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Abstract

Abetted by widespread usage of acid-suppressing proton pump inhibitors (PPIs), the mitogenic actions of the peptide
hormone gastrin are being revisited as a recurring theme in various gastrointestinal (GI) malignancies. While pathological
gastrin levels are intricately linked to hyperplasia of enterochromaffin-like cells leading to carcinoid development, the
signaling effects exerted by gastrin on distinct cell types of the gastric mucosa are more nuanced. Indeed, mounting
evidence suggests dichotomous roles for gastrin in both promoting and suppressing tumorigenesis. Here, we review the
major upstream mediators of gastrin gene regulation, including inflammation secondary to Helicobacter pylori infection and
the use of PPIs. We further explore the molecular biology of gastrin in GI malignancies, with particular emphasis on the
regulation of gastrin in neuroendocrine neoplasms. Finally, we highlight tissue-specific transcriptional targets as an avenue
for targetable therapeutics.
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Discovery and Controversy

The earliest concept of a hormonal axis in the regulation of
digestive physiology was borne from a series of experiments
conducted in 1902 by English physiologists William Bayliss and
Ernest Starling. Prior to their introduction, the prevailing doc-
trine on gastrointestinal (GI) secretory function was firmly estab-
lished by Ivan Pavlov’s 1897 publication The Work of the Diges-
tive Glands.1 In direct opposition to Pavlov’s assertion of a local
nerve-centric mechanism in regulating the digestive response,
Bayliss and Starling presented clear evidence of a circulating
hormonal messenger (ie, secretin) that stimulated pancreatic
secretory activity.2 Shortly thereafter, a series of seminal studies
led by John Edkins elucidated an analogous mechanism in the
stomach and contributed to the pivotal discovery of the acid-
stimulating hormone known as gastrin.

Edkin’s studies centered on venous injection of gastric
mucous membrane extracts into anesthetized cats and subse-
quent evaluation of fluctuations in gastric acid secretion. In

these experiments, Edkins noted that cats injected with pyloric
extracts produced markedly elevated levels of gastric acid and
pepsin compared to those injected with extracts prepared from
the fundic mucosa. In his 1905 manuscript entitled On the Chem-
ical Mechanism of Gastric Acid Secretion, Edkins communicated
his observations and posited that an excitatory paracrine factor
secreted by antral mucosal cells, which he termed gastrin, was
responsible for activating secretory cells of the stomach during
digestion.3 However, Edkin’s claims were largely dismissed in
favor of accruing evidence that supported a histamine-centric
humoral mechanism for gastric motility and secretion that
emerged from its discovery in 1910.4 For the remainder of his
career, Edkin’s theory on gastrin remained the target of substan-
tial scrutiny from the scientific establishment. Consequently,
a pro-secretory role for gastrin only began to emerge after his
death in 1940.5

In 1938, Simon Komarov, a research assistant working under
Boris Babkin at McGill University, successfully isolated an active
preparation of gastrin from the pyloric mucosa.6 In 1942,
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Komarov published his work showing that the histamine-free
concentrate could indeed stimulate acid secretion, thereby vin-
dicating Edkin’s initial report released nearly four decades prior.
On the heels of this discovery, Roderic Gregory and Hilda Tracy
further developed Komarov’s early isolation techniques and
identified a pair of heptadecapeptides, subsequently defined as
gastrin I and II. Processing hundreds of porcine antra per week,
Gregory and Tracy generated industrial volumes of the peptide
and enlisted chemist George Kenner to perform the sequenc-
ing.7 As a result of these efforts, gastrin became the first GI pep-
tide to have its complete molecular structure elucidated, thus
laying the groundwork for further investigation into gastrin ana-
logues and therapeutic antagonists.

Gastrin Synthesis and Physiological Signaling

Gastrin is released by antropyloric G-cells in response to vagal,
luminal, and hormonal stimuli. Central efferent vagal fibers
permeating the gastric myenteric plexus stimulate the release
of gastrin-releasing peptide (GRP) and vasoactive peptide (VIP)
from neurons that innervate antropyloric G-cells.8 Mechanical
distention from food ingestion stimulates vagal nerves, whereas
the presence of digested peptides and amino acids in the
lumen directly stimulate GRP-containing neurons.9 Addition-
ally, peripheral mechanisms mediating gastrin release depend
on the suppression of inhibitory signals, including somato-
statin.10 D-cells within the pyloric antrum release somato-
statin upon vagal and luminal stimulation following fasting
and gastric acidification (pH < 3.0). Somatostatin inhibits gas-
trin in a paracrine fashion by binding to the transmembrane
somatostatin 2 receptor (SSTR2), a G-protein coupled recep-
tor expressed on neighboring antral G-cells.11 Conversely, meal
ingestion inhibits somatostatin secretion via chemosensory sig-
naling pathways mediated by acetylcholine release. While D-
cells open to the lumen exist predominantly in the antrum, a
smaller subpopulation of “closed” oxyntic D-cells exists in the
corpus. Unlike their antral counterparts, these “closed” oxyn-
tic D-cells lack luminal access, and thus respond exclusively
to vagal stimulation and locally produced hormones, including
GRP, CCK, and secretin.12

