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This paper considers the problem of classification of the first and the second heart sounds (S1 and S2) under cardiac stress test.
The main objective is to classify these sounds without electrocardiogram (ECG) reference and without taking into consideration
the systolic and the diastolic time intervals criterion which can become problematic and useless in several real life settings as
severe tachycardia and tachyarrhythmia or in the case of subjects being under cardiac stress activity. First, the heart sounds are
segmented by using a modified time-frequency based envelope.Then, to distinguish between the first and the second heart sounds,
new features, named 𝛼opt, 𝛽, and 𝛾, based on high order statistics and energy concentration measures of the Stockwell transform
(S-transform) are proposed in this study. A study of the variation of the high frequency content of S1 and S2 over the HR (heart rate)
is also discussed. The proposed features are validated on a database that contains 2636 S1 and S2 sounds corresponding to 62 heart
signals and 8 subjects under cardiac stress test collected from healthy subjects. Results and comparisons with existing methods in
the literature show a large superiority for our proposed features.

1. Introduction

Cardiac auscultation is the basis for heart examination. It
provides a wealth of information about structural and func-
tional cardiac defects, using a simple, efficient, and costless
medical device: the stethoscope. Invented in the nineteenth
century, this acoustic instrument has proved since then to
be of paramount importance to the physical examination
and diagnosis of cardiac pathologies. Over the course of the
past two centuries, the stethoscope underwent numerous
improvements to reach the development of the electronic
stethoscope capable of registering and optimizing the quality
of the acoustic signal, completed by the Phonocardiographic
(PCG) representation of the auscultation signal. However,
the analysis of the cardiac sounds, solely based on the
human ear, is limited by the experience of the clinician for
a reliable diagnosis of cardiac pathologies and to obtain all
the qualitative and quantitative information about cardiac
activity [1]. Information, such as the temporal localization of
the heart sounds, the number of their internal components,

their frequential content, and the significance of diastolic and
systolic murmurs, can also be studied directly on the PCG
signal [2]. In order to recognize and classify cardiovascular
pathologies, advanced methods and techniques of signal
processing will be used.

For that, two approaches could be considered to improve
electronic stethoscopes:

(i) stethoscope with embedded autonomous analysis,
simple for home use by patients and paramedics, for
the purpose of autodiagnosis and follow-up,

(ii) stethoscope coupled with a hosting device or a server
for sophisticated analysis (coupled to a PC with a
Bluetooth link) for the use of professionals in order to
improve performance of clinical medical diagnosis.

Whatever the approach, one of the first phases in the analysis
of heart sounds, is the segmentation [3–5]. Heart sound
segmentation divides the PCG signal into four parts: S1 (first
heart sound), extant systole, S2 (second heart sound), and
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extant diastole. First, S1 and S2 are located; then, extant systole
is represented by the interval S1 to S2 and extant diastole by
the interval S2 to S1.

Identification of the two phases of the cardiac cycle and of
the heart sounds with robust differentiation between S1 and
S2 even in the presence of additional heart sounds and/or
murmurs is a first step in this challenge. Then, there is a
need to measure accurately S1 and S2 [6, 7] allowing the
progression to automatic diagnosis of heart murmurs with
the distinction of ejection and regurgitation murmurs.

Most of the existing methods, for the direct segmentation
of heart sounds, without the use of the help of ECG (see
Figure 1), use the feature of systole and diastole duration to
classify the first heart sound (S1) and the second heart sound
(S2) [3–10].These time intervals can become problematic and
useless in several real life settings which are particularly rep-
resented by severe tachycardia, tachyarrhythmia, or subjects
under cardiac stress activity.

In our earlier work on the segmentation of heart sounds
[2], we applied the singular value decomposition (SVD)
technique and the KNN classifier to distinguish between S1
and S2. The SVD extracts vector of 20 features is issued from
the Stockwell transform [11], and then the feature vector was
followed by a trained KNN classifier. This proposed method
was validated on a general database (without stress data)
collected from Hospital University of Strasbourg (HUS) and
Mars500 project.

