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ABSTRACT

A large database of homologous sequence align-
ments with good estimates of evolutionary distances
can be a valuable resource for molecular evolutionary
studies and phylogenetic research in particular.
We recently created a database containing 159 921
transcripts from human, mouse, rat, zebrafish and
fuguspecies.Approximately 16 000homology groups
were identified with the help of Ensembl homology
evidence. At the macro-level, the database allows
us to answer queries of the form:

(1) What is the average k-distance between 50

untranslated regions of human and mouse?
(2) List the 10 groups with the highest Ka/Ks ratio

between mouse and rat.
(3) List all identical proteins between human and rat.

Researchers interested in specific proteins can use a
simple web interface to retrieve the homology groups
of interest, examine all pairwise distances between
members of the group and study the conservation
of exon–intron gene structures using a graphical
interface. The database is available at http://warta.
bio.psu.edu/DED/.

INTRODUCTION

The previous decade in biology witnessed unprecedented
accumulation of molecular sequence data. However, as
Sydney Brenner remarked ‘The great challenge in biological
research today is how to turn data into knowledge’ (1). Evolu-
tion, inspite of being recognized for decades as crucially
important for understanding life, was until recently the most
speculative area of biology. This situation has been radically
changed with the molecular approaches that are now possible,
thanks to the availability of large amounts of molecular
sequences. However, in order to be useful for evolutionary
studies, sequences have to be carefully selected and grouped

into homology clusters. This is the most important preparatory
step and the most tedious one in any evolutionary analysis.
For many analyses, homologous sequences have to be further
classified as orthologous (i.e. sequences that shared their last
common ancestor during speciation time) or paralogous (i.e.
sequences that were created by ancestral gene duplication).
This distinction is especially important for molecular phylo-
geny as it is necessary to work with orthologous genes to infer
species phylogeny based on gene phylogeny. Interestingly,
despite vast amount of sequence data from different organ-
isms, there have been surprisingly few large scale gene
comparison studies between different species or groups of
organisms (2–6). Information on expected evolutionary dis-
tances or protein/gene identity between different organisms
(e.g. human and zebrafish) or taxonomy groups (e.g. mammals
and reptiles) is difficult to obtain. To fill this gap, we have
created the Database of Evolutionary Distances (DED) which
contains sequence information from several vertebrate species
clustered into homology groups. It also includes multiple
sequence alignments for both protein and nucleotide
sequences along with the phylogenetic trees and graphical
representation of sequence relationships within a homology
group. Large number of links to external databases makes
further data exploration ‘as easy as a click of a mouse’.

Our DED should be useful for gene function assignment,
molecular phylogenetic studies, search for lateral gene transfer,
reconstruction of identification of biochemical pathways in
poorly characterized organisms and sequence evolution
patterns. Simple, yet powerful, web interfaces provide a con-
venient way to access the data. The results are displayed in
easy-to-understand tabulated and/or graphical forms.

SEQUENCE DATA

The basic objects stored in our database are genes and their
associated transcripts. For each gene, we maintain all its
known transcript variants and for each transcript we store
its sequence, coding region annotation and exon–intron struc-
ture. Currently, our database is based on Ensembl release 20
(7) of human, mouse, rat, zebrafish and fugu data (see Table 1).
A total of 159 921 vertebrate transcripts stored in the database
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represent 126 842 unique genes clustered in homology groups
(see later).

Based on the information retrieved from Ensembl, the gene
and transcript objects in our database were cross-referenced
with objects in external databases such as RefSeq, Pfam, GO,
etc. As expected, the human genes and transcripts have the
most external links associated with them (140 302), while
those of zebrafish have the least (34 008). Surprisingly, rat
records have relatively few external links (42 896) possibly
reflecting the transient status of the rat genome annotation.
Obviously, Ensembl is the most frequently linked external
database, followed by EMBL database, and LocusLink (for
details see Table 2).

HOMOLOGY GROUPS

Single linkage clustering was used to create homology groups
from pairwise homology information obtained through
Ensmart (8). Overall, 16 127 groups are formed from
150 158 pairwise homology relations. Although not all species
are present in each group, there are 8402 groups that contain
transcripts from all five species. There are several one-to-many
homology relationships annotated in Ensembl. In such cases,
our use of single-linkage clustering results in homology groups
that contain multiple genes from the same species. Figure 1
shows the distribution of group sizes. For each homology
group, CLUSTAL W (9) is used to compute two multiple
sequence alignments—one from the mRNA sequences and
one from the amino acid sequences.

The multiple sequence alignments are then stored in a com-
pressed format within the Mysql database. Compression is
achieved by noting that a gapped sequence that belongs to
an alignment can be obtained from the ungapped transcript
(or protein) sequence already stored in the database if one
knows the location of the gaps. Instead of storing a whole
alignment, we store only information about location and length
of gaps in the alignment. This procedure results in a 100-fold
reduction of the required storage.

DISTANCE COMPUTATION

In calculating distances, only the transcript with the longest
coding region is taken into consideration. mRNA alignments
are used for calculation of p and k distances of coding sequences
and untranslated regions. We use Kimura’s two-parameters
model to compute k distances. In case the coding regions do
not align perfectly with each other, only the common part of
each distinct mRNA region is considered for calculation.