Gastrin primarily mediates its effects by binding to the chole-
cystokinin B (CCKB) receptor expressed on parietal cells and
enterochromaffin-like (ECL) cells of the stomach. Activation of
the G-protein coupled receptor generally stimulates phospho-
lipase C and downstream calcium mobilization through pro-
tein kinase C activity.13 CCKB receptor-mediated activation of
parietal cells directly stimulates the release of H+ ions through
upregulation of H+/K+–ATPase.14 In contrast, gastrin-mediated
activation of oxyntic ECL cells indirectly potentiates gastric acid
secretion by releasing histamine, which in turn stimulates pari-
etal cell acid secretion.15

Gastrin As a Growth Factor

Gastrin has long been characterized as a trophic factor in both
normal GI epithelial development and during neoplastic trans-
formation. Indeed, gastrin is known to activate multiple mito-
genic signal transduction pathways, including those mediated
by the epidermal growth factor receptor (EGFR), phosphoinosi-
tide 3-kinase (PI3K), and MAPK activity.16–19 Prolonged hypergas-
trinemia resulting from dysregulated negative feedback mech-
anisms is associated with hyperplasia of the oxyntic mucosa.
Disruption of acid-mediated gastrin inhibition leads to atrophic

gastritis, sustained induction of gastrin gene expression, and
expansion of ECL and parietal cell populations.20,21 Zollinger–
Ellison syndrome occurs secondary to tumor-mediated hyper-
gastrinemia in the absence of parietal cell atrophy. The result-
ing Type II carcinoids develop in response to gastrin stimulating
proliferation of the ECL cells. Hypergastrinemia may also result
from autoimmune gastritis, a chronic inflammatory syndrome
in which autologous antibodies target and destroy the parietal
cell (atrophic gastritis).22 These events preface the appearance
of chronic achlorhydria and increased production of gastrin by
antropyloric G-cells. Foveolar epithelial cell proliferation within
the gastric pit coincides with a marked loss of parietal cells
and reduced acid secretion (gastric atrophy), further potentiat-
ing gastrin gene expression. Subsequent gastrin-induced hyper-
plasia of ECL cells due to gastric atrophy supports the emergence
of Type 1 gastric carcinoids that constitute a majority of gastrin-
dependent tumors.22

Gastrin in Gastric Stem Cell Differentiation

Hyperplastic lesions of the oxyntic mucosa exhibit low Ki-67
immunoreactivity, suggesting that gastrin-mediated mitogenic
signaling favors underlying changes to stem cell differentiation
in otherwise terminally differentiated parietal and ECL cell pop-
ulations.23,24 In support of this, Wang and colleagues reported
a role for gastrin in activating a population of CCKBR+ pro-
genitor cells located in the proliferative isthmus of the gastric
glands.25,26 Intriguingly, activation of CCKBR by amidated gas-
trin stimulates expansion of the stem cell pool in the gastric
cardia and proximal corpus, while amidated gastrin exerts an
inhibitory effect on CCKBR+ stem cells of the antrum.26 The
distinct actions of gastrin on progenitor cells of the corpus
and antrum correlate with the development of proximal gas-
tric tumors and oxyntic hyperplasia.27,28 By contrast, gastrin-
deficient mice exhibit a greater propensity for antral carcinogen-
esis.29,30 These dichotomous effects may, in part, be explained
by the selective responsiveness of antral CCKBR+ stem cells to
progastrin and insensitivity to pro-proliferative signaling effects
mediated by amidated gastrin-17.26

There remains a general consensus that ECL cell hyperplasia
in the corpus arises from proliferation of the existing resident
enteroendocrine cell (EEC) population as a direct result of ele-
vated gastrin signaling. However, more recent evidence points
to an alternative cellular target upstream of an expanding ECL
cell pool. In these studies, mice receiving gastrin infusion or
the proton pump inhibitor (PPI) omeprazole exhibited increased
Ki-67 labeling of CCKBR+ progenitor cells near the gastric isth-
mus. These cells lacked any apparent expression of the ECL
cell marker histidine decarboxylase. Subsequent lineage-tracing
studies confirmed that CCKBR marks a short-lived population of
immature ECL and parietal cells, which expand in response to
hypergastrinemia and serve as a reservoir for mature ECL cells
with reduced proliferative potential (Figure 1).31

The Sonic hedgehog (Shh) signaling pathway has more
recently emerged as a player in gastric cancer progression,
with mounting evidence of aberrant Shh signaling during Heli-
cobacter pylori-mediated inflammation and tumorigenesis. Shh
is expressed in all major cell lineages of the corpus,32 and
is required for maintaining the gastric mucosa by control-
ling epithelial cell proliferation and apoptosis. Gastric atrophy
accompanied by H. pylori infection coincides with the loss of Shh
expression in parietal cells.32,33 Further, parietal cell-specific
deletion of Shh stimulates hypergastrinemia and hyperplasia of
surface mucous cells in transgenic mice.34 In the healthy adult
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Figure 1. Mechanisms of gastrin signaling under physiological and specific pathological conditions. Under normal physiological conditions, gastrin participates in

negative feedback regulation that involves acid-induced release of somatostatin from the antral D cell. Chronic inhibition of parietal cell acid secretion by proton
pump inhibitors (PPIs), stimulates hypergastrinemia in human and mice. In genetically engineered mice exhibiting conditional loss of menin and somatostatin, PPIs
can promote gastric carcinoid development. Gastrin stimulates enterochromaffin-like (ECL) cell proliferation through the cholecystokinin B receptor (CCKBR) and
expands CCKBR + stem/progenitor cells in the corpus. By contrast in the antrum, gastrin inhibits the expansion of CCKBR + stem/progenitor cells. Therefore, gastrin’s

effects are likely site and context-dependent, eg, during chronic infection with Helicobacter pylori. Helicobacter pylori-elicited cytokines can positively or negatively
regulate gastrin gene expression and antral hyperplasia by modulating GLI2 activation through primary cilia. Figure created with Biorender.com.