In this study, we use a new database of stressed subject
collected in Aalborg University. This database is particularly
of interest to classify S1 and S2 because it contains specific
conditions where the systolic and diastolic intervals features
are useless. Furthermore, our original approach adopted in
this paper consists of studying qualitative features (instead of
extracting blindly feature vector as done in [2]) in order to
select the most appropriate single feature.This new approach
makes the training phase unnecessary since it needs only a
simple threshold andmakes the segmentation phase less time
consuming and reduces its complexity.Three original features
based on time-frequency domain and high order statistics are
proposed in this paper and their performances is discussed
and analyzed.

The main contributions of this paper can be summarized
as follows.

(i) A first modification on the segmentation method
proposed in [2] is performed in order to enhance the
detection of low intensities sounds buried in noise.

(ii) The main contribution of this study is the investi-
gation of 3 new qualitative features to discriminate
between S1 and S2 (𝛼opt, 𝛽, and 𝛾):

(a) the 𝛼opt feature was used in [2] to optimize
the energy concentration of the Stockwell trans-
form. However, in this study 𝛼opt is proposed
as a feature to discriminate between S1 and S2
which is totally different and can be considered
as a new approach;

(b) the second feature, namely, 𝛽, is the integration
over time of the envelope obtained by amodified

measure of the instantaneous frequency of the
signal. This feature aims to describe accurately
the frequency content of S1 and S2 over time;

(c) the third new feature, namely, 𝛾, calculates
the kurtosis of the time-frequency envelope.
This feature is based on the spectrogram of
the Stockwell transform (ST-spectrogram) and
an analogy between the time-frequency coef-
ficients and the probability density function is
made in order to apply the kurtosis measure.

(iii) Experimental validation based on specific database
from Aalborg University of stress test subjects is
performed. We note here that many studies in the
literature suggest that an involvement of the some
features extracted from the heart sounds (e.g., S/D-
ratio) can increase the diagnostic value of the exercise
test [12–14]. However, to our knowledge, our study is
the first one with interests in distinguishing the heart
sounds (S1 and S2) for subject under stress conditions.

(iv) An experimental study to show the high frequency
content ration (S2/S1) variation over heart rate is
performed and discussed.

This paper is organized as follows. Section 2 describes the
data collection process and methods proposed in this paper.
The results and discussion are presented in Sections 3 and 4
giving the conclusion and the future work.

2. Methods

2.1. Data Collection. Thecollected database used in this study
corresponds to healthy subjects under cardiac stress test from
the Department of Health Science and Technology, Aalborg
University [15].

Nine healthy subjects were enrolled in the study (M = 5,
F = 4) with a median age of 32 (24–36). Informed consent
was retrieved from all subjects prior to the exercise test.
A Panasonic microphone was incorporated in a coupler,
specially designed by theDepartment of Acoustics at Aalborg
University, Denmark. The microphone detects the mechani-
cal pressure differences in the coupler, caused by alterations
of the sound pressure. The microphone records with a
sampling frequency of 48000Hz.The heart sound recordings
are synchronized with a 3-lead ECG (see Figure 1). The
microphone was fitted to the 3rd left intercostal space with
a specially designed double adhesive plaster. Subsequently
the subject cycled on a Monark Ergometric 894E ergometer
bicycle. The workload was increased by 25 watt every two
minutes with an initial workload of 25 watt. The subject
cycled until subjective maximum endurance was reached.
Afterward subjects that did not reach 80% ofmaximum heart
rate defined as (220 bmp – age) ± 12 were excluded from
the study. The study was conducted according to the Danish
ECG stress test guidelines. The “220 bmp – age” is a common
criterion to ensure that the patient reaches their full capacity
[16]. One subject did not reach this rate and was therefore
excluded from the study. Recordings of heart sounds were
made for 10 seconds at the end of each workload level. Acarix
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Figure 1: Synchronized ECG and PCG signals for a subject under cardiac stress test.

