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Abstract
Understanding the persistence of specialists and generalists within ecological communities

is a topical research question, with far-reaching consequences for the maintenance of func-

tional diversity. Although theoretical studies indicate that restricted conditions may be nec-

essary to achieve co-occurrence of specialists and generalists, analyses of larger empirical

(and species-rich) communities reveal the pervasiveness of coexistence. In this paper, we

analyze 175 ecological bipartite networks of three interaction types (animal hosts–parasite,

plant–herbivore and plant–pollinator), and measure the extent to which these communities

are composed of species with different levels of specificity in their biotic interactions. We

find a continuum from specialism to generalism. Furthermore, we demonstrate that diversity

tends to be greatest in networks with intermediate connectance, and argue this is because

of physical constraints in the filling of networks.

Introduction
The functional diversity of ecological communities emerges through the simultaneous occur-
rence of species with contrasted resource use [1], habitat selection [2], and interactions [3, 4].
Both empirical and theoretical studies have shown how different degrees of niche partitioning
can promote functional diversity [5–7] and species persistence [8]. However, the co-occurrence
of specialist and generalist species has received considerably less attention. The majority of
studies seeking to understand the conditions for co-occurrence between populations of special-
ists and generalists in both biotic (e.g. predator–prey, host–parasite) and abiotic (e.g. habitat
choice) interactions have focused on small communities [9–14].
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Approaches based on model analysis or controlled experiments have two features impeding
their generalization to large communities. First, the number of interacting organisms is often
kept low, to facilitate model analysis or because of experimental constraints. Studies investigat-
ing the co-occurrence of species with contrasted specificities assume no intermediate situations
between the endpoints of specialism and generalism, whereas natural systems exhibit a contin-
uum [15, 16]. Second, it is unclear to what extent results can be scaled up to more realistic com-
munities. Stouffer and colleagues [17] showed that because adding species and interactions
increases the potential for complex population dynamical feedbacks, complete, realistic net-
works tend to exhibit different behaviors than simple modules (i.e. those typically used in mod-
els or experiments), begging for an analysis of co-occurrence in empirical communities.

Network theory offers powerful tools to describe ecological communities [18] and the distri-
bution of species specificity within them [19]. In a species interaction network, each species is a
node, and each interaction is an edge, connecting a pair of nodes. From a network perspective,
one can measure specificity by counting the number of links it has with other species (its de-
gree), or by measuring aspects of the distribution of the strengths of such links [19]. Previous
work described the degree distribution (i.e. the distribution of how many interactions each spe-
cies establishes and receives) of empirical networks, and revealed a continuum from highly spe-
cialized to generalists species [20]. While much is known about the factors (e.g. biotic [21],
abiotic [14, 15], developmental and physiological [22]) driving the specialization of single spe-
cies, less is known about the spectrum of specificities and niche-overlaps that can co-occur in
large ecological networks, and reasons for different spectra. As the co-occurrence and interac-
tions between specialized and generalized species is key to maintaining functional diversity
[23], promoting community stability [24], and ensuring network persistence [3], there is a
need to investigate the extent and properties of this co-occurrence.

In a previous paper [1], we argued that the specialization of different types of interactions is
likely to be shaped by the same set of core mechanisms, expressed in a different ways or with
different intensities. At the community level, this leads to the expectation that the same rela-
tionships between specificity, the co-occurrence of specialists and generalists, and other metrics
of community structure would occur for different types of ecological interactions, despite dif-
ferent types of networks, dominated by positive or negative interactions, occupying different
parts of this gradient [25]. In this study, we use a dataset of interaction networks spanning
three contrasted types of ecological interactions (herbivory, parasitism, and mutualism), to
characterize the extent to which species with different specificities can co-occur within the
same community. In line with our expectation and past empirical data, we find a continuum
from networks of mostly-specialized to mostly-generalized species, with the potential for spe-
cialist/generalist co-occurrence being greater at intermediate connectance. One central result is
that empirical data show consistently more variation in specificities of all species on the upper
network level (parasites, herbivores, pollinators; hereafter called “strategy diversity”) than pre-
dicted by two contrasting null models. This suggests (i) that organisms with very different lev-
els of specificity can co-occur in most natural systems, and (ii) that ecological or evolutionary
mechanisms are acting to maintain high diversity in the range of specificities.

