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ABSTRACT 

The term “neuropathic pain” (NP) refers to chronic pain caused by illnesses or injuries that damage 
peripheral or central pain-sensing neural pathways to cause them to fire inappropriately and signal pain 
without cause. Neuropathic pain is common, complicating diabetes, shingles, HIV, and cancer. Medications 
are often ineffective or cause various adverse effects, so better approaches are needed. Half a century ago, 
electrical stimulation of specific brain regions (neuromodulation) was demonstrated to relieve refractory NP 
without distant effects, but the need for surgical electrode implantation limited use of deep brain 
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stimulation. Next, electrodes applied to the dura outside the brain’s surface to stimulate the motor cortex 
were shown to relieve NP less invasively. Now, electromagnetic induction permits cortical neurons to be 
stimulated entirely non-invasively using transcranial magnetic stimulation (TMS). Repeated sessions of 
many TMS pulses (rTMS) can trigger neuronal plasticity to produce long-lasting therapeutic benefit. 
Repeated TMS already has US and European regulatory approval for treating refractory depression, and 
multiple small studies report efficacy for neuropathic pain. Recent improvements include “frameless 
stereotactic” neuronavigation systems, in which patients’ head MRIs allow TMS to be applied to precise 
underlying cortical targets, minimizing variability between sessions and patients, which may enhance 
efficacy. Transcranial magnetic stimulation appears poised for the larger trials necessary for regulatory 
approval of a NP indication. Since few clinicians are familiar with TMS, we review its theoretical basis and 
historical development, summarize the neuropathic pain trial results, and identify issues to resolve before 
large-scale clinical trials. 

KEY WORDS: Chronic pain; clinical trial; motor cortex; neuropathic pain; transcranial magnetic 
stimulation (TMS) 

 

CHRONIC NEUROPATHIC PAIN (NP) IS A 

MAJOR UNSOLVED HEALTH PROBLEM 

Acute pain is evolutionarily advantageous—indeed it 
is critical for survival—because it warns us of harm 
and prompts us to flee from dangerous stimuli that 
threaten our survival. But if pain becomes chronic 
and dissociated from actual threats, the pain itself 
can threaten survival. Many patients with moderate 
or severe chronic pain have difficulty working, lose 
their jobs, and some become depressed, debilitated, 
and even impoverished. Relief of chronic pain is a 
major health priority since it is a problem of global 
scope that complicates virtually every type of disease 
and affects every organ system. A 2011 US Institute 
of Medicine (IOM) study reported that chronic pain 
is a major public health problem that affects more 
people than heart disease, cancer, and diabetes 
combined. It costs $560–$635 billion annually in 
health care costs and lost productivity in the US.1 
There are two major types of pain: nociceptive pain 
caused by tissue damage (e.g. current injury or 
illness) and neuropathic pain (NP). Neuropathic 
pain is caused by prior injuries or illnesses that leave 
long-term damage to pain neurons, causing pain-
sensing or transmitting neurons in the peripheral 
and/or central nervous system to fire action 
potentials despite the absence of a painful stimulus. 
Neuropathic pain is considered especially difficult to 
treat, because common pain relievers such as non-
steroidal anti-inflammatories and opioids are less 
effective than for nociceptive pain, and disease-
modifying treatments to repair neural damage are 
not yet available.  

THE DEVELOPMENT OF BRAIN 

STIMULATION TO TREAT CHRONIC PAIN 

The medical field mostly relies on chemicals to treat 
illness, but since neurons use electrical signaling, 
electrical currents can alter their activity—a 
phenomenon increasingly exploited to treat neuro-
logical disorders. The first evidence for the use of 
electrical stimulation to treat chronic pain comes 
from antiquity, in the Compositiones Medicam 
entorum, the early guide to drugs and recipes 
written in 47 CE by Scribonius Largus, the court 
physician of the Roman emperor Claudius.2 He 
described using electrical currents to treat head-
aches and gout by applying electric torpedo fish to 
the painful regions. This treatment was popular for 
seizures, depression, and pain until the eighteenth 
century.  