Data Acquisition System was used for recording the heart
sounds and ECG [17].The subject’s heart rates before starting
the experiment correspond to the first workload level. There
were not any special restrictions required from the subjects
before starting the experiment.

2.2. Gold Standard. The gold standard is generated based
on the synchronized ECG signal. The ECG can provide
information to classify the first and the second heart sounds,
since S1 occurs subsequent to theQRS complex and S2 occurs
after the T-wave [5].

The sounds are automatically classified based on the
proposed features which are validated based on the corre-
sponding synchronized ECG signals.

2.3.The High Frequency Signature (HFS) Feature to Classify S1
and S2. Theonly study in the literature that aims to classify S1
and S2 by taking into consideration another feature compared
to the systolic and diastolic criteria is the study proposed
by Kumar et al. in [18, 19]. The methods aim to extract the
high frequency envelopes in sound segments, by applying
the Shannon energy operator on the detail coefficients issued
from the wavelet transform (Daubechies 6) [18]. In order
to detect the heart cycles, an adaptive threshold is defined
for this envelope. The algorithm aims to detect the high
frequency signatures (HFS) and the low frequency signatures
(LFS) [18].

Kumar et al. consider that usually S2 sounds contain
higher frequency with respect to S1 sound (HFS correspond
to S2 and LFS correspond to S1) excluding some rare excep-
tions.

The problem with the Kumar et al.’s paper can be summa-
rized as follows.

(i) Authors consider that S1 can contain higher fre-
quency content compared to S2 only in rare cases
like prosthetic valves, for example. This hypothesis
ignores the complexity of real clinical sounds on
which S1 in normal sounds can have higher signature
(see Figure 2, for example) and ignore that the fre-
quency content of S1 and S2 is related to the heart rate
(see Figure 15) and the auscultation position [20, 21].

(ii) To make the proposed method automatic and free
from prior knowledge, the type of HFS signature is
not identified as S2 automatically (because exceptions
can occur) but it is identified by using the systolic time

interval criteria which is exactly what we aim to avoid
in this study since the systolic time interval estimation
is not a reliable feature in stress test data (when HR is
high) or in pathological cases as severe tachycardia or
tachyarrhythmia.

(iii) Authors consider that all detected HFS exhibit one
class of sound (S1 or S2) which is not a reliable
hypothesis since the frequency contents of S1 and S2
can vary in the same registration (see Figure 3) due to
changes in respiratory conditions [20, 21].

2.4. Stockwell Transform. The S-transform originates from
two advanced signal processing tools, the short time Fourier
transform (STFT) and the wavelet transform (WT). It can be
viewed as a frequency dependent STFT or a phase corrected
WT. The S-transform is becoming a valuable tool applied on
many signals and domains as cardiovascular [2], EEG signals
[22], geophysics [23], power system engineering [24], and so
forth.The S-transform of a time varying signal 𝑥(𝑡) is defined
by [11]
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The window is normalized as
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This gives the direct relation between the S-transform and the
Fourier spectrum by averaging the local spectrum over time:
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where𝑋(𝑓) is the Fourier transform of 𝑥(𝑡).
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Figure 2: Normal heart sound with the HFS envelope and the magnitude of the S-Transform showing the higher frequency content in S1
compared to S2.
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Figure 3: Segmented sound with the HFS envelope and the magnitude of the S-transform of the corresponding heart sound showing that
HFS signature does not correspond necessarily to just one class.

