameters were at nominal values: 4 × 4 × 4 mm voxels, patient cohorts of 50

patients, a 60% extent of resection, and a ; 4 cm effect region with an avoidance probability

difference of 0% versus 100%.

(TIF)

S3 Fig. Synthetic tumor model variations. Fisher’s test using a) patient cohorts of 25 patients

and b) patient cohorts of 100 patients. Other parameters were at nominal values: 4 × 4 × 4 mm

voxels, ; 8 cm tumors, a 60% extent of resection, and a ; 4 cm effect region with an avoidance

probability difference of 0% versus 100%.

(TIF)
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S4 Fig. Synthetic tumor model variations. Fisher’s test using a) a ; 2 cm and b) a ; 6 cm effect

region. Other parameters were at nominal values: 4 × 4 × 4 mm voxels, ; 8 cm tumors, patient

cohorts of 50 patients, a 60% extent of resection, an avoidance probability difference of 0% ver-

sus 100% inside the effect region.

(TIF)

S5 Fig. Synthetic tumor model variations. Fisher’s test using a) a 60% and b) a 90% extent of

resection. Other parameters were at nominal values: 4 × 4 × 4 mm voxels, ; 8 cm tumors,

patient cohorts of 50 patients, and a ; 4 cm effect region with an avoidance probability differ-

ence of 0% versus 100%.

(TIF)

S6 Fig. Synthetic tumor model variations. Fisher’s test using avoidance probability differ-

ences of a) 10% versus 90%, b) 20% versus 80%, c) 30% versus 70%, and d) 40% versus 60%

inside the effect region. Other parameters were at nominal values: 4 × 4 × 4 mm voxels, ; 8 cm

tumors, patient cohorts of 50 patients, a 60% extent of resection, and a ; 4 cm effect region.

(TIF)

S7 Fig. Synthetic tumor model variations. The Bayesian method using avoidance probability

differences of a) 10% versus 90%, b) 20% versus 80%, c) 30% versus 70%, and d) 40% versus

60% inside the effect region. Other parameters were at nominal values: 4 × 4 × 4 mm voxels,

; 8 cm tumors, patient cohorts of 50 patients, a 60% extent of resection, and a ; 4 cm effect

region.

(TIF)
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