stomach, gastrin regulates Pepsin A-mediated proteolytic pro-
cessing of Shh peptide into its active form through its ability to
induce gastric acid.33 However, Shh processing was inhibited in
the hypochlorhydric stomach due to parietal cell atrophy that
precedes gastric cancer.33 Furthermore, a direct role for gastrin
in regulating gastric epithelial architecture is supported by evi-
dence of gastrin-mediated induction of Indian hedgehog (Ihh)
expression and surface epithelial proliferation in the gastric
mucosa of mice lacking parietal cell-specific Shh expression.35

Collectively, these studies expand on a potential Hedgehog-
dependent mechanism for gastrin-mediated proliferation of the
gastric epithelium, creating an environment supportive of neo-
plastic development.

Chronic infection with H. pylori and widespread usage of pro-
ton pump inhibitors (PPIs) have been extensively studied as a
cause of hypergastrinemia secondary to atrophic gastritis. Heli-
cobacter pylori infection is associated with a 9-fold increase in
gastric cancer risk, particularly in the distal stomach.36 In recent
years, Western nations have seen a dramatic shift in the loca-
tion of gastric adenocarcinoma from the distal antrum to the
proximal stomach.37,38 Tumors arising in the proximal stom-
ach tend to be poorly differentiated, implicating deregulation of
mitogenic signaling and stem cell differentiation pathways that
support normal gastric cell specification.39 PPI-induced hyper-
gastrinemia use has been speculated to play a potential role
in this epidemiological shift.40,41 Indeed, studies in mice sug-
gest a growth-promoting role for gastrin that synergizes with
other cofactors or mutant phenotypes.42 Furthermore, recent

independent and large-scale population studies suggest a link
between PPI use and elevated gastric cancer risk.43–46

Mechanisms of Gastrin Signaling in
Adenocarcinoma

The gastric epithelium undergoes constant renewal that
requires the integration of intrinsic and non-cell autonomous
regulatory cues to maintain homeostasis. Thus, perturbations
of normal growth patterns and programmed cell death machin-
ery may contribute to neoplastic transformation. In addition to
its role in stimulating gastric stem cell activation and epithelial
proliferation, gastrin exerts both antiapoptotic and mitogenic
signaling in various GI malignancies. These effects are largely
mediated through activation of CCKBR, known to be upregulated
in human gastric neuroendocrine neoplasms47 and gastric,48–51

pancreatic,52–54 and colorectal adenocarcinomas.55,56 Gastrin
exerts a direct trophic effect on gastric cancer cells in vitro and
stimulates the growth of human colorectal and gastric cancer
xenografts through a CCKBR-dependent mechanism.57–59 More-
over, gastrin stimulates downstream pro-proliferative pathways,
including those mediated by β-catenin/cyclin D160,61 and the
EGF receptor.62 In the latter mechanism, gastrin-mediated acti-
vation of CCKBR transactivates EGFR via PKC signaling, and
these events converge on the heparin-binding (HB)-EGF pro-
moter through a gastrin-responsive cis-acting regulatory ele-
ment to stimulate cell proliferation.63
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An antiapoptotic role for gastrin has been demonstrated
across multiple studies employing in vitro and in vivo mod-
els of tumorigenesis. Genome-wide microarray analysis of a
rat pancreatic adenocarcinoma cell line revealed significant
induction of pro-survival genes following sustained treatment
with gastrin, and these events coincide with a PKC-dependent
reduction in caspase-mediated apoptosis.64 Consistent with this
report, elevated expression of the pro-survival protein clus-
terin has been observed in rodent models of hypergastrine-
mia as well as in human biopsies of gastric adenocarcinoma
and carcinoids.65,66 Moreover, gastrin-induced clusterin expres-
sion was reported to exert a cyto-protective effect by driving
resistance to starvation and chemotherapy-induced cell death.66

Concomitantly, gastrin was reported to modulate the activ-
ity of the antiapoptotic BCL-2 signaling pathway and stimu-
late cell proliferation by upregulating the expression of MCL-
1,67 BCL-2, and BAK.68,69 For example, gastric biopsies from 10
patients with gastric carcinoids and hypergastrinemia showed
positive immunoreactivity for MCL-1 and this correlated with
low expression of the apoptotic marker cleaved caspase-3 in
regions of ECL cell hyperplasia.67

While these studies support a role for gastrin in modulat-
ing cytoprotective pathways leading to proliferation and resis-
tance to chemical stress, the mechanisms that regulate gastrin
gene expression in response to these conditions remain poorly
defined. To address this, Westwood and colleagues demon-
strated a context-specific role for HIF1α in regulating gastrin
expression under conditions of hypoxia. Here, HIF1α binds the
gastrin promoter to induce gastrin gene expression, leading to
enhanced resistance to hypoxia-induced apoptosis.70 Interest-
ingly, Wang and colleagues identified opposing effects of gas-
trin on various gastric cell types leading to cell proliferation or
alternatively, apoptosis.71,72 Using the INS-GAS mouse model,
the authors demonstrated a cytotoxic role for gastrin in stim-
ulating apoptosis of parietal cells, extraglandular stromal cells,
and infiltrating immune cells. These events were concomitant
with high cellular turnover and an increased density of gastric
pit cells preceding carcinogenesis.72

