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New genomes are being sequenced at an increasingly rapid rate, far outpacing the rate at which manual gene annotation can be
performed. Automated genome annotation is thus necessitated by this growth in genome projects; however, full-fledged annotation
systems are usually home-grown and customized to a particular genome. There is thus a renewed need for accurate ab initio gene
prediction methods. However, it is apparent that fully ab initiomethods fall short of the required level of sensitivity and specificity
for a quality annotation. Evidence in the form of expressed sequences gives the single biggest improvement in accuracy when used
to inform gene predictions. Here, we present a lightweight pipeline for first-pass gene prediction on newly sequenced genomes.
The two main components are ASPic, a program that derives highly accurate, albeit not necessarily complete, EST-based transcript
annotations from EST alignments, and GeneID, a standard gene prediction program, which we have modified to take as evidence
intron annotations. The introns output by ASPic CDS predictions is given to GeneID to constrain the exon-chaining process and
produce predictions consistent with the underlying EST alignments. The pipeline was successfully tested on the entire C. elegans
genome and the 44 ENCODE human pilot regions.

1. Introduction

Despite great efforts over the last ten years in computational
gene prediction, translating a genome to a set of exon-intron
structures and the proteins they encode is still a challenging
task. The falling costs of traditional DNA sequencing and
the development of next-generation sequencing technologies
is leading to an accelerated number of complete genome
sequences [1]. The sheer number of genomes sequenced
argues for a real and continued need to design accurate
computational tools for gene finding, the basic requirement
being a first-pass set of reliable protein coding gene models
[2].

Once the genomic sequence of a given organism has
been completed, a common approach for annotating genes
encoding proteins involves using ab initio or de novo gene

prediction programs [2, 3]. Ab initio gene finders in fact
allow quick and cost-effective analyses—a genome-wide set
of vertebrate genes can be determined in only a few hours,
for instance [4]. Many such programs are based on hidden
Markov models (HMMs) and need to be trained before their
application [2–7]. Capturing all gene features of an organism
in a reduced training set is not a feasible task and thus, the
accuracy of ab initio gene finders is mainly limited to the
quality and size of the training set. Nonetheless, it is almost
always that gene predictions obtained using ab initio systems
represent the starting point for annotating newly sequenced
genomes [2, 3].

Given the limited nature and accuracy of ab initio gene
finders [8], new computational tools have been developed
which take into account external evidence [2, 3, 9]. Methods
based on comparative genomics have proven to be more
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accurate than previous systems even though they require that
informant genomes be spaced at evolutionarily appropriate
distances [10–12]. Newly sequenced genomes, however, do
not always have an appropriately closely related genome avail-
able, reducing the global performances of such comparative
methods. The recently sequenced grape genome [13], for
instance, is not as strictly related to other available dicot
plant genomes (such as Arabidopsis thaliana [14] or Populus
trichocarpa [15] or Lycopersicon esculentum [16]) as those
of human and mouse are to each other. However, during
the last few years, methods using multiple genomes, which
specifically take into account their evolutionary relation-
ships, have been developed and are only beginning to show
improvements over dual-genome prediction methods [11].

As emerged from the ENCODE Genome Annotation
Assessment Project (EGASP) [8, 17], a community experi-
ment to access the state of the art in genome annotation
within the human ENCODE regions [18–20], programs
relying on extrinsic evidence such as expressed sequence
tags (ESTs) or mRNA sequences were found to be the most
accurate in reproducing the manually curated annotations
[8]. ESTs are in fact an invaluable source of evidence for the
detection of exon-intron boundaries and likely alternative
splicing variants [21]. Current methods for predicting genes
using ESTs generally work by first performing an alignment
of expressed sequence tags onto a target genomic region and
then combining the alignment results with ab initio gene
predictions [22]. However, the inclusion of EST alignments
into HMM-based systems is not a simple task due to the
requirement that alignments must be incorporated into the
model in a probabilistic way, often leading to only negligible
performance gains. A new version of HMMGene using
EST evidence, for example, reported no improvement in
predictions for Drosophila melanogaster [23]. Only meth-
ods combining EST alignments and comparative genomics
such as TWINSCAN EST or N SCAN EST and the recent
Pairagon-N SCAN EST proved to be the most accurate in
predicting exact exon-intron structures [8, 11, 24]. However,
apart the fromavailability of one ormore informant genomes,
their approach to integrate information from EST alignments
needs a training step. Also in this case, the quality and size of
the training set may reduce the benefit due to ESTs, especially
when they are used to predict genes in novel genomes with
a limited amount of expression data. These limitations have
been partially avoided by methods that use EST alignments
to simulate the manual annotation. Exogean, for instance, is
a program appropriately designed to employ EST or mRNA
alignments as biological objects in a directed acyclic colored
multigraphs (DACMs) [25]. Although Exogean has been
indicated as one of the most accurate programs in predicting
correct coding genes in EGASP project [8], it is subjected to
strong limitations. A reduced number of available ESTs in fact
may preclude gene prediction in genomic regions not covered
by expression data.

In light of what has been previously discussed, we report
here a simple and accurate method called ASPic-GeneID to
improve gene prediction while maximizing the information
gained from expressed sequence tags. Alignments of EST
sequences to the genome are particularly good at pinpointing

the location of splice sites and intronic sequence. Such introns
can be easily used as evidence to improve the chaining of ab
initio predicted exons, thus making gene models more accu-
rate. Our procedure does not require complex probabilistic
models and it is completely independent of EST training sets.
Intronic sequences are directly inferred from expression data
by means of the program ASPic [26, 27], whereas both the ab
initio exon predictions and the gene assembly are performed
using the GeneID software [28, 29]. Since ASPic is also able
to detect the most likely transcript variants for a gene, we
propose here two simple extensions to ASPic-GeneID that
allow the prediction of alternative splicing transcripts.

We have tested ASPic-GeneID on the entire C. elegans
genome (WS147) and the 44 human ENCODE regions and
compared the results to those of programs representing the
state of the art in nematode and human gene prediction.
Our results suggest that ASPic-GeneID is a real and practical
alternative to very complex pipelines that currently require all
available evidence to obtain the same values of specificity and
sensitivity.

In the next section, we explain in detail the methodology
behind ASPic-GeneID and its implementation. Finally, we
focus on ASPic-GeneID predictions on the human ENCODE
regions and on the C. elegans genome.

