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C
ardiovascular (CV) disease is the leading cause of
morbidity and mortality and a major driver of
health care costs in patients with type 2 diabetes.
Observational studies suggest that insulin re-

sistance and hyperglycemia independently predict athero-
sclerosis (1,2). However, recent clinical trials have been
disappointing in that intensive glycemic control does not
reduce the risk of CV events in individuals with diabetes (3).
Consequently, it has been suggested that therapies targeting
hyperinsulinemia and/or insulin resistance (e.g., metformin)
may lead to CV risk reduction (2). In addition to its meta-
bolic actions, insulin has important vascular actions that
stimulate endothelial production of nitric oxide (NO), an
anti-inflammatory and antiatheroslcerotic molecule (4). In
turn, endothelial insulin resistance leads to diminished glu-
cose disposal, endothelial dysfunction, and atherosclerosis.
Strategies that ameliorate endothelial insulin resistance may
simultaneously augment metabolic and vascular actions of
insulin, thereby reducing CV risk. However, molecular
mechanisms regulating endothelial insulin action are still
unclear.

Elegant studies from various laboratories have elucidated
insulin signaling pathways that regulate NO production in
the endothelium (4). Insulin binding to its receptor increases
receptor tyrosine kinase activity and results in phosphory-
lation of insulin receptor (IR) substrate (IRS)-1 and se-
quential activation of phosphatidylinositol 3-kinase (PI3K)
and 3-phosphoinositide-dependent protein kinase (PDK)-1.
PDK-1, in turn, activates Akt, which then directly phos-
phorylates endothelial NO synthase (eNOS) at Ser1177,
resulting in increased eNOS activity and NO production
(Fig. 1). Although less potent, IGF-1, like insulin, activates
the PI3K-Akt-eNOS pathway and stimulates NO production
in endothelial cells (5,6).

Human endothelial cells express IR, IGF-1 receptors
(IGF-1R), and hybrid receptors (IR/IGF-1R) composed of
heterodimers containing a ab-chain of the IR associated
with a ab-chain of the IGF-1R (7). IGF-1R are more abun-
dant (10-fold higher) than IR (5,8). IR/IGF-1R have a low
affinity for insulin, but they bind IGF-1 with the same affinity
as IGF-1R. However, because of the low binding affinity of

insulin to IGF-1R, physiological concentrations of insulin
(100–500 pmol/L) selectively activate IR to release NO and
increase microvascular perfusion in vivo (6). At supra-
physiological concentrations, insulin and IGF-1 cross-react
with each other’s receptors, albeit at a significantly lower
affinity than with their own receptors (7). In nonendothelial
cells, IGF-1R expression modulates insulin signaling by al-
tering the levels of hybrid receptors (7). Whether or not
a similar dynamic affects insulin signaling in the endothe-
lium was unknown.

In this issue of Diabetes, Imrie et al. (9) demonstrate a
novel role for IGF-1R in modulating insulin signaling in the
endothelium. They evaluated endothelial insulin sensitivity
in mice overexpressing human IGF-1R in the endothelium
(hIGFREO). Aorta from hIGFREO displayed reduced basal
NO release and enhanced responsiveness to vasocon-
strictors. Although basal total and active eNOS levels were
similar, neuronal NO synthase (nNOS) expression in en-
dothelial cells from hIGFREO was lower when compared
with wild-type mice. In hIGFREO, endothelial levels of
IR/IGF-1R were increased and associated with reduced
insulin, but not IGF-1–stimulated NO production and
eNOS activation. Data from the current study extend and
confirm previous reports from this group that have dem-
onstrated that reducing IGF-1R and IR/IGF-1R results in
improved endothelial insulin sensitivity in insulin-resistant
mice (10). Taken together, these novel findings suggest
that IGF-1R negatively affects insulin-stimulated NO pro-
duction in the endothelium by modulating the amount of
IR/IGF-1R.