Electricity-based therapies later multiplied, 
based on the work of Luigi Galvani, Charles Le Roy, 
Duchenne de Boulogne, Beard and Rockwell, and 
others.3 Obviously, not all such treatments were 
well-grounded. Electrical stimulation was also 
applied to treat refractory chronic pain, with deep 
brain stimulation (DBS) as the first modern method. 
In DBS, small electrodes are surgically implanted in 
precise brain locations to deliver tiny electrical 
currents to neurons immediately adjacent to the 
electrode. Thus, unlike with medications, there are 
no distant adverse effects (e.g. rashes, 
gastrointestinal upset, allergies). Since only nearby 
neurons are affected, most brain functions continue 
unperturbed. A battery is implanted subcutaneously 
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to power the electrode using technology based on 
cardiac pacemakers. A 1960 article by Heath and 
Mickle reported that DBS applied to the septum 
between the lateral ventricles of the brain produced 
immediate pain relief in a series of six patients with 
intractable pain, results duplicated by other early 
studies.4–6 In 1977, Richardson and Akil reported 
analgesic efficacy of DBS of the periaqueductal and 
periventricular gray matter.7,8 Stimulation of 
another deep target involved in pain sensation, the 
periventricular gray matter of the posterior 
thalamus, brought good pain relief to patients with 
cancer pain.9 Despite these encouraging results, 
high costs and rates of complication have limited 
DBS use; 3.9% of patients developed permanent 
neurological deficits, thalamic hemorrhage, or 
death, while 19.1% of patients had temporary 
complications, including neurological deficits, 
infection, and hardware malfunction.10 

Epidural brain stimulation then emerged as a 
less invasive alternative. Here the electrodes are 
implanted under the skull, but outside the dura, so 
the brain itself is not disturbed and the risk is lower, 
although only superficial areas of the brain can be 
reached. Tsubokawa and colleagues first reported its 
efficacy in seven patients with thalamic pain 
syndromes.11 This group also compared the effects of 
stimulating various cortical regions on inhibiting the 
burst of hyperactivity of thalamic neurons that they 
associated with neuropathic pain.11 Better long-term 
inhibition of thalamic firing was induced by 
stimulating the motor cortex—more specifically, 
above the motor cortex site that corresponds to the 
painful area. Tsubokawa et al. then implanted 
electrodes over the motor cortex and longitudinally 
monitored 11 post-stroke patients with thalamic 
pain.12 A total of 73% (8/11) reported excellent pain 
control, which persisted unchanged in five patients 
(45%) for more than 2 years. Since then, various 
types of NP have been successfully treated with 
dural motor cortex stimulation (MCS), including 
post-stroke pain, spinal cord injury pain, thalamic 
pain, trigeminal neuralgia, trigeminal neuropathic 
pain, and trigeminal deafferentation pain (anesthe-
sia dolorosa) syndromes.13 A recent meta-analysis of 
the various MCS trials found that 64% of patients 
with NP reported significant pain relief.14 The fact 
that up to 70% of these patients would undergo 
epidural MCS again provides additional evidence of 
clinical value.15  

PRINCIPLES OF NON-INVASIVE 

TRANSCRANIAL MAGNETIC 

STIMULATION (TMS)  

The success of dural MCS inspired consideration of 
even less invasive stimulation modalities, and the 
best developed currently is transcranial magnetic 
stimulation (TMS). In TMS, a trained administrator 
holds an array of electrical coils at a precise location 
on the patient’s scalp overlying the target cortex. 
Capacitors are rapidly charged and discharged to 
pass brief electrical currents through the coils that 
in turn generate brief strong magnetic fields. These 
fields penetrate through nearby tissues, including 
the scalp, skull, meninges, and cerebrospinal fluid, 
to induce electric currents in underlying cortical 
neurons. The frequency of TMS pulses influences 
the effects on axons. Low frequencies of less than 5 
Hz will hyperpolarize axons, transiently reducing 
their normal firing to inhibit their normal effects. 
This technique can be used to map brain functions 
for experimental reasons or, clinically, to help 
neurosurgeons identify eloquent areas of cortex to 
preserve during surgery. It is safer than the Wada 
test previously used for this purpose, and less 
dependent on patient cooperation than functional 
MRI.  