Methods

Datasets
We employ three datasets: two for antagonistic (ectoparasite–animal host and insect herbi-
vore–plant) interactions, and one for mutualistic (pollinator–plant) interactions. Parasitism
networks were from Stanko and colleagues [26, 27] and consist of 121 networks of ectoparasites
infecting rodents in Central Europe, collected in a range of continental ecosystems over a
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period of 19 years. Herbivory networks (a total of 23) were collected by Thébault and Fontaine
[25] from various literature records. Data on mutualistic interactions are the 29 “plant–pollina-
tors” networks deposited in the InteractionWeb database (http://www.nceas.ucsb.edu/
interactionweb/) as of May 2012. These data are insect–plant contacts, aggregated from differ-
ent sources, spanning a period of over 30 years. Species with no interaction were removed from
the original datasets. Some networks had less than 1000 possible randomizations, which did
not allow for efficient or meaningful randomization [28], and as such were discarded from the
analysis. The final dataset has 115 parasitism networks, 6 herbivory networks, and 12 pollina-
tion networks. Because the sample size is unbalanced, we put particular emphasis on the dis-
cussion of parasitism networks.

Network analyses
Each bipartite network is represented by its adjacency matrixM with T rows (for the upper
level, i.e. ectoparasites, herbivores, and pollinators) and L columns (for the lower level, i.e. ani-
mal hosts and plants being consumed or pollinated). In each network,Mij represents the exis-
tence of an interaction between species i and species j [29]. For each network, we calculate its
size (Z = L × T), and connectance (Co, the proportion of established interactions). We focus
our analyses on the upper level, since we have more knowledge of specialization mechanisms
for these organisms [30]. Nestedness, a measure that reflects whether specialist species interact
with the same species as generalists, is calculated using the NODF (Nestedness based on Over-
lap and Decreasing Fill) measure [31]. NODF is insensitive to network asymmetry (the relative
number of species at each of the two levels) and size. Modularity measures the extent to which
species form well defined, densely connected, groups, with few connections between groups.
Modularity is estimated using the LP-BRIM method [32], which both increases detection com-
pared to the adaptive BRIMmethod, and is less computationally intensive [33]. For each net-
work, we retained the highest modularity Qbip [34] observed in a total of 1000 replicate runs.

We contrast empirical observations with the predictions of two different null models, each
based on the impact of different aspects of network structure. For each null model, we filled a
network through a Bernoulli process, in which the probability of each pairwise species interac-
tion occurring (Pij) is determined in one of the following ways. Null model I [35] is connec-
tance based and assigns the same probability to each interaction, Pij = Co. Compared to the
empirical network on which they are based, simulated networks can have the same connec-
tance, but a potentially different degree distribution. Null model II [3] uses information about
species degree (the number of interactions established/received) to calculate the probability
that a particular interaction will occur. This probability is Pij = (T × Gi + L × Vj)/(2 × Z), where
Gi and Vj are, respectively, the generality (number of interactions) of upper level species i, and
the vulnerability (number of interactions) of lower level species j [36]. Simply put, the probabil-
ity of the interaction occurring is the mean of the degrees (ranged in 0–1) of the two species in-
volved. Note that the first null model is nested into the second.

Each of these models was applied to each network in the dataset, so as to generate 1000 ran-
dom networks (meaning that each empirical network was fed into the model to generate a total
of 2000 randomizations). Each of these networks was analyzed using the same methods as for
empirical networks.

Quantifying specificity
We quantify specificity based on the proportion of available species with which a focal species
interacts [37], using a ranged version of Schoener’s generality. For each species i of the upper
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level (e.g. parasites), its specificity is given by

si ¼
L� li
L� 1

where L is the number of lower level species (e.g. hosts) found in the network, and li is the num-
ber of interaction partners of species i. The vector s is the distribution of specificities at the net-
work scale. Values of 1 indicate complete specialism (single partner), and values of 0 indicate
complete generalism (all possible partners).

Quantifying strategy diversity
We quantify two aspects of the co-occurrence of specialists and generalists (i.e. “strategy diver-
sity”). First, “specificity range” or R, is simply the difference between the specificity of the most
and least specialized organisms, such that

R ¼ maxðsÞ �minðsÞ
R is maximized when at least one completely specialized species k (sk = 1) is found in the same
network as one (or more) completely generalized species l (sl = 0).