2. Materials and Methods

2.1. The ASPic-GeneID Pipeline. ASPic-GeneID represents
the integration of two complementarymethods for predicting
gene structures in a target genome: the ab initio gene
predictorGeneID [28], and the alternative splicing prediction
program ASPic [26, 27]. Given intronic locations deduced
from alignment of expressed sequence tags (ESTs) to the
genome, ASPic-GeneID attempts to predict complete gene
structures in the target genome sequence.

The first component of the pipeline is ASPic, a method
to predict alternative splicing isoforms expressed by a gene
and their exon-intron organization at the genomic level
through the information provided by available expression
data, mostly EST sequences [26, 27]. In contrast with the
majority of other tools for the analysis of alternative splicing,
ASPic performs a multiple alignment of transcript data to
the genomic sequence and refines exon-intron boundary
alignments through dynamic programming [27]. Such tech-
niques improve the quality of the splice site predictions
by minimizing the number of false positives. ASPic also
provides the minimal set of nonmergeable transcript variants
compatible with the detected splicing events [27].

The other component of the pipeline is GeneID, a well-
known ab initio gene finder that predicts and scores all
potential coding exons along a query genomic sequence [28].
From the set of predicted exons, GeneID assembles the gene
structure maximizing the sum of the scores of the assembled
exons using a dynamic programming chaining algorithm
[28]. The hierarchical structure of the program separates the
problem of exon assembly from the prediction of coding
exons along a given query genomic sequence. Simple rules
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Figure 1: Graphical overview of ASPic-GeneID. In the absence of ASPic introns, the dynamic programming algorithm implemented in
GeneID (called Genamic) assembles the most likely gene structure according to frame-compatible exons with the highest combined score.
When ASPic introns are provided, they act as anchors in the chaining of exons so that exons with intron-compatible splice sites are always
joined together if they conform to a valid gene model. In this hypothetical example, the “First” exon with the highest score (in orange) is
replaced by the one with the lowest score (in blue), but which possesses an ASPic intron-compatible splice site (in red).

describing the relationships among initial, internal, and ter-
minal exons as well as other gene signals (poly-adenylation,
etc.) have to be imposed in an appropriate and organism-
specific external parameter file in order to infer the most
likely gene structures [28].

Current ab initio gene finders, including GeneID, suffer
from both low specificity (they tend to predict too many
genes and exons) and less than perfect sensitivity (correct
exons may be predicted with low scores and consequently
excluded from the final gene structures), leading to inaccurate
predictions.

To improve both sensitivity and specificity of exon/tran-
script prediction, our novel procedure implemented in
ASPic-GeneID is designed to improve the chaining of
inferred GeneID exons by introducing constraints during
gene assembly. We surmised that a good constraint candidate
would be introns with reliable splice sites such as those pre-
dicted by ASPic. ASPic introns, in fact, are directly deduced
from expression data and, thus, they constitute an invaluable
source of evidence. We have introduced changes in GeneID
so that the optimal path through the dynamic programming
matrix is one which maximizes the number ASPic-inferred
introns incorporated into the predicted transcript models. In
other words, given a set of evidence introns, GeneID tries
to join potential exons that have splice sites compatible with
these introns (Figure 1).

2.2. Running ASPic-GeneID. Given a query genomic
sequence (whether it is a single gene or a chromosome or a
complete genome) and a collection of EST and/or mRNA
sequences belonging to the same organism, we map all
expressed sequences to the query sequence usingGMAP [30],
a computational tool specifically designed to reliably align a
large number of ESTs and mRNAs to a genomic sequence.
It has been shown that GMAP outperforms BLAT, which is
another program widely used for the same purpose [30, 31].
The corresponding software has been downloaded from the
website of the author (http://research-pub.gene.com/gmap/)
and run with default parameters. Results of GMAP are then
parsed to obtain clusters of ESTs and/or mRNAs related to

specific regions of the query sequence. During the parsing
only alignments with a minimum identity of 95% (98% in
human) and EST coverage greater than 90% are retained.
Each EST cluster should correspond to a specific gene.
However, we may expect that different genes, depending on
their peculiar expression profile are represented by clusters
of different sizes or are not represented at all.

To construct clusters, we first collect overlapping ESTs
and/or mRNAs according to GMAP coordinates on the
genomic sequence and then we address compatible ESTs
to the same cluster. Two ESTs or mRNAs are assumed
to be compatible if they have at least one splice site in
common, allowing a minimal mismatch around exon-intron
boundaries in order to overcome potential GMAP misalign-
ments or EST sequencing errors. In the case of unspliced
ESTs, they are added to the relevant cluster according to
mapping coordinates and strand. Each EST cluster and the
mapping genomic sequence, form the input used by ASPic,
run with default parameters, to predict introns. Depending
on the coverage of the gene region by EST sequences, ASPic
also provides a more or less reliable prediction of potential
alternative transcripts.

After each ASPic run, we parse the corresponding output
in order to collect all predicted introns in the general feature
format [32]. The intron evidence is then given to GeneID
which then predicts the most likely gene structures given
this evidence and its statistical models for signals and coding
sequence. The source code of GeneID has been updated in
order to incorporate GeneID into the ASPic-GeneID context,
in particular to accommodate the use of introns as evidence.
A small adjustment has also been made to the parameter file
in order to add introns to the gene model for the dynamic
programming module implemented in GeneID.

We have written simple Python and Perl scripts to per-
form all the components of the ASPic-GeneID analysis trans-
parently: the parsing of GMAP results, the generation of ESTs
clusters, the ASPic intron predictions, and finally the GeneID
predictions.

http://research-pub.gene.com/gmap/
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ASPic-GeneID has essentially no limits with respect
to the length of the input sequence or the number of
related ESTs. It can handle chromosomes as well as complete
genomes.

2.3. Implementing the Alternative Splicing Prediction. The
running of ASPic-GeneID as previously described allows the
prediction of only one transcript per gene locus. Although
this limitation should not reduce the gene prediction accu-
racy of our system in genomes with a low prevalence of alter-
native splicing, it is expected to affect the global performance
in the case of genomes from organisms in which alternative
splicing is a widespread phenomenon.