In contrast, frequencies higher than 5 Hz—and 
typically 10 Hz is used—serve to depolarize the 
axolemma, and, if the current is sufficiently strong, 
this will trigger action potentials in nearby neurons. 
These then propagate along the axons towards their 
usual postsynaptic targets. The TMS magnetic fields 
only reach 2–3 cm into the cortex, and the spatial 
configuration of the affected area depends on the 
device properties, coil configuration, and axonal 
orientation. The most commonly used “figure-of-
eight” coils can trigger action potentials in a ~2-cm 
cone-shaped field.  

Transcranial magnetic stimulation is applied 
differently for various experimental, diagnostic, and 
therapeutic uses. The use of low-frequency TMS to 
transiently inhibit cortical firing was mentioned 
above. Applying multiple excitatory TMS pulses to 
both motor cortices in the brain, and then subtract-
ing the time for peripheral motor conduction by 
stimulating over the spinal cord, has long been used 
as a method for measuring the integrity of the 
central motor conduction pathways. Although this 
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has largely been supplanted by MRI, at least in some 
cases, TMS measurements may be more sensitive.16 

Single TMS stimulation of the motor cortex, in 
addition to inducing a muscle twitch in the corre-
sponding muscle, also produces a subsequent period 
of electromyographic (EMG) suppression lasting up 
to 300 ms. This is termed the “cortical silent period” 
(CSP), and it is believed to reflect the transient 
refractoriness that follows every action potential. 
Exploration of CPS in neurological illnesses is 
contributing to our understanding of disease 
mechanisms.  

“Paired pulse” is another TMS method used to 
assess experimentally how connections to the motor 
cortex influence its excitability. The first or 
“conditioning” stimulus is applied to a brain region 
of interest prior to a second “test” stimulus applied 
to the motor cortex. The effects of the first pulse on 
the motor response to the text stimulus provides an 
index of whether the region of interest has inhib-
itory, excitatory, or mixed modulatory connections 
with the motor cortex.  

In contrast, repeated sessions of repetitive TMS 
(rTMS) are mainly used for therapeutic applications. 
In the EU and the US, rTMS of the dorsolateral 
prefrontal cortex using the Neuronetics NeuroStar 
TMS device (Neuronetics® Inc., Malvem, PA, USA) 
and Brainsway’s Deep TMS device (Brainsway, Inc., 
Jerusalem, Israel) have US Food and Drug 
Administration (FDA) approval to treat refractory 
depression. There is lesser evidence of efficacy of 
rTMS in various other neurological conditions 
including bipolar disorder, schizophrenia, anxiety 
disorders, movement disorders, and rehabilitation 
from stroke.17 Different areas of the cortex are 
targeted in these different applications. Our focus 
here is to review the methods and evidence 
pertaining to treatment of chronic pain, which 
usually involves applying rTMS to the primary 
motor cortex (M1). 

METHODS OF APPLYING REPETITIVE 

TRANSCRANIAL MAGNETIC 

STIMULATION (rTMS) TO THE MOTOR 

CORTEX 

Transcranial magnetic stimulation of the primary 
motor cortex is conducted with the patient in a 
reclining chair with support for the head and neck, 
while the operator stands behind and holds the TMS 
coil against the side of the patient’s head over the 

ear. The first task is to locate M1, which is done by 
monitoring the twitch evoked by TMS pulses. In its 
simplest form, this can be monitored visually, but 
most clinical applications involve adjusting the 
intensity of the administered TMS pulses so as not 
to evoke a motor response, which can be uncom-
fortable and impractical if hundreds of pulses are to 
be administered. Thus, electromyography equip-
ment is usually interfaced with the TMS equipment 
and used to set the TMS pulse intensity to a sub-
threshold value that is a fixed percentage (e.g. 80%–
90%) of the patient’s resting motor threshold 
(RMT). Typically this procedure is repeated before 
each TMS session. The RMT is defined as the 
minimum stimulation intensity that elicits a motor 
response to 5 of 10 TMS pulses. The RMT depends 
on various factors, including the integrity of motor 
pathways and the tonic level of excitability in the 
muscle, as well as individual scalp-to-cortex 
distance and effect of pharmacological treatment.17  