A second measure of the distribution of specificities within a network is its evenness, de-
noted E. We define s0 as all the unique values of s, rounded to the second decimal place. We de-
fine U as the ordered set of s0 values and u as each of the elements of this set. Thus p(u) is the
probability associated to a given element of U. For example, if s0 = [0.1, 1, 1, 0, 0.4], then U =
[0, 0.1, 0.4, 1], p(u = 1) = 2/5, and p(u = 0) = 1/5. With this information, we calculate the self-
information [38] of u as I(u) = −ln(u), and based on these two sets of values, we calculate the
Shannon’s entropy of the distribution of specificity values as

H ¼ Su2U ½pðuÞIðuÞ�

If U takes on N possible values, then the theoretical maximum ofH (attained when all values of

s0 are unique, i.e. no two species are equally specialized) is
Hmax ¼ lnðNÞ

To eliminate any scaling effect that might occur due to different network sizes, we take the
exponentials of these values [39], such that the standardized value of E is

E ¼ eH�Hmax

It follows that E = 1 when no two organisms have the same level of specificity, and E = 0 when

all values of s0 are equal. Note that rounding to the second decimal place allows accounting for
the fact that some organisms may have very similar (but not exactly equal) specificities. Small
differences in the values of specificity are less important than the potential amplitude of mea-

surement error, as preliminary tests indicated that the rounding of s0 does not qualitatively
change observed relationships. It is also known that small differences in link strength have little
or no impact in larger networks [40].

Finally, we present a simple summary statistic that we call “strategy diversity” (D),

D ¼ 1

2
ðE þ RÞ

which given that both E and R take values in [0, 1], will also return values in this range. D = 1
indicates that the specificity values found in a network range from highly specialized to highly
generalized and are evenly distributed. D = 0 means that a network is composed entirely of
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species sharing the same specificity values. The two advantages of D are (i) it accounts both for
the range of specificities and their distribution, and (ii) it is independent of the observed speci-
ficity values. We expect strategy diversity (D) to peak at intermediate values of connectance
and specificity, to increase with nestedness, and to decrease with modularity (Fig 1). The rea-
soning is as follows. Interaction matrices are physically constrained objects, in that adding in-
teractions will modify their properties, and thus produce artifacts [28, 41]. By definition, a
perfectly nested network maximizes strategy diversity [31], and a modular network tends to
minimize it. A matrix with minimal fill for a given size has all interactions on the diagonal, and
is therefore highly specialized, with no strategy diversity. Conversely, a completely filled net-
work is extremely generalized, and thus has no strategy diversity.

Results
All types of network tend to have more strategy diversity and to be composed of more special-
ized species than expected by chance (Table 1). For each empirical network, we measure
whether its structural properties (strategy diversity, nestedness, modularity) are higher or
lower than expected by chance using the two null models. Our results are reported in Table 1.
Both null models gave consistent results regarding whether the empirical networks represented
a deviation from random expectations. Host-parasite networks are on average less modular
than expected, herbivory networks are more, and there is no clear trend in pollination net-
works. There is a marked tendency towards higher than expected nestedness in all types
of interactions.

Fig 1. Expected relationships between connectance and other metrics.

doi:10.1371/journal.pone.0114674.g001
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Fig 2 presents the distributions of specificity, connectance, nestedness, and modularity in
networks that are either more or less functionally diverse than expected under the assumptions
of null model II (using the outcomes of model I yields the same qualitative results; see Table 1).
Regardless of the baseline differences between types of network for each of the metrics consid-
ered, higher diversity responded in a consistent way to variation in the other metrics. Networks
with higher average specificity tended to have lower average strategy diversity, higher connec-
tance, higher nestedness, and lower modularity (Table 2). There are significant interactions be-
tween all of the variables and the network having higher strategy diversity than expected by
chance, with the exception of modularity (Table 3). These four metrics alone account for 96%
of the variance of strategy diversity, and 63% of the variance in the deviation of this same met-
ric. All metrics except modularity had a significant impact on strategy diversity. Interestingly,
connectance was the best predictor of strategy diversity, whereas nestedness was the best pre-
dictor of the extent to which strategy diversity in the empirical networks deviates from random
expectations. This is because by definition, null model testing removes most of the effects of
connectance. The type of ecological interaction was not significant; detecting possible signifi-
cance would have probably required a larger sample size for non-parasitic networks.

Table 1. Results of the null models analyses. For each network metric, and for each null model, we indicate the proportion of networks that had significantly
larger or smaller values than expected by chance. A network has a significantly different value from the prediction when the empirical value falls outside of the
95% confidence interval for the value as measured on randomized networks [55].