Gastrin During H. pylori Infection

In 1989, Calam and colleagues introduced the “gastrin link
hypothesis” and suggested that hypergastrinemia resulting
from H. pylori infection directly supports ulcerations in the duo-
denum.73 This concept was further refined to elucidate two dis-
tinct pathophysiological outcomes resulting from H. pylori infec-
tion in the stomach. Generally, patients infected with H. pylori
exhibit 2–3-fold higher fasting gastrin levels and elimination of
the infection has been shown to restore basal gastrin expres-
sion.73–75 These events are primarily supported by a reduction in
CCK and D-cell-mediated release of somatostatin, thus resulting
in impaired normal gastrin inhibitory mechanisms.76

The response of the oxyntic mucosa to elevated gastrin lev-
els operates as a defining feature in determining the patho-
physiological outcome. Hypergastrinemia resulting from antral-
dominant gastritis stimulates the proliferation of parietal cells
and enhances acid secretion. This creates an ulcer-prone envi-
ronment in which the pH neutralization processes in the duo-
denum are overwhelmed.77 In contrast, non-ulcer patients pre-
senting with corpus-dominant or pangastritis exhibit reduced
oxyntic sensitivity to gastrin (2-fold reduction), likely as a
result of widespread inflammation in the gastric body.78 As
a consequence, H. pylori infection results in achlorhydria and

promotes atrophic gastritis, bacterial overgrowth, and gas-
tric metaplasia, a microenvironment predisposing to gastric
cancer.79–81

Hypergastrinemia underlying H. pylori infection has been
explored extensively in vitro, beginning with reports of gas-
trin secretion by canine antral G-cells following direct expo-
sure to H. pylori.82,83 Further work demonstrated that the H.
pylori-elicited cytokines IL-8, IL-1β, and TNFα stimulate canine
antral G-cells and human antral biopsy fragments to release gas-
trin.84,85 Colonization of the gastric antrum by H. pylori is known
to induce a Th1/Th17 response that coincides with an increase
in gastrin secretion and prefaces gastric atrophy and intesti-
nal metaplasia. Mechanistically, IFNγ , a classical Th1 cytokine,
and IL-1β are thought to play a role in this process as both
cytokines are upregulated following gastric infection. Translat-
ing these observations in vivo has proved challenging, as mice
exhibit a corpus-dominant phenotype following infection with
Helicobacter sp., while infection in humans tends to be antral-
predominant. To address this, an increasing number of mouse
models have been generated with tissue-restricted expression
of cytokines downstream of infection with Helicobacter sp. such
as Helicobacter felis. Using this approach, we recently showed
that the downstream signaling effects of specific Helicobacter-
elicited cytokines are more nuanced and likely reflect the tem-
poral progression of inflammatory signaling during gastric infec-
tion. Whereas, directing IFNγ expression to the antrum in mice
increased gastrin expression and stimulated antral hyperpla-
sia, overexpressing IL-1β resulted in reduced gastrin levels but
also coincided with antral hyperplasia. Mechanistically, IFNγ -
mediated induction of gastrin was found to occur through
suppression of Gli2, a repressor of gastrin gene expression
and mediator of Shh signaling. In contrast, IL-1β induced Gli2
expression and suppressed gastrin expression through modula-
tion of primary cilia length on gastrin-expressing cells. These
observations support a critical role for primary cilia in trans-
ducing upstream IL-1β signaling in the regulation of gastrin
expression, ultimately leading to loss of endocrine cells types in
favor of epithelial hyperplasia. Importantly, these studies high-
light opposing effects of Helicobacter-elicited cytokines in regu-
lating gastrin expression (Figure 1).86 It should be noted that pri-
mary cilia mediate other GPCR such as SSTR3,87–89 which might
have relevance for understanding somatostatin inhibition of the
G-cell.

Additionally, direct mechanisms of H. pylori-mediated gas-
trin regulation have also been proposed, with conflicting evi-
dence to support a role for the H. pylori virulence factor
cytotoxin-associated protein A (CagA) in regulation of the gas-
trin promoter. In human gastric cancer cells, infection with H.
pylori/CagA+ induces gastrin mRNA through a MEK/ERK and JAK-
dependent mechanism.90,91 However, previous studies by our
group show that the CagA element is dispensable for gastrin
gene activation.92 Interestingly, CagA+ H. pylori infection has also
been reported to exert epigenetic regulation of the gastrin pro-
moter through a genome-wide decrease in methylation at CpG
sites.93 Expanding our understanding of H. pylori-induced hyper-
gastrinemia has revealed a synergistic relationship that may
contribute to the development of gastric metaplasia and predis-
position to cancer.94

Regulation of Gastrin Gene Expression

G-cell extrinsic regulatory cues that modulate gastrin gene
expression include paracrine regulation by D-cells and stim-
ulatory ligands that are produced locally or during bacterial
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infection. While gastric acidity is a known stimulus for gas-
trin release, fluctuations in pH indirectly regulate gastrin gene
expression through activation of D-cell-mediated release of
somatostatin. Other factors known to regulate secretion but not
expression of gastrin include the peptides GRP and bombesin.
Early studies intended for screening gastrin regulatory factors
identified epidermal growth factor (EGF) receptor ligands as
direct modulators of gastrin gene expression in both human and
rat endocrine tumor cell lines.95,96 Subsequently, a 16 bp GC-rich
EGF response element (gERE) was mapped to the human gas-
trin promoter and Sp1 was subsequently shown to bind this ele-
ment.97 A physiological role for the gERE is further supported
by the presence of EGF receptor ligands in the stomach, pro-
duced locally either through a parietal cell-mediated response
to hypergastrinemia98,99 or via the immune compartment dur-
ing acute and chronic inflammation.100–102