2.5. Segmentation: The Modified SSE Method. The localiza-
tion of heart sounds is established by using the SSE method
(see (6)). The proposed SSE method extracts the envelope
of the signal by calculating the Shannon energy of each
column of the extracted S-matrix (local spectrum). Then,
the extracted envelope is smoothed by applying an average
filter.The SSE envelope applied on the time-frequencymatrix
𝑆(𝜏, 𝑓) is calculated as:

SSE (𝑆 (𝜏, 𝑓)) = −∫
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The parameter 𝑛 is usually fixed to 2 [2] which is the standard
coefficient of the Shannon energy measure. In this study, 𝑛 is
fixed to 1.5 to enhance the detection of low intensities sounds
buried in noise. This occurs in heart sounds more often with
S2 when the cardiac frequency is high. Figure 4 shows the
compromise of attenuation of low and high intensities, as a
function of the value of 𝑛. We note here that, for the SSE
method, the intensities are the local spectrum coefficients of
the S-transform and not the time sample intensities of the
signal. Figure 5 shows the influence of the values of 𝑛 in the
detection of very low intensities heart sounds (S2 in this case).

2.6. New Proposed Features

Feature 1 (the Gaussian parameter (𝛼opt)). In another study,
we have introduced a parameter 𝛼 to the Gaussian window in
order to optimize the energy concentration of the Stockwell
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Figure 4: The envelope of normalized signal for values of 𝑛 = 1.5,
2, and 3.

transform [2]. The parameter 𝛼 introduced to the Gaussian
equation (2) is introduced as follows:

𝜎 (𝑓) =
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The value of 𝛼 which maximizes the energy concentration is
considered as the optimal value. The energy concentration
measure is given as
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Figure 5: The influence of the values of 𝑛 in the SSE envelope for the detection of S2 sounds with very low intensities.
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Figure 6: S1 and S2 signals (a) and optimized S-transform obtained with 𝛼 = 0.8 for S1 and 𝛼 = 0.5 for S2 (b).

Thismeasure has some favorable performance in comparison
to other concentration measures [25].

With 𝑆
𝛼

𝑥
(𝑡, 𝑓) being the normalized energy of the S-

transform for each 𝛼, it is given by [26]
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The values of 𝛼 are chosen from a set, 0.5 < 𝛼 < 2, with
a step of 0.1. The optimal solution is reached when CM(𝛼) is
maximized:

𝛼opt = arg max
𝛼

(CM (𝛼)) . (10)

In this study, we propose to test the ability of the 𝛼opt to
discriminate between the first and the second heart sound.
Since it has been used to optimize the energy concentration
in the time-frequency plane, it may be interesting to test

it as a discriminator feature. From a signal theory point of
view, the complexity concept of signals is intuitively related
to the number of their elementary components [27] and
since S1 generally contains more components than S2 [21],
hence, it can be considered as a more complex signal than
S2. These physiological differences will necessarily lead to
different time-frequency content behavior which we will aim
to reveal with 𝛼opt parameter.

Figure 6 shows S1 and S2 signals examples with the
corresponding optimized S-transform obtained with 𝛼 = 0.8

and 0.5, respectively.

Feature 2 (phe SSE envelope feature (𝛽)). It is another new
feature that we investigate in this study, namely, 𝛽; it aims to
integrate the normalized SSE envelope over time; it can be
given as

𝛽 = ∫
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Figure 7: S1 (left) and S2 (right) signals and their normalized SSE envelopes with the values of 𝛽 (bottom).
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Figure 8: S1 (left) and S2 (right) signals and their normalized SSE envelopes with the values of 𝛾 (bottom).

The SSE envelope estimates the frequency energy at the local
spectrum of the signal. It can be considered as a modified
instantaneous frequency measure. The 𝛽 feature aims to
reveal the frequency contribution of each sound over time.
Mathematically, it can be viewed as the integration over time
of amodified instantaneous frequencymeasure.Themeasure
is computed from the normalized SSE envelope to avoid
the influence of the amplitude variations. Figure 7 shows an
example of the 𝛽 feature calculated on S1 and S2 sounds from
their normalized SSE envelopes.