After assessing the RMT and setting the inten-
sity, rTMS is applied in bursts of stimuli (“trains”) 
using a specific frequency and inter-train interval. 
The number of pulses delivered is usually between 
500 and 2,500, and frequencies between 5 Hz and 
20 Hz are used. Coil design and orientation are also 
important. Early coils were simple circles. The later 
“figure-of-eight” coil uses two circular coils to 
induce a stronger and more focal magnetic field at 
their intersection. Other newer designs include the 
tilted double-coil and the H-coil, which uses 
multiple loops to penetrate up to 8 cm or increase 
focality. Since the orientation of the magnetic field 
determines which neurons are affected, specific coil 
orientations are preferred when stimulating differ-
ent brain regions. 

REVIEW OF THE STUDIES OF rTMS OF 

THE MOTOR CORTEX FOR CHRONIC 

PAIN 

Studies involving one single application of rTMS to 
the motor cortex have provided proof of concept for 
efficacy against pain. Some involve experimental 
induction of brief pains in healthy volunteers (re-
viewed in Mylius et al.18) or in patients with chronic 
pain. These studies were used to compare efficacy of 
different stimulation sites, specifically the primary 
and secondary motor cortices, dorsolateral prefron-
tal cortex, the primary and secondary somatosen-
sory cortices, and the supplementary and premotor 
areas.18 As with epidural stimulation, stimulating 
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the primary motor cortex generally provided the 
best pain relief. In contrast, depression is best 
treated by applying rTMS to the dorsolateral 
prefrontal cortex—additional evidence of different 
anatomical substrates for NP and depression. The 
fact that motor but not sensory cortex stimulation 
relieves pain is not yet understood. Although TMS 
only directly affects the superficial cortex since the 
currents rapidly dissipate,19 the action potentials 
triggered propagate to influence distributed neural 
networks. Effects of motor cortex stimulation on 
chronic pain are thought to involve M1 projections 
to pain-modulating structures; perhaps among them 
are the medial thalamus, anterior cingulate/ 
orbitofrontal cortices, and the periaqueductal gray 
matter (PAG).17 The incertothalamic pathway has 
recently been implicated in rats, with demonstration 
that TMS of M1 increases electrical activity in the 
zona incerta, which projects to and inhibits activa-
tion of the posterior thalamus.20 

The more clinically relevant studies involve 
administering rTMS to patients with clinical chronic 
pain conditions. We identified 24 publications be-
tween 2001 and 2013 that assessed efficacy of rTMS 
for treating chronic pain. Among them, 15 assessed 
the effects of a single session only of TMS (Table 1). 
While 12/15 reported pain relief, the effects of a 
single rTMS session are transitory and therefore 
inadequate for clinical management of chronic pain, 
so their relevance for clinical practice is limited. 
Table 2 summarizes the nine studies that evaluated 
the effects of multiple rTMS sessions on chronic 
pain. Four studies used five consecutive days of 
treatment, and five involved two consecutive weeks 
of five sessions of weekday TMS. Among them, 6/9 
showed significant pain reduction. Importantly, it 
was found that consecutive sessions of weekday 
rTMS extended the effects of a single session of 
rTMS to produce residual pain relief that can persist 
even after rTMS is discontinued, which is the 

Table 1. Studies Assessing Effects of One Session of Repetitive Transcranial Magnetic Stimulation (rTMS) of the 

Motor Cortex on Chronic Pain. 