Several DNA regulatory elements have been mapped to
the gastrin promoter and include both tissue-specific and
inducible elements. Tissue-specific regulatory elements, specifi-
cally a homeodomain, CACC, and gastrin negative element were
mapped to 450 bp of the human gastrin promoter and the first
exon.103 In contrast, inducible and basal regulation of gastrin
gene expression by EGF, cAMP, and inflammatory cytokines are
thought to require only the first 240 bp of the gastrin pro-
moter.95,104 In addition to the gERE, Sp1 was observed to bind the
CACC element, as well as to another GC-rich element upstream
of the gERE to regulate gastrin gene expression.105 The transac-
tivating function of Sp1 is opposed by the recruitment of ZBP-
89, a Kruppel-type four zinc finger transcription factor that also
binds to the gERE and acts to repress gastrin expression.106 Addi-
tional signaling factors and pathways have been reported to syn-
ergize and converge on Sp1 binding to the gastrin promoter. For
instance, constitutive activation of the Ras-Erk pathway, such as
that observed in K-ras-mutated colon cancers, induces phospho-
rylation of Sp1 and enhances its binding affinity to the human
gastrin promoter.107 Interaction of Sp1 with AP-1 transcription
factor family members at the proximal gastrin promoter has also
been reported. In chromatin immunoprecipitation studies, Sp1
and JunD were shown to cooperate at the Sp1 and gERE binding
sites and drive gastrin transactivation. Notably, JunD was also
observed to bind a non-consensus AP-1 site within the proximal
promoter, suggesting direct regulation of gastrin by JunD inde-
pendent of Sp1 binding.107

These findings provide a link between the emergence of
MEN1 gastrinomas and the role of the tumor suppressor pro-
tein menin in regulating gastrin gene expression. Loss of
menin, either in the context of the MEN1 syndrome or result-
ing from sporadic mutations within the MEN1 locus, is associ-
ated with the development of gastroenteropancreatic neuroen-
docrine tumors (GEP-NETs). Previous work by our group has
identified a role for menin in repressing gastrin gene expression
by disrupting the association of JunD and Sp1 with their respec-
tive regulatory promoter elements.108,109

Other transcriptional regulators of gastrin include the zinc
finger transcription factor GLI2. Hedgehog (Hh) signaling renders
GLI2 transcriptionally active in the nucleus, where it has been
shown to bind the gastrin promoter and regulate downstream
gene expression.110 Constitutive activation of GLI2 in the gastric
epithelium was shown to suppress gastrin expression and pro-
mote antral cell proliferation leading to hyperplasia.110 These
observations suggest a critical role for the hedgehog signaling
pathway in mediating feedback regulation of gastric acid secre-
tion and may potentially explain the discordant effects of gastrin
in the corpus and antrum.

Gastrinomas

In contrast to overall declining cancer incidence rates, GEP-NETs
have seen a 6-fold upsurge in incidence since the 1970s.111 Sim-
ilarly, the prevalence of GEP-NETs continues to climb, placing
these malignancies among the most prevalent digestive can-
cers in the United States.112 GEP-NETs are physiologically com-
plex neoplasms and include gastric carcinoids, gastrinomas,
and pancreatic neuroendocrine tumors. In recent years, a sub-
stantial effort to characterize the signaling mechanisms that
underlie these malignancies has shed light on their unique ori-
gins, mutational signatures, and clinical features.

The Tumor Suppressor Protein Menin in
Gastrinoma Pathogenesis

GEP-NETs are commonly associated with sporadic and inherited
mutations in the Multiple Endocrine Neoplasia type I (MEN1)
gene. Consistent with Knudson’s “two-hit” hypothesis,113 the
autosomal dominant condition is characterized by an acquired
germline mutation in one MEN1 allele, followed by loss of the
second allele within the tumor by deletion (loss of heterozy-
gosity) or inactivating point mutations.114 Patients presenting
with the MEN1 syndrome experience a higher risk for develop-
ing multiple endocrine tumors in the pancreas, pituitary, and
upper GI tract. In addition, patients carrying a MEN1 mutation
are predisposed to developing GI NETs that produce excess lev-
els of gastrin.115 Such MEN1-associated gastrinomas preferen-
tially develop in the submucosa of the duodenum, are small
(<1 cm), multiple, and metastatic.116

Inactivation of MEN1 as a result of frameshift, missense,
and nonsense mutations causes loss of the tumor suppressor
protein menin. Menin is a highly conserved and ubiquitously
expressed nuclear scaffold protein that complexes with mul-
tiple transcription factors to regulate downstream target gene
expression. Known transcriptional binding partners include
the Mixed Lineage Leukemia proteins (MLL1 and MLL2),117,118

NF-κB,119 and the AP-1 transcription factor JunD among oth-
ers.120,121 In endocrine cells, menin represses transcriptional
activation of various gene targets involved in supporting cell
growth and proliferation, including gastrin. For instance, menin-
mediated interaction with JunD represses its function as a
transactivator of gastrin gene expression.107 Therefore, loss of
nuclear menin function in gastrin-expressing G cells is thought
to be an essential event underlying the formation of MEN1
gastrinomas.