Feature 3 (high order statistic feature (𝛾)). It is the third
feature proposed in this paper on higher order statistic mea-
sure (kurtosis) applied on time-frequency coefficients. The

kurtosis measure is normally applied on a probability distri-
bution to describe its shape. A normal transition between the
Stockwell transform and the corresponding time-frequency
energy distribution is the square of magnitude of the S-
matrix, namely, in this paper, the ST-spectrogram. In this
case, the time-frequency representation plays an analogous
role to a 2D probability density function (PDF) [27]. Then,
the kurtosis can be applied directly on this estimated PDF via
time-frequency plane.However, the kurtosismay be very sen-
sitive to noise [28]. To deal with this problem, we calculate the
SSE envelope applied on the ST-spectrogram before applying
the kurtosis. In this case, the values of the extracted envelope
are considered as the estimated probability distribution via
time-frequency plane.
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Figure 9: Receiver operation characteristic curves for feature 𝛼 and for all subjects.
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Figure 10: Receiver operation characteristic curves for feature 𝛽 and for all subjects.
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Figure 11: Receiver operation characteristic curves for feature 𝛾 and for all subjects.
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Figure 12: Example of a segmented stress test heart sound for subject 4 and workload level 6 (HR = 181 bmp) with the values of 𝛼, 𝛽, and 𝛾

calculated for each located sound (S1 and S2).

Table 1: The area under curve (AUC), mean values and standard deviations of each feature (S1(𝛼), S2(𝛼), S1(𝛽), S2(𝛽), S1(𝛾), and S2(𝛾)), and
the maximum heart rate (HRmax) reached for each subject.

Subject 1 2 3 4 5 6 7 8 Mean
AUC(𝛼) 0.91 0.84 0.82 0.7 0.86 0.88 0.91 0.88 0.85
AUC(𝛽) 0.9 0.84 0.94 0.77 0.89 0.88 0.96 0.8 0.87
AUC(𝛾) 0.97 0.94 0.94 0.97 0.92 0.96 0.98 0.97 0.96
S1(𝛼) 0.79 ± 0.05 1.02 ± 0.76 1.03 ± 0.35 0.71 ± 0.07 0.7 ± 0.03 0.8 ± 0.06 0.88 ± 0.37 0.74 ± 0.18 0.83 ± 0.13
S2(𝛼) 0.61 ± 0.01 0.6 ± 0.03 0.66 ± 0.03 0.61 ± 0.01 0.5 ± 0.02 0.6 ± 0.04 0.61 ± 0.03 0.6 ± 0.03 0.59 ± 0.04
S1(𝛽) 0.57 ± 0.15 0.63 ± 0.1 0.6 ± 0.1 0.65 ± 0.21 0.65 ± 0.08 0.63 ± 0.11 0.67 ± 0.11 0.56 ± 0.17 0.62 ± 0.03
S2(𝛽) 0.29 ± 0.07 0.39 ± 0.12 0.26 ± 0.06 0.39 ± 0.14 0.4 ± 0.06 0.32 ± 0.13 0.32 ± 0.05 0.37 ± 0.11 0.34 ± 0.05
S1(𝛾) 2.44 ± 0.82 2.7 ± 0.96 2.74 ± 1.33 2.91 ± 0.85 3.33 ± 1.18 3.18 ± 1.2 2.56 ± 0.87 3.12 ± 1.05 2.89 ± 1.07
S2(𝛾) 7.47 ± 2.13 6.2 ± 1.92 6.74 ± 2.32 6.63 ± 1.6 7.02 ± 2.25 8.24 ± 2.35 7.8 ± 2.6 6.83 ± 1.49 7 ± 2.5
HR (bpm) 162 180 170 194 186 192 198 180

If we consider the squared modulus of the S-transform or
the ST-spectrogram, we obtain an energy distribution of the
signal in time-frequency plane. The ST-spectrogram is given
as
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The ST-spectrogram is normalized as follows:
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The proposed feature based on the kurtosis can be given as
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where SSE(|𝑆norm
𝑥

(𝑡, 𝑓)|
2

) are the values of the SSE envelope
applied on the normalized ST-spectrogram |𝑆

norm
𝑥

(𝑡, 𝑓)|
2 and

𝜇
𝑥
is the corresponding mean value. The kurtosis measures

the peakedness of the distribution. This feature will try to

describe the shape of the estimated time-frequency distribu-
tion for the segmented sounds (S1 or S2).