Protein sequence alignments are used for protein identity
calculations and serve as a template for the coding sequence
alignment that is used in synonymous (Ks) and non-
synonymous (Kn) distance calculations. Currently Ks, Kn are
obtained using the Nei–Gojobori method (10) as implemented
in the PAML package (11). All other pairwise comparison
analyses were carried out using Bioperl 1.4 modules (12).

USER INTERFACES

A simple search interface allows users to search the database
by keyword or accession number from Ensembl (or other data-
bases linked to Ensembl records such as Swiss-Prot, RefSeq,
Gene Ontology, etc.). Genes matching the search criteria
and the homology groups that they belong to are displayed.
Clicking on the hyperlink for a homology group listed in the
search results leads to a page with the full description of the
group consisting of seven sections (see Figure 2): (i) descrip-
tion of group members with links to external databases;
(ii) pairwise comparison analysis results in a tabular format;
(iii) pictorial representation of alignments mapped to

Table 1. Number of genes and transcripts stored in the DED (August 2004)

Species Number of genes Number of transcripts

Human 21 787 29 802
Mouse 25 307 32 281
Rat 22 159 28 545
Fugu 35 180 38 510
Zebrafish 22 409 30 783
Total 126 842 159 921

Table 2. Number of external links present in the DED

Database Human Mouse RAT Fugu Zebrafish Total

GKB 526 0 0 0 0 526
ZFIN_ID 0 0 0 0 1397 1397
PDB 1174 351 228 2033 0 3786
Sanger_Hver1_3_1 4 976 0 0 0 0 4976
UMCU_Hsapiens_

19Kv1
12 311 0 0 0 0 12 311

RefSeq 5255 1219 1592 6197 29 14 292
HUGO 11 075 0 0 3510 0 14 585
MIM 8738 205 148 5615 0 14 706
MarkerSymbol 0 17 177 0 0 0 17 177
SPTREMBL 5500 2174 789 6758 2123 17 344
GO 13 247 0 0 4171 0 17 418
SWISS-PROT 962 211 3250 24 711 5 29 139
LocusLink 15 903 15 443 4252 4833 1079 41 510
Protein_id

(at EMBL)
19 414 19 989 5223 7862 3483 55 971

EMBL (nucleotide
records)

19 434 20 014 5255 7874 3483 56 060

Ensembl 21 787 25 307 22 159 35 180 22 409 126 842
Total 140 302 102 090 42 896 108 744 34 008 428 040

Figure 1. The distribution of group sizes.
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exon–intron structures which help visualize conservation of
gene structure; (iv) protein alignment; (v) mRNA alignment;
(vi) phylogenetic tree; (vii) group structure picture which
shows the pairwise homology relationships that resulted in
the construction of the group (Figure 3 shows a case where
one possibly false homology relationship resulted in the
merging of two distinct homology groups).

By default, only the description of group members and
pairwise comparison results are shown. User preferences stored
in a cookie are used to determine the set of sections to be shown.

A more elaborate accession search interface can be used for
larger scale analyses. It enables calculation of some evolu-
tionary parameters at a global scale (i.e. it summarizes results
for a selected group of genes or if there is no limit specified,
for all genes present in the database). Extensive filtering

options allow a user to restrict analysis to alignments which
satisfy certain length and similarity constraints. This helps
avoid some statistical biases due to data sampling artefacts
or erroneous comparison of paralogous genes. The summary
of overall evolutionary statistics, shown in Figure 4, is in
agreement with published literature (2,3,13–15).

This interface makes it convenient to verify published
results regarding evolutionary rates of groups of proteins.
For instance, it was shown in a recent study that sperm-specific
proteins evolve at a faster rate than other proteins (16).
The paper listed either the RefSeq id or the EMBL accession
number for each of the analyzed proteins. By entering the
RefSeq ids in one entry box and the EMBL accession numbers
in another entry box, one can confirm these results in seconds
in the accession search page.

Figure 2. Sample homology group details. The member section has been truncated. Note that while the proteins are 100% identical, the alignment picture shows that
the gene structure is not—there appears to be an intron gain in the rat lineage.
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CONCLUSIONS AND PERSPECTIVES

Evolutionary analysis is a key step in many biological inves-
tigations from classical systematics to comparative genomics
and bioinformatics. Very often, researchers are interested in
knowing how the results of a comparison of a single gene or set
of genes fit a ‘global picture’. However, such global informa-
tion is hard to obtain or does not exist. To fill this gap, we have
created the DED, which contains sequence information from
several vertebrate species clustered into homology groups.
This database should be useful in a wide range of biological

investigations including gene function assignment, molecular
phylogenetic studies and sequence evolution patterns.

Our database depends on other primary databases for
sequence, structure and homology information. However,
because of the extensive post-processing involved, it is not
possible to update our database and keep it synchronized with
the primary (source) databases at all times. At present, we plan
to update the DED at least twice a year and add new genomes
at the time of scheduled updates. In addition, we also plan to
add sequence information from organisms whose genomes are
not yet fully sequenced.

Figure 3. Group structure and phylogenetic tree for a homology group. Pairwise comparison analysis suggests that the homology relationship between fugu and
zebrafish genes can be ignored and the group split into two smaller groups.
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