To overcome this limitation, we have implemented two
extensions of ASPic-GeneID which allow for the prediction
of alternative transcripts. In the first procedure, which we
call ASPic-GeneID AS1, we map ESTs to a query sequence
using GMAP and then build EST clusters related to specific
gene regions using exactly the same methodology as above.
To each cluster and gene region we apply ASPic and collect in
two separate files in GFF format all inferred introns and tran-
scripts. Introns are used as evidence to run ASPic-GeneID
as previously described and to obtain an initial gene set
without alternative splicing. After that, all predicted ASPic-
GeneID genes that overlap transcripts deduced by ASPic
are removed. The remaining genes are then combined with
transcripts inferred by ASPic to produce the final gene set. In
this way, we employ ASPic alternative transcript predictions
for all genomic regions fully covered by ESTs and/or mRNAs
and ASPic-GeneID predictions for the remaining genomic
regions partially covered or not covered by expression data.

In the second procedure, which we call ASPic-
GeneID AS2, we again map expression data to the query
sequence using GMAP and run ASPic on each EST/mRNA
cluster to collect deduced introns and full-length transcripts
in GFF format. From each ASPic transcript we extract the
longest open reading frame. Overlapping ASPic CDSs are
then assigned to separate bins, where the number of bins
used corresponds to the number transcripts belonging to
the locus with the highest number of alternative transcripts.
In order to maximally cover the genome, for loci with
fewer transcripts than there are bins, ASPic CDS spans are
reassigned to empty bins. We then run GeneID on each bin
using both ASPic CDS and unassociated introns as evidence.
Finally, we remove redundant identical transcripts from the
combined predictions of each run of GeneID to produce a
final gene set.

Relationships between ASPic and GeneID are shown in
Figure 2. When GeneID uses only ASPic introns we have
ASPic-GeneID predictions without alternative splicing. In
contrast, when ASPic transcripts are used in combination
with ASPic-GeneID we have ASPic-GeneID AS1 and ASPic-
GeneID AS2 predictions with alternative splicing (Figure 2).

2.4. Sequence and Prediction Sets. The C. elegans genome
sequence version WS147 was downloaded from the Worm-
Base website (http://www.wormbase.org/). Gene predictions
from several other ab initio gene finders such as Genefinder

ESTs GMAP

ASPic

Introns CDSs Intron
sets

GeneID GeneID

ASPic-GeneID
predictions

ASPic-
GeneID AS2
predictions

ASPic-
GeneID AS1
predictions

Figure 2: Relationship between ASPIC and GeneID predictions.
ASPIC predicts both introns and full-length transcripts. When
ASPIC introns are given to GeneID, we obtain ASPIC-GeneID
predictions without alternative splicing. In contrast, when ASPIC
transcripts are used, we can predict alternative variants in two ways.
The first combining ASPIC transcripts and nonoverlapping ASPIC-
GeneID predictions and the second giving ASPIC transcripts to
GeneID as evidence and then removing redundant predictions.

(release 980504; P. Green, unpublished), FGENESH, and
SNAPwere downloaded from the Sanger Centre (http://www
.sanger.ac.uk/Software/analysis/genomix/). TWINSCAN
and TWINSCAN EST predictions were downloaded from
http://mblab.wustl.edu/. All available C. elegans ESTs and
mRNAs have been retrieved from the Unigene database.
We use Unigene sequences instead of dbEST sequences
because Unigene sequences are filtered to avoid redundant
and erroneous ESTs.

All 44 human ENCODE regions were downloaded
from the UCSC genome browser (http://genome.ucsc.edu/)
according to the human genome assembly hg17. Pre-
dictions from diverse gene finding programs belonging
to different EGASP categories (ab initio, ESTs, mRNAs,
and proteins based, all evidence based) were downloaded
from the official EGASP repository (http://genome.imim
.es/datasets/egasp2005/). The complete list of programs used
in the evaluation is available in Table 2.

All human ESTs and mRNAs related to the 44 ENCODE
regions were downloaded from GenBank according to their
accession numbers retrieved from the Otter database [33].

2.5. Evaluation. Annotated C. elegans CDSs (WS147) were
downloaded from WormBase. ASPic-GeneID predictions
(including those from ASPic-GeneID AS1 and ASPic-
GeneID AS2) as well as other predictions from different
gene finding systems were evaluated against the annotation
using an evaluation program written in Perl (Eduardo
Eyras, personal communication), which takes into account
alternative transcripts.

Briefly, the evaluation.pl program compares predictions
and annotations in two ways: on a per gene basis and on a per
best transcript pair (BTP) basis. For both methods, a gene is
defined as a cluster of transcripts according to exon-overlap.

http://www.wormbase.org/
http://www.sanger.ac.uk/Software/analysis/genomix/
http://www.sanger.ac.uk/Software/analysis/genomix/
http://mblab.wustl.edu
http://genome.ucsc.edu/
http://genome.imim.es/datasets/egasp2005/
http://genome.imim.es/datasets/egasp2005/
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Table 1: Accuracy of gene finding programs on the complete C. elegans genome.

Evaluation at gene level
Program SNg SPg SSg WG MG SNe SPe SSe WE ME SNi SPi SSi WI MI SNn SPn SSn
GeneID 0.97 0.83 0.90 0.19 0.03 0.67 0.69 0.68 0.16 0.15 0.70 0.74 0.72 0.26 0.30 0.87 0.88 0.87
ASPic 0.34 0.96 0.65 0.03 0.66 0.29 0.91 0.60 0.02 0.69 0.30 0.97 0.63 0.03 0.70 0.31 0.98 0.64
ASPic-GeneID 0.99 0.93 0.96 0.09 0.01 0.85 0.81 0.83 0.08 0.03 0.93 0.88 0.90 0.12 0.07 0.95 0.95 0.95
ASPic-GeneID AS1 0.99 0.75 0.87 0.21 0.01 0.87 0.78 0.82 0.12 0.02 0.93 0.86 0.89 0.14 0.07 0.96 0.91 0.93
ASPic-GeneID AS2 0.98 0.98 0.98 0.07 0.02 0.86 0.83 0.84 0.07 0.03 0.94 0.89 0.91 0.11 0.06 0.96 0.93 0.94
TWINSCAN 0.95 0.87 0.91 0.12 0.05 0.76 0.77 0.76 0.11 0.11 0.81 0.83 0.82 0.17 0.19 0.90 0.91 0.90
TWINSCAN EST 0.95 0.88 0.91 0.09 0.05 0.79 0.81 0.80 0.09 0.09 0.84 0.87 0.85 0.13 0.16 0.91 0.92 0.91
FGENESH 0.97 0.88 0.92 0.10 0.03 0.76 0.74 0.75 0.13 0.09 0.80 0.79 0.79 0.21 0.20 0.93 0.89 0.91
Genefinder 0.95 0.97 0.96 0.05 0.05 0.77 0.74 0.75 0.13 0.08 0.83 0.78 0.80 0.22 0.17 0.93 0.89 0.91
SNAP 0.96 0.69 0.82 0.22 0.04 0.70 0.66 0.68 0.18 0.12 0.74 0.73 0.73 0.27 0.26 0.90 0.86 0.88