Figure 8 shows an example of the 𝛾 feature calculated on
S1 and S2 sounds from their SSE envelopes based on ST-
Spectrogram.

3. Results and Discussions

The segmentation of heart sounds is established by using the
modified SSE method proposed in Section 2.5. The different
proposed features are tested separately and a comparison
study with the HFS feature proposed in the literature is
performed.Theproposed features𝛼opt,𝛽, and 𝛾 are calculated
for each segmented sound and the results are summarized
in Table 1. The total number of S1 and S2 in the database is
2636 (1318 S1 and 1318 S2) sounds that correspond to 62 heart
signals and 8 subjects.

3.1. Results for Feature 𝛼
𝑜𝑝𝑡
. Results show that the mean value

of 𝛼opt is greater for S1 than S2 (0.83 ± 0.13 and 0.59 ± 0.04,
resp.), which means that the width of the Gaussian window
(see Figure 5) obtained with the optimization of the energy
concentration is wider for S1 than S2. In other words, the
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Table 2: Significance values (Mann-Whitney 𝑈 test), range (min
and max), and the area under curve (AUC) results obtained for all
subjects and for each proposed feature.

Feature 𝑃 value Range (S1) Range (S2) AUC
𝛼 <0.0001 0.5–2 0.5–0.92 0.85
𝛽 <0.0001 0.3–1 0.13–0.88 0.87
𝛾 <0.0001 1–7.8 2–19.2 0.96

algorithm needs a higher frequency resolution for S1 than
S2. The first heart sound has a booming quality and is lower
pitched, duller, and longer than the second heart sound [19];
the S1 can be considered more complex (containing more
components) than S2 from a physiological point of view and
in term of frequency components which explain the need of
higher frequency resolution or larger analysis window for S1
compared to S2.

Figure 9 shows the AUC for the 𝛼opt feature and for each
subject. The lowest AUC corresponds to the subject 4 (0.7).
The highest AUC is 0.91 and the total average of AUCs is 0.85.

The probability that the two groups (S1(𝛼) and S2(𝛼))
come from distributions with different medians is calculated
by the Mann-Whitney 𝑈 test (𝑃 < 0.0001) (Table 2).
Significant differences between the two groups, with 95%
confidence, are found. The classification results are promis-
ing. This is very interesting since this parameter 𝛼 was also
used to refine the boundaries detection of S1 and S2 in the
segmentation process.

3.2. Results for Feature 𝛽. Results for 𝛽 feature show that the
mean value of 𝛽 is greater for S1 than S2 (0.62 ± 0.03 and
0.34 ± 0.05, resp.). This feature is the result of the integration
over time of the SSE.The SSE envelope resumes the frequency
content over time; it can be viewed as an instantaneous
frequency measure followed by a nonlinear filter to attenuate
the low and the high frequency intensities. Hence, the 𝛽

feature can be considered as an integration of the modified
instantaneous frequency measure which will be higher for
physiologically richer signals (S1 in this case).

The probability that the two groups (S1(𝛽) and S2(𝛽))
come from distributions with different medians is calculated
by the Mann-Whitney 𝑈 test (𝑃 < 0.0001) (Table 2).
Significant differences between the two groups, with 95%
confidence, are found.

Figure 10 shows the AUC for the 𝛽 feature and for each
subject. The lowest AUC corresponds to the subject 4 (0.77).
The highest AUC is 0.96 and the total average is 0.87 which is
higher than the 𝛼opt feature. The low AUC results for subject
4 obtained with 𝛼opt and 𝛽 can be explained by the high noise
level in the acquired signal due to the acquisition process.