Population 
Studied 

Number 
Studied 

Significant 
Effects 

Frequency 
of TMS (Hz) 

Intensity of 
TMS (% RMT) 

Number of 
TMS Pulses 

Citation 
Number 

Mixed NP 14 + 10 80 1000 21 

Mixed NP 18 + 10 80 1000 22 

Mixed CP 12 – 20 80 800 23 

Mixed NP 60 + 10 80 1000 24 

CRPS 10 + 10 110 120 25 

Mixed NP 12 – 20 90 1600 26 

Mixed NP 20 + 5 90 500 27 

Mixed NP 27 – 5 95 500 28 

Mixed NP 22 + 10 90 1200 29 

Mixed NP 13 + 10 90 500 30 

Mixed NP 28 + 20 90 1600 31 

Mixed NP 46 + 10 90 1200 32 

Post-stroke pain 20 + 5 100 500 33 

Mixed NP 14 + 10 90 2000 34 

SCI 16 + 10 110 2000 35 

Population: Mixed NP, mixed neuropathic pain patients; Mixed CP, mixed chronic pain patients; 

CRPS, complex regional pain syndrome; SCI, spinal cord injury; TMS, transcranial magnetic 

stimulation. Significant effects: + represents significant reduction in pain score following 

transcranial magnetic stimulation (TMS) treatment. Numbers presented in the frequency, intensity, 

and number of pulses represent the higher values in case of more than one condition. 
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cornerstone of clinical benefit.17 Publications report 
that these residual effects can last up to two weeks, 
but in clinical use, some patients are able to main-
tain pain relief with once-monthly sessions of rTMS, 
so this requires better characterization. The mecha-
nisms are not known but presumably involve 
neuronal plasticity, such as that triggered by other 
situations involving repeated neuronal firing. 
Accordingly it is suggested that maintenance thera-
py, which consists of a priming week or weeks, of 
daily weekday rTMS sessions, followed by main-
tenance sessions at longer intervals, will maintain 
long-lasting effects. To date, only one study of 40 
fibromyalgia patients assessed long-term rTMS 
maintenance therapy.41 The protocol comprised one 
priming week of daily weekday rTMS, then one 
session weekly for 3 weeks, three sessions at 
fortnightly intervals, followed by three monthly 
sessions; TMS ended at week 21. Reduced pain 
intensity and improved quality of life measures were 
demonstrated between day 5 through week 25, 4 
weeks after the TMS stopped.41  

Since the TMS treatment parameters varied 
among the published studies it is difficult to deter-
mine which specific parameters are best for clinical 
use. Complicating matters further, only 10 of 24 
studies recruited homogeneous populations of 

patients, precluding certainty about which condi-
tions are most responsive to TMS. Homogeneous 
studies have been published on complex regional 
pain syndrome (CRPS),25,40 spinal cord injury 
(SCI),35,37,39 diabetic polyneuropathy (DPN),43 post-
stroke pain,33 and fibromyalgia.38,41,42 Most studies 
had small sample sizes, with only four recruiting 
more than 40 patients (mean = 25, median = 20). 
Another limitation is the variation in applied stimu-
lation parameters such as frequency (ranged from 5 
Hz to 20 Hz), intensity of RMT (ranged from 80% to 
115%), and total number of pulses (ranged between 
120 and 2,500). A 2010 Cochrane Systematic 
Review concluded that higher stimulation frequen-
cies (>5 Hz), greater numbers of stimuli (>500), and 
multiple sessions (>1) yielded better results.45 The 
contribution of many TMS factors, including coil 
orientation, duration of each pulse train, inter-train 
interval, and number of trains, is not yet 
understood. 

An additional unresolved question concerns 
which site within the motor cortex yields the 
strongest benefit for pain patients. Most studies 
stimulated the motor cortical representation of 
patients’ painful site, but one suggested that 
stimulating adjacent motor cortex sites yields better 
analgesia.24 Placebo effects also need to be better 

Table 2. Studies Assessing Effects of Multiple Sessions of Repetitive Transcranial Magnetic Stimulation (rTMS) of 

the Motor Cortex on Chronic Pain. 