Evaluation at transcript level
Program SNt SPt SSt WT MT SNet SPet SSet WEt MEt SNit SPit SSit WIt TMIt SNnt SPnt SSnt
GeneID 0.23 0.23 0.23 0.05 0.19 0.68 0.70 0.69 0.17 0.18 0.70 0.72 0.71 0.28 0.30 0.84 0.87 0.85
ASPic 0.26 0.71 0.48 0.01 0.29 0.81 0.95 0.88 0.01 0.15 0.82 0.98 0.90 0.02 0.18 0.81 0.99 0.90
ASPic-GeneID 0.44 0.47 0.45 0.03 0.17 0.86 0.81 0.83 0.10 0.05 0.92 0.85 0.88 0.15 0.08 0.93 0.93 0.93
ASPic-GeneID AS1 0.53 0.44 0.48 0.08 0.11 0.87 0.85 0.86 0.08 0.06 0.91 0.88 0.89 0.12 0.09 0.92 0.94 0.93
ASPic-GeneID AS2 0.46 0.50 0.48 0.03 0.17 0.88 0.81 0.84 0.11 0.04 0.94 0.85 0.89 0.15 0.06 0.95 0.90 0.92
TWINSCAN 0.35 0.36 0.35 0.04 0.15 0.77 0.78 0.77 0.11 0.12 0.81 0.82 0.81 0.18 0.19 0.88 0.91 0.89
TWINSCAN EST 0.43 0.45 0.44 0.04 0.13 0.80 0.83 0.81 0.08 0.11 0.84 0.87 0.85 0.13 0.16 0.89 0.93 0.91
FGENESH 0.32 0.33 0.32 0.06 0.16 0.75 0.76 0.75 0.13 0.13 0.78 0.79 0.78 0.21 0.22 0.88 0.89 0.88
Genefinder 0.30 0.35 0.32 0.05 0.18 0.79 0.73 0.76 0.16 0.10 0.83 0.75 0.79 0.25 0.17 0.91 0.86 0.88
SNAP 0.27 0.22 0.24 0.09 0.11 0.67 0.73 0.70 0.11 0.19 0.70 0.77 0.73 0.23 0.30 0.82 0.92 0.87
The highest values are shown in bold. SN indicates sensitivity. SP indicates specificity. SS indicates the average between SN and SP. Gene (g), transcript (t), exon
(e), intron (i), and nucleotide (n) were assessed.

For evaluation on the basis of a gene, the program performs a
projection of all transcripts to the genome and then calculates
for exons, introns, and nucleotides the sensitivity (SN), the
specificity [13], the wrong cases (W), and the missing cases
(M). All accuracy measures follow the definitions of Burset
and Guigó [34]. Briefly, for each level (nucleotide, exon, and
gene) the sensitivity is SN = TP/(TP + FN) and the specificity
is SP = TN/(TN + FP), where TP are true positives, TN are
true negatives, FN are false negatives, and FP are false
positives [34].

Calculation of statistics on a BTP basis is performed as
follows. For each transcript cluster, the evaluation program
establishes a one-to-one (and one-to-many in the case of
split/joined transcripts) mapping between predicted and
annotated transcripts. It then produces similar measures as
above but only for best transcript pairs. These measures
give a better estimate of the accuracy of connectivity of the
predicted transcripts.

Summary statistics for both methods given in the results
are derived from total feature counts for the entire evaluation
set.

The accuracy of ASPic-GeneID has been evaluated on
two different data sets, the entire C. elegans genome (version
WS147), and the 44 human ENCODE pilot regions, using
WormBase and Gencode annotations, respectively, as the
reference annotations. Such data sets have been appropriately
chosen to better assess the performances of ASPic-GeneID in

two organisms differentially subjected to alternative splicing.
Moreover, C. elegans and human ENCODE regions differ in
the amount of EST coverage, which in turn can affect the
quality of ASPic predictions. In the ENCODE pilot regions,
the EST coverage is nearly complete: 91.5% of all introns
(98.6% of introns in coding sequence) are covered by ESTs at
a specificity of 85%. In contrast, ESTs cover only about 60%
of the C. elegans genome which often results in EST clusters
with incomplete exon-intron structures.

In the case of the C. elegans genome, we have compared
ASPic-GeneID predictions with those from programs repre-
senting the state of the art in nematode gene finding, includ-
ing ab initio, comparative, and EST-based methods (Table 1).
Likewise, all predictions on the 44 ENCODE regions have
been compared to those from a number of established gene
finding programs involved in the human ENCODE genome
annotation assessment project (EGASP) (Table 2).

2.6. Availability. GeneID source code (version 1.3) as well as
C. elegans and human parameter files can be downloaded
from http://genome.crg.es/software/geneid/. For large-scale
jobs, we recommend to download the off-line version of
ASPic from the following web page: http://150.145.82.212/
aspic/aspicgeneid.tar.gz. In addition, Python and Perl scripts
to automate ASPic are also provided (including all ESTs that
could get a very big file. On the other hand, ESTs sequences
can easily be downloaded from Unigene database).

http://genome.crg.es/software/geneid/
http://150.145.82.212/aspic/aspicgeneid.tar.gz
http://150.145.82.212/aspic/aspicgeneid.tar.gz
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Table 2: Accuracy of gene finding programs on the ENCODE pilot regions.