Despite the identification of over 1200 germline modifica-
tions, MEN1 mutations do not correlate with specific pheno-
types.122,123 MEN1 mutations appear to be scattered throughout
the gene locus and lack any apparent mutational hotspots.122

Moreover, individuals within the same family that carry iden-
tical mutations may exhibit disparate phenotypes.124 The most
common MEN1 mutations are frameshift deletions or insertions
(41%), followed by nonsense mutations (23%), missense muta-
tions (20%), splice-site mutations (9%), in-frame deletions or
insertions (6%), and whole or partial gene deletions (1%).122 Nev-
ertheless, most of these mutation studies were performed in
non-GEP-NETs. Therefore, the diversity among MEN1 mutations
in tissue location and phenotype has precluded the full char-
acterization of MEN1 mutations in GEP-NETs. Intriguingly, the
majority of MEN1 gastrinomas originate from hyperplastic G
cells that retain a functional MEN1 allele.125–127 This observation
suggests the possibility of alternative mechanisms resulting in
loss of menin function independent of MEN1 gene inactivation.
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For example, studies of MEN1 gastrinomas have identified muta-
tions in the MEN1 locus leading to aberrant nuclear translocation
of menin as well as accelerated protein degradation.128–130

In vivo models of GEP-NET pathogenesis are historically lack-
ing, in part due to tissue heterogeneity from which neoplasms
arise, and the absence of known driver mutations preced-
ing malignancy.131 Nevertheless, the 21st century has seen an
expansion in the number of transgenic mouse models aimed at
clarifying the role of MEN1 and other putative drivers in GEP-NET
emergence.132–134 Francis Collin’s group at the National Human
Genome Research Institute was among the first to recapitulate
the human MEN1 syndrome through homologous recombina-
tion of the Men1 locus. Homozygous deletion of Men1 in murine
embryonic stem cells results in embryonic lethality, whereas
heterozygous inactivation coincides with multiple clinical fea-
tures of the human MEN1 syndrome. Notably, while heterozy-
gous mice develop endocrine tumors of the pancreatic islets
and pituitary similar to those observed in patients, no gastri-
nomas were reported in this model.135 Subsequent mouse mod-
els generated by our group addressed the absence of any appar-
ent gastric phenotype by conditionally deleting Men1 from the
GI tract epithelium. Expressing Cre recombinase from the Villin
promoter deleted the Men1 locus in intestinal epithelial cells
(Men1�IEC) and resulted in antral G-cell hyperplasia and hyper-
gastrinemia.108 Removal of the somatostatin-mediated feedback
regulation by breeding the Men1� IEC mice onto a somatostatin
null background (Men1�IEC: Sst–/–) led to significant hypergas-
trinemia and the development of gastric carcinoids.136 These
events were accelerated following systemic gastric acid sup-
pression using the PPI omeprazole. A total of 6 mo of omepra-
zole treatment was sufficient to synergistically stimulate the
development of G-cell hyperplasia in the proximal duodenum
of Men1� IEC: Sst–/– mice.109 Collectively, these studies confirmed
the ability of menin to suppress gastrin.

Molecular Heterogeneity of GEP-NETs

Understanding the mutational profile of GEP-NETs is essential to
uncovering key driver mutations that can be therapeutically tar-
geted. Previously, 48 small intestinal neuroendocrine neoplasms
consisting mainly of carcinoids were analyzed by whole exome
sequencing (WES).137 While a mutation in the cell-cycle inhibitor
CDKN1B was found in a small population of tumors (8%), no com-
mon somatic mutations were shared amongst other GEP-NETs.
Consistent with other reports, small intestinal neuroendocrine
neoplasms (SI-NENs) such as ileal carcinoids, which arise from
serotonin-secreting enterochromaffin cells, present with lim-
ited somatic driver mutations and are considered amongst the
most genetically stable cancers.131,137,138 Thus, more promising
avenues toward precision medicine may lie in targeting genomic
instability and aberrant methylation phenotypes. Indeed, both
hypermethylation of select genomic loci139 and increased fre-
quency of chromosomal losses (eg at the terminal end of chro-
mosome 18q) have been observed in SI-NENs.140,141

In contrast to SI-NENs, large-scale molecular profiling iden-
tified recurrent spontaneous mutations in pancreatic neuroen-
docrine tumors (PNETs). For instance, WES analysis of 98 PNETs
showed recurrent somatic mutations in MEN1 (44%), alpha tha-
lassemia/mental retardation syndrome X-linked (ATRX; 18%)
and death domain-associated protein (DAXX; 25%).142 Inac-
tivating mutations in ATRX and DAXX are associated with
altered telomeres,143 chromosomal instability, and reduced sur-
vival in patients with PNETs.144 In addition, the presence of
chromosomal instability is well-established in PNETs.145,146 For

example, 40% of patients with PNETs have deletions in the 16p
chromosome region,147 and loss of TSC2 at this site is implicated
in deregulation of the PI3K/AKT/mTOR pathway.138 Further-
more, the methylation profile of PNETs differs from that of SI-
NENs, suggesting fundamental differences in pathogenesis.139

Indeed conditional deletion of Men1 and Pten, the inhibitor of the
PI3K/AKT/mTOR pathway, induces both pancreatic and pituitary
neuroendocrine tumors and confirms cooperation between the
two loci.148