3.3. Results for the Feature 𝛾. Results for 𝛾 feature show that
the mean value of 𝛾 is greater for S2 than S1 (7 ± 2.5 and
2.89 ± 1.07, resp.). The 𝛾 feature operates on the distribution
extracted via the spectrogram of the Stockwell transform
(ST-spectrogram) which can be viewed as probability density
function. The objective is to find a robust statistical descrip-
tion allowing us to discriminate accurately between the first
and the second heart sounds.
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Figure 13: Global receiver operation characteristic curves for 𝛼

(Feature 1, AUC = 0.85), 𝛽 (Feature 2, AUC = 0.87), 𝛾 (Feature 3,
AUC = 0.96), and HFS (AUC = 0.6) features.

The S2 distribution is a heavier tail and a higher peak than
the S1 distributions. This can be explained by the fact that S1
sounds are generally longer than S2 in time and they have
lower frequency signature. This will lead to higher kurtosis
estimation for S2. The results for the feature showed very
goodperformance for all subjects (Figure 11)with 0.96 of total
average (AUC). The probability that the two groups (S1(𝛾)
and S2(𝛾)) come from distributions with different medians
is calculated by the Mann-Whitney 𝑈 test (𝑃 < 0.0001)
(Table 2). Significant differences between the two groups,
with 95% confidence, are found.

Figure 12 shows the results of segmented sound corre-
sponding to subject 4 at the workload number 6 with a HR
= 181 bmp and with different 𝛼, 𝛽, and 𝛾 features.

3.4. Comparison with the HFS Feature. The HFS feature
shows lower results with 0.6 AUC (Figure 13). This is not
surprising because the HFS method is based on several
imprecise hypotheses. First, as we mentioned it above, not
all HFS signatures correspond necessarily to class (S1 or
S2) as authors propose in [18]. Figure 3 presents a normal
heart soundwith the correspondingHFSwhich shows clearly
that the HFS does not correspond necessarily to one class.
Moreover, the HFS method still needs the systolic duration
to classify S1 and S2 which is not reliable when HR is
very high (stress test for example). Finally, the HFS method
explores only the frequency content of the sounds without
any information on time; this becomes problematic for the
nonstationary signals as the case in this study with S1 and S2
sounds (where the frequency of the signal varies over time).
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Figure 14: Example of a segmented stress test heart sounds with three different SNR ratios (12, 5, and 0 dB) with the values of 𝛾 calculated
for each located sound (S1 and S2).

Figure 13 shows that the highest performance is reached by
the proposed 𝛾 feature with AUC = 0.96.

3.5. Robustness of the Proposed Features against Noise. In
this subsection, we study the robustness of the proposed
features against noise. The sounds collected in the database
were already contaminated with both physiological noise and
background noise. Here, we will study clearly the robustness
against noise of the proposed features by estimating the SNR
ratio on selected heart sounds from the database and we add
additive white Gaussian noise with three different levels. The
average of the SNR for all sounds in the database is estimated
to be 10 dB. To test the robustness against noise, two other
levels of noise are added and the results are showed in Table 3.

Results in Table 3 show clearly the high robustness of
the proposed features against noise. This is not surprising
since these features are based on time-frequency domain
[2, 29]. The HFS feature does not show reliable results on the
sounds used in this study. Figure 14 shows a selected sound
(from subject 1) with three different levels of noise and the
corresponding 𝛾 features being calculated on the segmented
S1 and S2 sounds.

3.6. High Frequency Content Ratio S2/S1 Variation over Heart
Rate. This section aims to analyze the frequency content of S1
and S2 over the HR. As we mentioned it before, the fact that
the frequency content of S2 exhibits higher frequency content
than S1 cannot be generalized and adopted as robust feature
to characterize the physiology related to the heart sounds. It
is known, for example, that the intensity and frequency of S1
are affected by the velocity of the forces responsible for the
acceleration and deceleration of the blood masses, which on
the other hand are directly related to the HR [20].

To show that experimentally, the high frequency content
of S1 and S2 for the 8 subjects of the database is estimated.
Then, the mean and the standard deviation of the ratio of
the frequency content of S2 over the frequency content of S1
(S2/S1) are calculated in relation with the heart rate. For each

Table 3: AUC results for 3 levels of noise added on different sounds
in the database.