Evaluation at gene level
Program SNg SPg SSg WG MG SNe SPe SSe WE ME SNi SPi SSi WI MI SNn SPn SSn
DOGFISH 0,75 0,84 0,80 0,26 0,25 0,61 0,72 0,67 0,18 0,28 0,61 0,72 0,67 0,28 0,39 0,68 0,80 0,74
Ensembl 0,94 0,81 0,88 0,18 0,06 0,81 0,74 0,78 0,15 0,08 0,87 0,82 0,85 0,18 0,13 0,91 0,86 0,89
Exogean 0,83 0,95 0,89 0,12 0,17 0,87 0,78 0,83 0,12 0,09 0,90 0,82 0,86 0,18 0,10 0,85 0,88 0,87
Exonhunter 0,94 0,26 0,60 0,72 0,06 0,69 0,41 0,55 0,51 0,13 0,72 0,49 0,61 0,51 0,28 0,90 0,58 0,74
FGENESH++ 0,93 0,55 0,74 0,42 0,07 0,78 0,63 0,71 0,31 0,13 0,78 0,67 0,73 0,33 0,22 0,88 0,70 0,79
GeneID 0,92 0,76 0,84 0,32 0,08 0,56 0,59 0,58 0,27 0,28 0,53 0,59 0,56 0,41 0,47 0,77 0,74 0,76
Genemark 0,94 0,43 0,69 0,50 0,06 0,53 0,46 0,50 0,41 0,28 0,51 0,50 0,51 0,50 0,49 0,77 0,61 0,69
PAIRAGON-any 0,91 0,76 0,84 0,23 0,09 0,85 0,83 0,84 0,14 0,10 0,85 0,86 0,86 0,14 0,15 0,88 0,86 0,87
PAIRAGON-Multiple 0,88 0,80 0,84 0,24 0,12 0,75 0,77 0,76 0,18 0,16 0,75 0,78 0,77 0,22 0,25 0,85 0,83 0,84
SGP2 0,92 0,39 0,66 0,54 0,08 0,65 0,48 0,57 0,40 0,16 0,66 0,55 0,61 0,45 0,34 0,84 0,66 0,75
TWINSCAN 0,89 0,74 0,82 0,30 0,11 0,71 0,58 0,65 0,30 0,17 0,73 0,62 0,68 0,38 0,27 0,86 0,71 0,79
AUGUSTUS-abinitio 0,90 0,57 0,74 0,33 0,10 0,60 0,61 0,61 0,28 0,26 0,57 0,62 0,60 0,38 0,43 0,80 0,71 0,76
AUGUSTUS -any 0,95 0,66 0,81 0,26 0,05 0,81 0,73 0,77 0,21 0,08 0,79 0,74 0,77 0,26 0,21 0,93 0,78 0,86
AUGUSTUS-dual 0,93 0,60 0,77 0,29 0,07 0,70 0,65 0,68 0,25 0,15 0,68 0,67 0,68 0,33 0,32 0,89 0,75 0,82
AUGUSTUS EST 0,95 0,70 0,83 0,24 0,05 0,80 0,74 0,77 0,20 0,09 0,78 0,75 0,77 0,25 0,22 0,91 0,79 0,85
ASPic 0,84 0,66 0,75 0,29 0,16 0,87 0,75 0,81 0,11 0,09 0,89 0,87 0,88 0,13 0,11 0,81 0,85 0,83
ASPic-GeneID AS1 0,89 0,54 0,72 0,42 0,11 0,88 0,71 0,80 0,16 0,08 0,89 0,85 0,87 0,15 0,11 0,85 0,72 0,79
ASPic-GeneID AS2 0,96 0,46 0,71 0,50 0,04 0,90 0,62 0,76 0,21 0,06 0,90 0,76 0,83 0,24 0,10 0,93 0,60 0,77
ASPic-GeneID 0,95 0,56 0,76 0,46 0,05 0,81 0,65 0,73 0,28 0,05 0,86 0,72 0,79 0,28 0,14 0,89 0,64 0,77

Evaluation at transcript level
Program SNt SPt SSt WT MT SNet SPet SSet WEt MEt SNit SPit SSit WIt TMIt SNnt SPnt SSnt
DOGFISH 0,06 0,13 0,10 0,01 0,44 0,73 0,76 0,75 0,15 0,19 0,72 0,75 0,74 0,25 0,28 0,78 0,82 0,80
Ensembl 0,25 0,24 0,25 0,13 0,23 0,84 0,87 0,86 0,04 0,08 0,90 0,93 0,92 0,07 0,10 0,93 0,95 0,94
Exogean 0,51 0,43 0,47 0,26 0,10 0,89 0,89 0,89 0,08 0,07 0,90 0,90 0,90 0,10 0,10 0,91 0,91 0,91
Exonhunter 0,06 0,03 0,05 0,03 0,46 0,69 0,67 0,68 0,21 0,19 0,71 0,70 0,71 0,30 0,29 0,85 0,80 0,83
FGENESH++ 0,43 0,38 0,41 0,07 0,30 0,80 0,85 0,83 0,08 0,14 0,80 0,86 0,83 0,14 0,20 0,87 0,92 0,90
GeneID 0,03 0,04 0,04 0,01 0,50 0,60 0,62 0,61 0,24 0,27 0,57 0,60 0,59 0,40 0,43 0,78 0,78 0,78
Genemark 0,05 0,04 0,05 0,05 0,41 0,46 0,61 0,54 0,22 0,41 0,45 0,62 0,54 0,38 0,55 0,65 0,79 0,72
PAIRAGON-any 0,51 0,46 0,49 0,19 0,21 0,89 0,92 0,91 0,05 0,08 0,89 0,93 0,91 0,07 0,11 0,90 0,94 0,92
PAIRAGON-Multiple 0,21 0,35 0,28 0,01 0,43 0,87 0,83 0,85 0,12 0,08 0,87 0,83 0,85 0,17 0,13 0,91 0,88 0,90
SGP2 0,05 0,04 0,05 0,06 0,41 0,63 0,66 0,65 0,19 0,23 0,65 0,69 0,67 0,31 0,35 0,76 0,85 0,81
TWINSCAN 0,10 0,08 0,09 0,23 0,22 0,74 0,68 0,71 0,22 0,16 0,76 0,69 0,73 0,31 0,24 0,84 0,78 0,81
AUGUSTUS-abinitio 0,13 0,16 0,15 0,04 0,38 0,59 0,73 0,66 0,15 0,31 0,56 0,71 0,64 0,29 0,44 0,74 0,86 0,80
AUGUSTUS -any 0,27 0,34 0,31 0,04 0,41 0,80 0,86 0,83 0,07 0,14 0,79 0,86 0,83 0,14 0,21 0,88 0,93 0,91
AUGUSTUS-dual 0,15 0,17 0,16 0,05 0,39 0,65 0,77 0,71 0,11 0,25 0,64 0,77 0,71 0,23 0,36 0,79 0,90 0,85
AUGUSTUS EST 0,27 0,36 0,32 0,03 0,42 0,80 0,86 0,83 0,07 0,14 0,79 0,86 0,83 0,14 0,21 0,88 0,94 0,91
ASPic 0,63 0,37 0,50 0,37 0,06 0,84 0,95 0,90 0,02 0,13 0,85 0,96 0,91 0,04 0,15 0,86 0,97 0,92
ASPic-GeneID AS1 0,65 0,33 0,49 0,33 0,06 0,84 0,94 0,89 0,02 0,13 0,85 0,96 0,91 0,04 0,15 0,86 0,97 0,92
ASPic-GeneID AS2 0,64 0,25 0,45 0,41 0,05 0,84 0,93 0,89 0,03 0,12 0,85 0,94 0,90 0,06 0,15 0,88 0,96 0,92
ASPic-GeneID 0,21 0,22 0,22 0,02 0,48 0,86 0,77 0,82 0,15 0,06 0,91 0,81 0,86 0,19 0,09 0,91 0,85 0,88
The highest values are shown in bold. SN indicates sensitivity. SP indicates specificity. SS indicates the average between SN and SP. Gene (g), transcript (t), exon
(e), intron (i), and nucleotide (n) were assessed.