To identify transcriptional targets unique to duodenal gastri-
nomas (DGASTs), we recently reported on a genome-wide anal-
ysis of surgically resected DGASTs and PNETs. In these stud-
ies, RNA-sequencing revealed an enrichment of IL-17 and TNFα

signaling pathways in DGASTs, however digital spatial profil-
ing of tumors and the adjacent Brunner’s glands confirmed
a scarcity of immune cells within the tumor. Immunofluores-
cent analysis indicated strong immunoreactivity of tumor cells,
Brunner’s glands, and the tumor stroma for both cytokines
and downstream pSTAT3 activation.149 Both IL-17 and TNFα

are known to activate downstream targets through NF-κB and
pSTAT3 signaling pathways. Furthermore, previous studies have
shown that STAT3 binds the SYP promoter, suggesting a direct
mechanism for cytokine-induced neuroendocrine reprogram-
ming.150–152 In support of this, treatment of normal human
duodenal organoids with TNFα stimulated NF-κB and pSTAT3
activation and these events coincided with increased expres-
sion of neuroendocrine transcripts SYP, CHGA, and the gastrin-
specification factor NKX6.3.149,153,154 Cytokine-mediated regula-
tion of NKX6.3 is underscored by in silico analysis identifying
an NF-κB binding site in the 5’ UTR of the NKX6.3 promoter.
Taken together, these observations suggest a role for inflam-
matory cytokines in potential reprogramming of the Brunner’s
glands in favor of neuroendocrine differentiation and tumorige-
nesis (Figure 2).

Pancreatic and DGASTs: Differing Cellular
Origins?

Accruing evidence suggests diverging mechanisms of patho-
genesis in gastrinomas arising from the duodenum and pan-
creas. It was previously reported that patients with Zollinger–
Ellison syndrome and MEN1-related DGASTs had proliferative
and hyperplastic gastrin cells in the nontumorous duodenum
(i.e mucosal crypts and Brunner’s glands). In contrast, no pro-
liferative gastrin cell lesions were identified in patients with
sporadic non-MEN1-based gastrinomas.116 Unlike the duodenal
neuroendocrine tumors, hyperplastic G-cells did not exhibit LOH
of the MEN1 locus, thus implicating them as potential precursor
lesions to DGASTs.116 However, the genetic and environmental
stimuli that induce the transition of hyperplastic gastrin cells
into tumors remains to be elucidated.

Generation of Men1� IEC: Sst–/– mice led to the first report of
a genetically engineered mouse model to display gastric car-
cinoids.136 Introduction of PPI-mediated gastric acid suppres-
sion in these mice resulted in the emergence of hyperplastic
gastrin-expressing cells within the lamina propria of the duode-
num. Intriguingly, these gastrin-positive cells were not of epithe-
lial, neuronal, or smooth muscle origin. Rather, the gastrin pos-
itive cells were found to express markers of mucosal enteric
glial cells (EGCs). Moreover, gastrin expression by EGCs required
a loss of menin.109 In the enteric nervous system, EGCs con-
stitute a significant cell population found in the enteric gan-
glia between the smooth muscle layers and within the lamina
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Figure 2. Proposed model of cytokine-elicited epithelial reprogramming events that precede gastrinoma development in the duodenum. Duodenal gastrinomas (DGAST)
arise within the Brunner’s glands of the proximal duodenum,116 raising the likelihood that this hormone producing tumor arises from a reprogrammed cell and does not

arise directly from enteroendocrine cells. Here, we propose that stromal-derived inflammatory cytokines, such as TNFα or IL-17, activate STAT3 phosphorylation and
NFκB signaling pathways that reprogram the Brunner’s glands toward a neuroendocrine phenotype. STAT3 and NFκB signaling induce transcription factor NKX6.3,
a homeobox transcription factor required for gastrin gene expression and master regulator of gastric differentiation.153,154 Figure created with Biorender.com and
adapted from Rico et al. (2021), BMJ Open Gastroenterology.149

propria. EGCs express the same markers as astrocytes in the
CNS, such as Glial Fibrillary Acidic Protein (GFAP), p75NTR, and
S100B protein. Additionally, EGCs express Sry-related HMG-Box
gene 8 (SOX8), SOX9, and SOX10, all of which are expressed
in multipotent progenitor cells of the enteric nervous system.
The selective expression of various neuronal markers further
defines EGC subpopulations.155 Recent application of a single-
cell sequencing approach identified an EGC transcriptome sig-
nature consisting of Sox10, Erb-B2 receptor tyrosine kinase 3
(Erbb3), Fatty acid binding protein 8 (Fabpp), and Proteolipid pro-
tein 1 (Plp1).156

As EGCs of Men1� IEC: Sst–/– mice express gastrin, Sundare-
san et al. used immunohistochemistry staining to examine
whether human DGASTs also exhibit these markers.96 Surpris-
ingly, human DGASTs (4/5) and lymph node gastrinomas (2/2)
stained for EGCs markers while pancreatic gastrinomas (5/6) did
not, raising the possibility of diverging cellular origins for duo-
denal and pancreatic gastrinomas.109 Indeed, DGASTs present
with unique clinicopathologic features, eg, they are multiple,
small (< 1 cm), and are more likely to metastasize to the lymph
nodes.157 Since DGASTs express EGC markers, it remains plausi-
ble that hyperplastic G-cell lesions may differentiate from neural
crest cells rather than from endoderm-derived epithelial cells,
eg, EECs, as previously suggested.