How does endothelial IGF-1R expression influence in-
sulin signaling? Current models assume that IR, IGF-1R,
and IR/IGF-1R are formed by random dimerization of re-
ceptor monomers (7). Consequently, relative distribution of
the receptor species is determined by the monomeric ratio
of IGF-1R and IR. Higher IGF-1R expression is associated
with increased formation of IR/IGF-1R and a lower pro-
portion of IR holoreceptors. Conversely, decreasing IGF-1R
levels lowers the amount of IR/IGF-1R and thus a higher
proportion of IR is available for ligand binding. This phe-
nomenon does not appear to be cell-specific, since similar
findings are observed in vascular smooth muscle cells, adi-
pocytes, and osteoblasts (11–13). Likewise, fibroblasts from
individuals with heterozygous IGF-1R mutation, Arg59Ter,
manifest reduced IGF-1R as well as hybrid receptor expres-
sion and augmented insulin signaling (14). Thus, isolated
changes in IR number may be sufficient to alter the strength
of PI3K-Akt-eNOS signaling (Fig. 1). It is also possible that
higher numbers of IR/IGF-1R may diminish coupling effi-
ciency of IR to postreceptor signaling intermediates and
reduce insulin responsivity.

In the study by Imrie et al., insulin-stimulated eNOS
phosphorylation/activation was reduced in endothelial cells
from hIGFREO mice. However, insulin-stimulated Akt ac-
tivation was unaffected. Thus, the molecular mechanisms
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FIG. 1. Relative distribution of insulin (INS) and IGF-1R modulates insulin-stimulated NO production in the endothelium. A: In a healthy endo-
thelium, IGF-1R are more abundant than IR. Physiological insulin concentrations selectively activate IR to stimulate the PI3K branch of insulin
signaling to stimulate NO production and vasodilation. B: Increased IGF-1R expression is associated with increased IR/IGF-1R and reduced
numbers of IR holoreceptors. The magnitude of insulin-stimulated NO production is reduced, leading to diminished vasodilation.
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mediating reduced eNOS activation are unclear. These
studies were performed in pulmonary endothelial cells
and not in aortic endothelial cells where, surprisingly,
insulin-mediated aortic vasodilation was not impaired.
This heterogeneous response may be secondary to cel-
lular differences in the relative abundance of receptor
species (IR, IGF-1R, and IR/IGF-1R) in the two vascular
beds. Moreover, in these in vitro studies, insulin was used
at concentrations (150 nmol/L) known to activate endo-
thelial IGF-1R and hybrid receptors. In adipocytes, IR is
more efficient in activating IRS-1 and PI3K than IGF-1R
(15). Thus, it is conceivable that physiological concen-
trations (,1 nmol/L) known to selectively activate IR
may indeed show reduced Akt activation in endothelium
of hIGFREO mice. Additional studies, particularly in
aortic endothelial cells, are needed to delineate specific
mechanisms that lead to reduced insulin activation of
eNOS. The authors suggest that lower basal endothelial
NO release in hIGFREO is due to reduced nNOS expres-
sion. However, the contribution of nNOS activity to basal
NO release and the cause for diminished nNOS-protein ex-
pression need to be assessed in future studies. Finally,
IGF-1 and high concentrations of insulin in a NO-dependent
manner accentuates reendothelialization partly through
enhanced mobilization of progenitor cells in injured
arteries (16). Considering that endothelial IGF-1R/eNOS/
NO pathway is functional and sensitive in hIGFREO mice,
the observed increase in endothelial regeneration is con-
firmatory.

Despite these limitations, the findings by Imrie et al. are
both novel and relevant. The current work suggests that
the interaction of IR and IGF-1R to form IR/IGF-1R shapes
the amplitude of insulin signaling in the endothelium. Vas-
cular IGF-1R expression is increased in obese and diabetic
rodent models (17). Interestingly, in these models insulin,
but not IGF-1–mediated vasorelaxation, is impaired (18).
Dysglycemia and activation of vascular renin-angiotensin-
aldosterone system are characteristic of insulin-resistant
states (19). Angiotensin II, aldosterone, and hyperglycemia are
known to upregulate vascular IGF-1R expression (11,17,19).
Similarly, type 2 diabetes and obesity are associated with
increases in IR/IGF-1R expression in insulin-sensitive tissues
(20). In these pathological states, interventions aimed at
downregulating IGF-1R expression may augment endothelial
insulin sensitivity. To that end, relevance of these findings to
humans needs to be explored further. Such studies may pro-
vide important insight into strategies directed at improving
insulin signaling in endothelial cells in a manner that results in
reduced CV disease.
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