Additional Python and Perl scripts to automate ASPic-
GeneID (for Linux andMacOSX) are available upon request.

3. Results and Discussion

3.1. ASPic Intron and Gene Prediction in C. elegans Genome
andAll 44 ENCODERegions. Theunderlying principle of our
system is that introns can guide ab initio gene assembly. This

task, however, can only be addressed using reliably predicted
introns. Available methods to align EST sequences to the
genome are mainly based on BLAST [35] or BLAT [31] and
sometimes lead to poor splice site predictions. In order to
obtain a high-quality set of intron positions, we first mapped
all available C. elegans ESTs onto the complete worm genome
(version WS147) using GMAP as described in Section 2.
Then, EST clusters related to potential gene regions were
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exploited to run ASPic. In contrast to other EST to genome
alignment programs, ASPic employs a novel and efficient
algorithm to minimize the number of exon predictions and
hence of alignment inferred splice sites. ASPic is also able
to infer alternative splicing variants of a gene given a related
collection of ESTs.

When applied to each C. elegans EST cluster, ASPic can
predict intron sequences and also full-length splicing variants
whenever ESTs completely cover specific gene regions.

In all six C. elegans chromosomes, ASPic proves to be
extremely specific. Out of 100723 predicted introns, 96.1%
exactly match (with the same exact splice sites) annotated
introns. However, overall sensitivity is low—likely due to the
fact that coverage of the genome by ESTs is only about 60%.

Overall, ASPic’s nucleotide and exon specificities are
98% and 91%, respectively. ASPic is also very specific when
comparing only to the best overlapped transcripts where
nucleotide and exon specificities increase to 99% and 95%,
respectively.

Moreover, it is able to find exact transcript variants with
a specificity of 71%, which is the highest reported up to now.
Similar specificity values have been reported by Genomix, a
new gene finder systemworking as a combiner [36].However,
Genomix specificities at exon and nucleotide levels of 87.3%
and 91.9%, respectively, have been calculated only on a
reduced subset of 1534 confirmed C. elegans genes (version
WS147) [36].

Despite the high specificity, ASPic shows very low sen-
sitivity values at all levels except when the comparison with
the annotation is limited to only transcripts overlapped by a
prediction (BTP level). In this case, the accuracy of ASPic, as
given by (Sn + Sp)/2, at the nucleotide and exon levels are 90%
and 88%, respectively.

It has been currently demonstrated that the expected
distribution of spliceosomal intron lengths is correlated to
the quality of the annotation [37]. Since introns are removed
after transcription, intron lengths are not expected to respect
coding frame. For this reason, the number of genomic introns
that are multiple of three bases should be similar to the
number of introns that are a multiple of three plus one or
two bases [37]. In effect, ASPic predicted introns follow this
behaviour. Of all elegans inferred introns, 33.5% are amultiple
of three bases, whereas 33.6% and 33.0% aremultiples of three
plus one and two bases, respectively. These results strongly
corroborate ASPic’s ability to predict bona fide exon-intron
boundaries.

The same approach used for the complete C. elegans
genome has been applied to all 44 ENCODE human regions.
In this case, however, single EST clusters related to gene
regions have been generated using a subset of all available
human expressed sequence tags downloaded from the Otter
database in order to reduce potential pitfalls due to low
quality ESTs or to aberrantmRNAs from pathological tissues.

ASPic is able to predict more introns than annotated
in ENCODE. However, we focus only on annotated coding
regions and it is well known that ENCODE contains many
noncoding transcripts in addition to a number of introns
located in UTR regions. Restricting, thus, the comparison to
coding regions only, we found ASPic to be the most accurate

system to predict introns in human ENCODE.This is derived
mostly from its higher specificity; it is the most specific,
with 87% of all predicted introns corresponding exactly to an
annotated intron. This value increases to 96% when making
the BTP comparison, demonstrating that the novel alignment
algorithm behind ASPic is quite efficient and results can
be comparable to those based on PAIRAGON, indicated
as one of the best program to align mRNA sequences to
genome [24, 38]. As shown in Table 2, ASPic outperforms
PAIRAGON-any in predicting correct introns. Considering
that PAIRAGON-any aligns only high quality sequences from
the full ORF Mammalian Gene Collection (MGC) [39] and
from the humanRefSeq database, ASPic’s performancewhich
is based only on ESTs is even more remarkable.

ASPic is not highly specific at the transcript level where it
is outperformed by Exogean and PAIRAGON-any. However,
it is as specific as the combiner Fgenesh++ [40] and it is
12% more sensitive at the transcript level than Exogean and
PAIRAGON-any. ASPic is also more sensitive than Ensembl
[41], AUGUSTUS-any, and AUGUSTUS-EST at the exon
level [22].When comparing at the BPT level, it has the highest
exon specificity (95%) (Table 2).

Like for the previous results described for the whole
C. elegans genome, in the human ENCODE regions, ASPic
predicted intron length distributions are not skewed. Of all
ASPic introns, 33.0% are a multiple of three bases and 33.2%
and 33.7% are multiples of three plus one and two bases,
respectively.