Patients Population 
Significant 

Effects 

Frequency 
of TMS 
(Hz) 

Intensity 
of TMS  
(% RMT) 

Number 
of TMS 
Pulses 

Number of 
Treatment 

Days 

Citation 
Number 

Mixed NP 48 + 20 80 2000 5 36 

SCI 12 – 5 115 500 10 37 

FM 30 + 10 80 2000 10 38 

SCI 13 – 10 80 1000 5 39 

CRPS 23 + 10 100 2500 10 40 

FM 40 + 10 80 1500 5* 41 

FM 15 + 10 80 2000 10 42 

DPN 25 + 20 100 1500 5 43 

Mixed NP 70 + 5 90 500 10 44 

* In Mhalla et al. 201141 five treatment days were followed by a maintenance regime. 

Population: Mixed NP, mixed neuropathic pain patients; FM, fibromyalgia; CRPS, complex regional pain 
syndrome; SCI, spinal cord injury; DPN, diabetic polyneuropathy. Significant effects: + represents 
significant reduction in pain score following transcranial magnetic stimulation (TMS) treatment. 
Numbers presented in the frequency, intensity, and number of pulses represent the higher values in 
case of more than one condition.  
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addressed. These are considerable in both pain trials 
and device trials. However, given that TMS evokes 
both visual, auditory, and tactile sensations, sham 
procedures are difficult to design, and there is no 
consensus regarding the best design of a true 
double-blinded, sham-controlled study, since 
researchers and often subjects can usually 
distinguish between real and sham devices.45 Some 
methods of sham TMS offer visual verisimilitude, 
e.g. inert or inactivated TMS coils, but fail to 
produce auditory and electrical sensations.  

SAFETY CONCERNS PERTAINING TO 

MOTOR CORTEX rTMS TREATMENT OF 

NP 

Although the big advantages of TMS are its non-
invasiveness and lack of extracranial effects, there 
are safety considerations, particularly when many 
TMS pulses are applied repeatedly, as required for 
clinical effects. Detailed safety guidelines estab-
lished at a 2009 global consensus conference of 
experts establish absolute and relative contraindi-
cations to TMS.46 Like MRI, TMS is absolutely 
contraindicated for people with ferromagnetic 
implants in or near the head, including shrapnel or 
medical implants, because magnetic fields might 
cause the metal to move or overheat. Magnetic 
pulses can also cause electronically controlled 
devices to malfunction or fail.  

In patients without intracranial ferromagnetic 
implants, the only potentially serious complication 
of TMS is the possibility of inducing a single seizure. 
This is an expected consequence of triggering action 
potentials in cortical neurons. Therefore, TMS is 
relatively contraindicated and, in most cases, should 
not be administered to patients with increased 
seizure risk, for instance those with epilepsy or epi-
leptogenic brain lesions (e.g. strokes or tumors), or 
taking medications that increase seizure risk (some 
antibiotics, antivirals, antidepressants and other 
psychiatric medications, illicit drugs, and alcohol). 
For others, the risk of a TMS-induced seizure is very 
low, estimated at ≤1/10,000.46 As with other types 
of environmentally provoked seizures, e.g. those 
triggered by hypoglycemia, there is no evidence that 
a single provoked seizure can or will trigger epilepsy. 
The only common adverse effect of TMS is 
headache, which is reported by about 1 in 10 
subjects. This is attributed to the TMS coil being 
pressed against subjects’ heads for an extended 
time. The TMS-induced headaches are usually mild 

and respond to usual headache treatments such as 
acetaminophen. Lastly, depending on where TMS is 
applied, and its intensity, suprathreshold applica-
tion to the motor cortex can activate the facial, 
trigeminal, or auditory nerves to cause discomfort. 
As with MRI, people undergoing TMS are usually 
offered earplugs to minimize exposure to the noises 
generated by the TMS coils. 