Feature 10 dB 5 dB 0 dB
𝛼 0.85 0.82 0.8
𝛽 0.87 0.85 0.83
𝛾 0.96 0.93 0.91
HFS 0.6 0.58 0.57

subject, 4 sounds are considered at 4 different stress levels
(workload levels).

The results in Figure 15 show clearly the direct relation of
the frequency content of the heart sounds and the heart rate.
Normally, S2 has a higher frequency content than S1 (S2/S1 >
1) except for subject 5.The red line in Figure 15 indicateswhen
the frequency content of S1 exceeds the frequency content
of S2. When the heart rate increases, the high frequency
content of S2 decreases which decrease the ratio S2/S1 (see
Figures 15 and 16). This confirms our motivation to propose
other features than the high frequency content signature to
discriminate between S1 and S2.

4. Conclusions and Future Work

Themain objective of this paper is to study the ability of new
features to segment and discriminate S1 and S2 in stress test
conditions data. First, we have proposed a modified version
of the SSE segmentation method to take into consideration
the very low intensities sounds which can occurs more often
with S2 when the cardiac frequency is high. Then, we have
investigated three new time-frequency features computed
from the S-transform which can be considered as a hybrid
method between the STFT and the wavelets. The proposed
features are validated on a database that contains 2636 S1 and
S2 sounds (1318 S1 and 1318 S2) that correspond to 62 heart
signals and 8 subjects under cardiac stress test collected from
healthy subjects.

Classifying S1 and S2 based on the PCG signal without
any other reference is a hard task since they are very sensitive



Computational and Mathematical Methods in Medicine 13

80 99 111 170
0

0.5

1

1.5

2

S2
/S

1

Subject 1

HR

(a)

113 126 159 175
0.5

1

1.5

2

2.5

3

3.5

S2
/S

1

Subject 2

HR

(b)

54 81 142 178
0

1

2

3

4

5

6

S2
/S

1

Subject 3

HR

(c)

66 117 151 200
0

2

4

6

8

S2
/S

1

Subject 4

HR

(d)

66 86 138 186
0

0.5

1

1.5

S2
/S

1

Subject 5

HR

(e)

70 100 136 170
0

1

2

3

4

S2
/S

1

Subject 6

HR

(f)

84 103 150 188
0

1

2

3

4

HR

S2
/S

1

Subject 7

(g)

75 100 135 179
0

0.5

1

1.5

HR

S2
/S

1

Subject 8

(h)

Figure 15: The variation of the high frequency content ratio (S2/S1) over the HR for all subjects. The red lines indicate the high frequency
content of S2 becoming lower than that of S1.
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Figure 16: The S-transform of two sounds corresponding to the same subject and two different heart rates ((a) HR = 80 bpm, (b) 142 bpm))
showing the high frequency content of S2 decreasing when the heart rate is higher.

to several parameters like breathing, cardiac frequency, and
other biomedical and environmental conditions.

The proposed features aim to describe the time-frequency
behavior of each sound. The 𝛼opt feature corresponds to the
optimal width of the Gaussian window that maximizes the
energy concentration of the signal. The 𝛽 feature is the result
of integration over time of the SSE envelope (which can be
viewed as a modified measure of instantaneous frequency),
while the 𝛾 feature is based on the kurtosis of the extracted
SSE envelope via the normalized ST-spectrogram. The 𝛾

shows the highest performance with AUC = 0.96.This is very
interesting since it shows the ability to discriminate accurately
between clinical S1 and S2 sounds by using a single feature
which simplifies the segmentation module.

The comparison with the existing method, namely, HFS
(high frequency signature), in the literature [18, 19] shows a
large superiority for our proposed features, most notably the
𝛾 feature.

Moreover, an experimental validation is performed in
this study to show the high frequency content ratio (S2/S1)
variation over heart rate.

Finally, the proposed methods might have high potential
to study changes in the shape of the hearts sound due to splits
betweenM/T and A/P components in the respiration cycle or
to classify other biomedical and nonstationary signals.
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