3.2. ASPic-GeneID Accuracy without Alternative Splicing.
Depending on the EST coverage of each gene region, ASPic
can predict just introns or both introns and alternative
splicing variants. For this reason, we can independently use
two main sources of evidence from ESTs such as individual
introns and full-length transcripts to improve GeneID ab
initio predictions.When only introns are given as evidence to
GeneID, the program is able to predict at most one transcript
per locus. As outlined in Section 2, introns with correct splice
sites can aid the correct assembly of ab initio predicted exons
during the exon-chaining step. The dynamic programming
procedure implemented in GeneID builds gene structures
using exons with the highest scores respecting frame compat-
ibility and gene model rules [28]. The introduction of ASPic
introns to GeneID forces exons with compatible frames and
splice sites to be joined. Since such evidence introns do not
interfere with the main GeneID exon prediction process, it is
expected that they are used only when compatible ab initio
exons really exist. Our procedure to handle evidence introns
as implemented inASPic-GeneID is also expected to improve
the accuracy at the transcript level.

When all ASPic predicted introns on the complete C.
elegans genome are given as evidence to GeneID, our com-
bined ASPic-GeneID system is found to be the most accurate
in predicting exact nematode transcripts. The results show
21% improvement in sensitivity and 24% in specificity in
predicting exact transcript structures compared to GeneID,
which does not use ASPic introns (Table 1). ASPic-GeneID
is, in turn, significantly more accurate than SNAP [4], FGE-
NESH [42], and GENEFINDER [8], the most widely used
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ab initio gene prediction program for nematodes. Moreover,
ASPic-GeneID outperforms TWINSCAN [43], which uses
the C. briggsae genome as an informant genome, at all
sensitivity and specificity measures. Most interestingly, our
gene prediction method is also more accurate than TWIN-
SCAN EST [9], a new system that combines EST alignments
with TWINSCAN. In particular, ASPic-GeneID is 6% more
sensitive at the exon level than TWINSCAN EST. Taking
the mean between sensitivity and specificity, ASPic-GeneID
is also more accurate than TWINSCAN EST in predicting
exact transcript structures, 45.5% versus 44%.

The strength of ASPic-GeneID relies on the use of reliable
intron sequences. Even when EST genome coverage is not
high and, thus, the number of ASPic predicted introns is low,
our system should predict genes with an accuracy better than
GeneID alone. To verify the effect of the number of introns
in improving ab initio GeneID predictions, we performed
the following experiment. ASPic was run on the complete
C. elegans genome using all available ESTs as described in
Section 2. Then, from all the predicted introns we randomly
selected increasing percentages of introns ranging from0% to
100% and ran GeneID using each intron subset. The number
of introns is undoubtedly related to the EST genome coverage
and, thus, a low number of ESTs should yield a low number
of introns. Results of this experiment are given in Figure 3
where the averages between sensitivity and specificity at gene
[44], exon (SSe), and nucleotide levels (SSn) are reported as
a function of growing intron percentages. The benefit due to
introns increases linearly with the number of input introns
and we can register a gene prediction improvement at all
levels, even when the number of introns is very low (10%).
These data indicate that ESTs and, thus, introns related to
some genes can improve the accuracy of neighbouring genes.
In practice, GeneIDmistakes such as extension and inclusion
of exons in neighbour genes become much less common
because introns introduce real constraints in gene assembly.

The accuracy of ASPic-GeneID using only introns has
also been evaluated on all 44 human ENCODE regions.
Here, however, the situation is quite different because human
genes are subjected to extensive alternative splicing and
because human gene density is low. A system such as
ASPic-GeneID which predicts only one transcript per locus
is a disadvantage. Nonetheless, ASPic-GeneID outperforms
all ab initio gene prediction programs such as Genemark
[45] or AUGUSTUS abinitio [5], currently one of the most
accurate programs to find ab initio gene structures in
mammals [8]. ASPic-GeneID is 18% more sensitive and
specific than GeneID alone in predicting exact transcript
structures. Moreover, ASPic-GeneID accuracy at the exon
level is 73%, a value which is higher than the corresponding
value obtained from other systems that use ESTs such as
ExonHunter [46] or informant genomes such asTWINSCAN
[43], SGP2 (an extension of GeneID) [10], DOGFISH [8],
and AUGUSTUS dual [22] or both evidence sources such
as FEGENESH++ [40]. However, our system is less accurate
at exon and nucleotide level than programs that use all
available evidence for human (Ensembl, PAIRAGON-any,
and AUGUSTUS-any) or programs that predict more than
one transcript per locus (Exogean [25]). Nonetheless, in
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Figure 3: ASPic-GeneID performance on C. elegans according to
number of introns. The accuracy [(Sn + Sp)/2] of ASPic-GeneID
predictions (AG) is plotted according to the proportion of introns
output by ASPic and provided to GeneID as evidence. SSe, SSn,
and SSg indicate the accuracy at exon, nucleotide, and gene level,
respectively.

several measures, ASPic-GeneID shows high sensitivity. At
the exon level, for instance, ASPic-GeneID sensitivity is
81%, 1% more than AUGUSTUS EST, an improved version
of AUGUSTUS that uses ESTs and proteins alignments,
6% more than PAIRAGON multiple and 3% more than
FGENESH++, a combiner that uses all available evidence. In
the BTP comparison, ASPic-GeneID sensitivity at the exon
level increases to 86%, 2% higher than Ensembl.

On the whole, ASPic-GeneID remains one of most accu-
rate systems to predict correct intronic sequences, attesting
its sensitivity at 86% and specificity at 72%. These last values
go up to 91% and 81%, respectively, when intron evaluation is
assessed at the BTP level.

We noted, however, that ASPic CDS predictions alone
are better than those of the combined ASPic-GeneID on the
ENCODE regions (see Figure 4). We surmised that this must
be due to EST coverage. Unlike in C. elegans, where EST
coverage is somewhat low, the coverage of annotated human
coding sequences by human ESTs is very high (85% of all
introns and nearly 99% of introns in coding sequences). To
determine at what level of EST coverage using our combined
approach may be beneficial, we performed the following
experiment. We selected random sets of ESTs corresponding
to 10%, 20%, 30%, and so forth up to 100% of the ESTs avail-
able as input to ASPic.These EST sets had an intron coverage
ranging from 27% to 85% of annotated introns. When using
less than 35% of the available ESTs (corresponding to about
62% intron coverage) ASPic-GeneID performed better at the
exon level than ASPic alone. At higher coverage, we found
that ASPic CDS predictions are clearly more accurate. The
performance ofASPic at the transcript level is quite good even
at low EST coverage levels.This is perhaps due to the presence
of a class of highly expressed transcripts that are well covered
by ESTs. ASPic will predict them correctly, while ASPic-
GeneID may try to extend the transcripts with additional
predicted exons.
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Figure 4: ASPic and ASPic-GeneID performance on ENCODE
according to EST coverage. The accuracy [(Sn + Sp)/2] of ASPic
CDS predictions (A) and ASPic-GeneID predictions (AG) is plotted
according to the proportion of available ESTs given as input to
ASPic. The percent coverage of annotated introns by the input
ESTs is also given. SSn, SSe, SSi, and SSt indicate the accuracy at
nucleotide, exon, intron, and transcript level, respectively.