RECENT TECHNOLOGICAL ADVANCES 

AND RECOMMENDATION FOR FUTURE 

RESEARCH 

Over the years TMS pulse generators have not 
changed significantly, but new coil designs and cool-
ing units allow more TMS pulses to be administered 
at higher frequencies and more focally. Cooled coils 
prevent coils from overheating after a long series of 
pulses. Innovative coil configurations provide 
greater focality and deeper penetration. Brainsway’s 
H-coil allows deeper penetration of TMS pulses. It 
obtained EU approval to treat major depressive 
disorder in 2008, bipolar depression in 2009, 
schizophrenia in 2010, and post-traumatic stress 
disorder in 2011. In January 2013, Brainsway won 
US and Canadian approval to market its Deep TMS 
device for drug-resistant depression.47 Home-based 
rTMS systems are currently in development.48  

Another significant development, introduced 
more than a decade ago, is “neuronavigated” TMS. 
Several companies developed “frameless stereo-
tactic” systems (Figure 1) that use infrared cameras 
to register position and orientation of the TMS coil 
relative to the subject’s head, and integrate 
individual cortical topography from each person’s 
head MRI, to guide placement of the TMS coil. This 
informs the TMS administrator about the actual 
location of the desired brain target in that person 
and also enables placing the coil at precisely the 
same spot during different TMS sessions. Computer 
modeling shows that MRI-navigated TMS reduces 
variability in induced current compared to hand-
held TMS, and more precisely and reproducibly 
locates motor cortex targets in human patients.49–51 
Nexstim’s Navigated Brain Stimulation system won 
FDA approval for presurgical mapping of cortical 
function in 2010. Importantly, almost all studies of 
rTMS for pain used hand-held coils, meaning that 
the location of stimulation likely varied slightly 
during successive sessions, as illustrated in Figure 2. 
Additional study is required to determine if MRI-
navigated TMS improves outcomes. 



 

Motor Cortex Stimulation for Pain 
 

 

Rambam Maimonides Medical Journal 8 October 2013  Volume 4  Issue 4  e0023 
 

In summary, TMS is non-invasive and requires 
no anesthesia or sedation, has no known long-term 
adverse or systemic side effects in properly selected 
patients, and offers an alternative to medications for 
relieving neuropathic pain. Although the small 
studies reviewed here often demonstrate benefit, 
their methodological limitations make them insuffi-
cient for obtaining regulatory approval. These 
include too few subjects with diverse causes of pain, 
inconsistency in stimulation targets and TMS 

parameters, and insufficient sham and blinding. 
Future adequately powered studies in homogeneous 
populations should help clarify whether MRI-
navigated TMS or advanced coil designs offer added 
benefit for neuropathic pain, which cortical loca-
tions to target, and best stimulation parameters to 
use for randomized clinical trials. This might allow a 
promising experimental pain treatment to transition 
from the research laboratory into clinical practice. 

 

Figure 1. The MRI-navigated Nexstim Interface. 

A: Screen shot of the Nexstim neuronavigation interface: The top three panels represent the sagittal, coronal, and 

axial (left to right) MRI views used to locate specific spatial landmarks relative to the stereotactic spheres (shown in 

panel B) that are used for neuronavigated TMS. The lower panels display the stimulation target on a 3D MRI (left) 

and the bulls-eye target (right) that ensures that the operator holds the coil to the patient’s scalp at the correct 

location and orientation. B: The operator holds the figure-of-eight coil to the patient’s scalp while monitoring the 

brain stimulation site on the 3D MRI. Note the stereotactic spheres mounted on the coil that identify its position 

relative to the spheres on the patient’s goggles that localize the patient’s head.  

 

 

Figure 2. MRI-guided Neuronavigation Allows rTMS to Target the Same Cortex More Precisely and Reproducibly. 

Panels A and B display a repetitive application of 20 stimuli with (A) and without (B) neuronavigation to the motor 

cortex area. Note the accuracy of the neuronavigated system (A), compared to the less precise application achieved 

without MRI navigation.  
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