EECs comprise approximately 1% of intestinal mucosal cells
and function as mediators of paracrine and distant cell-to-
cell communication. EECs express a variety of neuronal protein
markers, in addition to neurotrophin receptors including the
glial-derived neurotrophic factor (GDNF) receptor.158 Neuroen-
docrine cells are broadly identified by the secretion of Chromo-
granin A (CgA) or Chromogranin B (CgB), two key proteins that
modulate neuroendocrine secretory function. Synaptophysin, a

component of the presynaptic vesicle membrane, and the neu-
ral cell adhesion molecule CD56 (NCAM) are also signature pro-
teins expressed by EECs. Furthermore, EECs represent a unique
class of cells as they respond to both hormonal and neuronal
signals.158

As EECs exhibit both neuronal and endocrine markers, there
remains some controversy as to whether neuroendocrine cells
develop from the endoderm or neural crest. Lineage trac-
ing experiments using the Lgr5+-CreERT2 transgene and the
Rosa26R-LacZ reporter demonstrate that all epithelial cells,
including neuroendocrine cells of the intestinal mucosa, orig-
inate from Lgr5 + pluripotent stem cells.159 Previous embry-
ologic studies using chick-quail chimeras confirmed that gan-
glion cells of the submucosa and myenteric plexus of the GI tract
express neural crest markers, while mucosal EECs did not.160

The absence of neural crest markers in EECs suggested that GI
neuroendocrine cells originated from the endoderm and, there-
fore, the epithelium. While substantial evidence suggests that
neuroendocrine cells in the GI tract develop from the endoderm,
it remains unknown whether neural crest cells can undergo
context-specific modification, eg, acquired mutations in MEN1,
and give rise to neuroendocrine cells with hormone-secreting
capabilities. Hopefully, applying newer approaches of molecular
profiling to GEP-NETs will illuminate our understanding of these
heterogenous tumors, which invariably depend on cell location
and cell type.

Summary

The mitogenic actions of gastrin on ECL cells have long been
established, however, more recent evidence suggests additional
roles for gastrin signaling in activation of other cell types.
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Among these, gastrin has been reported to activate progenitor
cells residing in the gastric isthmus of the proximal and distal
stomach, leading to increased proliferation or asymmetric cell
division. Further investigation into the cellular targets of gastrin
signaling is needed to inform the potential effects of hypergas-
trinemia secondary to PPI use and infection by H. pylori. Patho-
logical levels of circulating gastrin are perhaps best studied in
the context of gastrin-producing GEP-NETs. GEP-NETs represent
diverse neoplasms that vary in location, mutational profile, and
response to therapy. The nonstochastic occurrence and inva-
sive characteristics of these neoplasms suggest reprogramming
of resident differentiated cell populations by the unique tissue
microenvironment where GEP-NETs originate. For instance, up
to 60% of DGASTs develop within mucous-producing Brunner’s
glands located in the proximal duodenum.161 Importantly, Brun-
ner’s glands provide a rich source of pro-proliferative growth
factors, including EGFR ligands, and thus, may potentiate neo-
plastic transformation and pro-tumorigenic signaling within the
duodenal microenvironment.161–165 Taken together, this knowl-
edge suggests fundamental differences in the cellular origin and
etiology of DGASTs compared to NETs arising from other tis-
sues. In support of this, recent evidence presented by our group
challenges the long-standing belief that hyperplastic gastrin-
producing cells within the proximal duodenum originate from
epithelial-derived EECs. In these transgenic mouse studies, neu-
ral crest-derived EGCs were implicated as potential cellular pre-
cursors to MEN1-related gastrinomas, thus shifting the current
paradigm on the cellular origin of these cancers.
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G. Neuroendocrine tumors of the stomach (gastric car-
cinoids) are on the rise: small tumors, small problems?.
Endoscopy 2010;42(08):664–671.10.1055/s-0030-1255564

25. Lee Y, Urbanska AM, Hayakawa Y, et al. Gastrin stimulates
a cholecystokinin-2-receptor-expressing cardia progenitor
cell and promotes progression of Barrett’s-like esophagus.
Oncotarget 2017;8(1):203–214.10.18632/oncotarget.10667

26. Hayakawa Y, Jin G, Wang H, et al. CCK2R identifies and reg-
ulates gastric antral stem cell states and carcinogenesis.
Gut 2015;64(4):544–553.10.1136/gutjnl-2014-307190

27. Takaishi S, Tu S, Dubeykovskaya ZA, et al. Gastrin is
an essential cofactor for helicobacter-associated gas-
tric corpus carcinogenesis in C57BL/6 mice. Am J Pathol
2009;175(1):365–375.10.2353/ajpath.2009.081165

28. Fossmark R, Rao S, Mjønes P, et al. PAI-1 deficiency
increases the trophic effects of hypergastrinemia
in the gastric corpus mucosa. Peptides 2016;79:83–
94.10.1016/j.peptides.2016.03.016

29. Tomita H, Takaishi S, Menheniott TR, et al. Inhibition of
gastric carcinogenesis by the hormone gastrin is mediated
by suppression of TFF1 epigenetic silencing. Gastroenterol-
ogy 2011;140(3):879–891.e18.10.1053/j.gastro.2010.11.037

30. Zavros Y, Eaton KA, Kang W, et al. Chronic gastri-
tis in the hypochlorhydric gastrin-deficient mouse pro-
gresses to adenocarcinoma. Oncogene 2005;24(14):2354–
2366.10.1038/sj.onc.1208407

31. Sheng W, Malagola E, Nienhüser H, et al. Hypergastrine-
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