3.3. ASPic-GeneID Accuracy with Alternative Splicing. In
order to improve the performance of ASPic-GeneID, espe-
cially in mammalian gene finding, we implemented the
possibility to predict alternative transcripts. In particular, we
addressed the alternative splicing task with two independent
procedures that should be considered simple extensions of
ASPic-GeneID. In the first procedure, we predicted alter-
native variants by ASPic in genomic regions fully covered
by ESTs and then we added all ASPic-GeneID predictions
not overlapping ASPic transcripts. This procedure, called
here ASPic-GeneID AS1, combines in the simplest manner
ASPic and ASPic-GeneID predictions, giving rise to ASPic
predictions because they are directly deduced by expression
data. The second procedure, called here ASPic-GeneID AS2,
is, instead, mainly dependent on GeneID. As for ASPic-
GeneID AS1, a complete pool of alternative transcripts was
obtained by ASPic. Each predicted variant (represented by
a set of exon-linked introns) was then given to GeneID as
evidence. All predicted transcripts were finally combined and
filtered in order to produce the final nonredundant set of
transcript predictions (more details in Section 2).

Overall, results from ASPic-GeneID AS1 and ASPic-
GeneID AS2 on the 44 ENCODE human regions are quite
similar and overlapping (Table 2). Both procedures outper-
form ASPic-GeneID at all levels in the BTP comparison.
Although ASPic-GeneID AS1 is not more sensitive than
ASPic-GeneID AS2, it appears to be more specific (as it
directly utilizes all ASPic transcripts). As shown in Table 2,
all results can be compared to those from programs that

currently use all available evidence or protein alignments to
improve gene prediction in human.

In particular, when predictions are evaluated at gene level,
ASPic-GeneID AS2 is the most sensitive in finding genes
(96%), exons (90%), introns (90%), and nucleotides (93%).
In contrast, ASPic-GeneID AS1 is the most specific at the
BTP exon, intron and nucleotide levels. Focusing onmethods
using ESTs and mRNAs alignments but excluding proteins,
ASPic-GeneID AS1 is as accurate as PAIRAGON-any (49%)
and 2% more accurate than Exogean (47%), indicated as
the best gene finding program by the EGASP assessment,
in predicting exact transcript structures. Moreover, ASPic-
GeneID AS1 has a transcript sensitivity of 65% which is
the highest registered up to now. In the comparison with
one of the most widely used pipelines as Ensembl, ASPic-
GeneID AS1 is 2% more accurate at both exon and intron
levels. On the other hand, at transcript level both our systems
are on average 22% and 3.5% more accurate than Ensembl in
finding transcripts and exons, respectively.

On the whole, as shown in Table 2, ASPic-GeneID AS1
and ASPic-GeneID AS2 appear to outperform also many
other well-established gene prediction tools at different mea-
sures. Although it is difficult to assess which program is really
the best annotation system for human ENCODE regions, our
simplemethods that use only ESTs asmain source of evidence
prove highly competitive and comparable to very complex
pipelines.

When we move to the C. elegans genome in which
the impact of alternative splicing is low, the performances
of ASPic-GeneID AS1 and ASPic-GeneID AS2 are slightly
better than ASPic-GeneID at all levels. However, the
possibility to predict alternative transcripts improves the
global finding of exact transcripts and exons. At the gene
level ASPic-GeneID AS2 seems to be more accurate than
ASPic-GeneID AS1. In contrast, at transcript level, ASPic-
GeneID AS1 appears to be more efficient than ASPic-
GeneID AS2 since it directly uses ASPic inferred transcripts.

3.4. ASPic-GeneID and Deep Transcriptome Sequencing.
ASPic-GeneID has been developed to handle long tran-
scriptome sequences as main biological evidence to improve
gene structures and detect potential alternative splicing tran-
scripts.

Current high-throughput sequencing methodologies as
RNA-Seq aim to provide global overview of entire transcrip-
tomes.However, huge amount of short reads from Illumina or
SOLiD platforms pose other challenges than classical Sanger
ESTs and in many cases the detection of reliable transcripts
is not optimal. Long-reads, therefore, as those from Sanger
sequencing or the Roche 454 sequencer (Titanium chemistry
with reads longer than 500 bases) represent the main source
of evidence to reliably identify splice sites and alternative
isoforms, other than simplify the deciphering of complex
eukaryotic gene structures.

ASPic-GeneID is ready to analyse long EST-like reads
from modern sequencer as Roche 454 and very long reads
that are coming with the third generation sequencing plat-
forms as PacBio. Although ESTs and ESTs-like sequences are
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optimal for our pipeline, in principle it could work with Illu-
mina reads. However, computational times are expected to be
very onerous and no extensive tests have been performed to
assess the biological quality of results.

4. Conclusions

Despite the advent of novel sequencing technologies [47,
48], the accurate genome annotation is yet a hard and
challenging task. In order to improve such a process once a
new genome sequence has been completed, we proposed here
a simple computational strategy to accurately identify coding
regions employing expressed sequences, mostly ESTs. Our
framework, called Aspic-GeneID, uses EST based predictions
by Aspic to improve ab initio gene structures by GeneID.
Moreover, it can predict alternative transcripts providing
a global view of the transcriptome. Aspic-GeneID is quite
flexible depending on EST coverage. In organisms with a
low impact of alternative splicing as C. elegans, it provides
optimal predictions resulting in one of the most accurate
gene finding programs. In contrast, when the impact of
alternative splicing is high as in human, it can outperform
existing gene finders at different levels. Moreover, the ability
to predict multiple transcripts per gene locus makes Aspic-
GeneID results comparablewith those fromvery complicated
pipelines like Ensembl, PAIRAGON-any, or AUGUSTUS-
any that tend to use all available evidence.

Our strategy is based on expressed sequences as ESTs, but
it can be easily applied to transcriptome sequences generated
by next generation sequencing technologies. Indeed, recent
tools as Cufflinks [49] can predict alternative transcripts
and individual introns, making our methodology extremely
recent and useful to improve genome annotations also in
absence of canonical ESTs (generally produced by Sanger
sequencing).
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