Networks Metric Model NS + -

Parasitism D 1 0.1 0.7 0.19

N = 115 2 0.08 0.59 0.32

S 1 0.13 0.87 0

2 0.07 0.93 0

NODF 1 0.008 0.91 0.07

2 0.06 0.78 0.15

Q 1 0.008 0.91 0.07

2 0.06 0.78 0.15

Herbivory D 1 0 0.66 0.33

N = 6 2 0 0.66 0.33

S 1 0 1 0

2 0 1 0

NODF 1 0 0.84 0.16

2 0 0.84 0.16

Q 1 0 0.67 0.33

2 0 0.67 0.33

Pollination D 1 0 0.67 0.33

N = 12 2 0 0.58 0.42

S 1 0 1 0

2 0 1 0

NODF 1 0 0.91 0.09

2 0.08 0.75 0.17

Q 1 0 0.5 0.5

2 0.08 0.58 0.33

NS: no significant difference in stategy diversity. D: strategy diversity. S: average specificity. NODF: nestedness. Q: modularity.

doi:10.1371/journal.pone.0114674.t001
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Fig 2. Values of average specificity, nestedness, connectance, andmodularity for networks with more (orange) or less (purple) strategy diversity
than expected by chance. The results within a type of interaction are all highly consistent. For this analysis only, networks that were as functionally diverse
as expected (as determined by the Null Models) were removed, since their strategy diversity can be explained solely by either their connectance or degree
distribution. Types of interaction are given on the x axis, with networks separated as a function of whether they have more (orange) or less (purple) strategy
diversity than expected by chance (under the assumptions of the second, more restrictive null model).

doi:10.1371/journal.pone.0114674.g002

Table 2. Analysis of the results presented in Fig 2.We used a two-sample t-test to determine differences from chance expectations for networks with either
less, equal, or more strategy diversity. We observe that all metrics are different from chance expectations for parasitism networks, but not for other interaction
types (although our failure to report an effect is most likely due to the small sample size, as indicated by certain large confidence intervals).

Networks Metric t df Low. 95% C.I Up. 95% C.I

Parasitism S -9.57 57.5 -0.30 -0.19

N = 115 NODF -8.2 72.75 -19.55 -11.91

Co -3.98 82.51 -0.14 -0.04

Q 3.91 71.94 0.04 0.12

Herbivory S -0.54 1.23 -1.66 1.45

N = 6 NODF -1.32 1.64 -127 76

Co -0.76 2.82 -0.21 0.13

Q 1.04 1.05 -2.03 2.44

Pollination S -5.26 9.94 -0.43 -0.17

N = 12 NODF -1.48 5.91 -28.73 7.69

Co -1.25 6.91 -0.14 0.04

Q 1.56 8.16 -0.04 0.22

Metrics in bold are significantly different from chance expectation. S: average specificity. NODF: nestedness. Q: modularity. Co: connectance.

doi:10.1371/journal.pone.0114674.t002
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We finally examine the relationships between network metrics and strategy diversity
(Fig 3). Strategy diversity increases with connectance (it is expected to be 0 for a connectance
of 1, but no network in our dataset is densely connected), decreases with average specificity (as
before, strategy diversity is 0 if mean specificity is 0), increases linearly with nestedness, and de-
creases with modularity. An interesting result in this analysis is that the trend is the same for

Table 3. Analysis of variance partitioning (ANOVA on linear additive models) of the effects of connec-
tance, nestedness, mean specificity, andmodularity, on strategy diversity, and the excess strategy di-
versity (deviation of empirical values from simulated networks as assessed by the Null Model
analysis). Preliminary analyses showed no impact of the interaction type on these relationships, so this factor
was not included as a covariate.

Response Predictor F-value

D Co 1076

R2 = 0.92 NODF 247

S 262

Q 2 × 10−2

Excess D Co 20.9

R2 = 0.63 NODF 112.3

S 84.8

Q 9 × 10−1

D: strategy diversity. Excess D: positive deviation of D under the assumptions of the null model. S:
average specificity. NODF: nestedness. Q: modularity. Co: connectance. Bold predictors are significant.

doi:10.1371/journal.pone.0114674.t003

Fig 3. Scatter plot of strategy diversity versus other networkmetrics. Regardless of the interaction type, strategy diversity responds in a similar way to
other network metrics. Points are colored as in Fig 2. Triangles are host-parasite systems, squares are plants-herbivores, and circles are plants-pollinators.
Empty triangles are host-parasite networks that have as many strategy diversity as expected.

doi:10.1371/journal.pone.0114674.g003
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all three types of interaction considered, with the exception that herbivory and pollination net-
works tended to occupy the “low connectance” end of the gradient; they behave in the same
way as do parasitism networks, reinforcing the idea that structural constraints such as that in-
troduced by connectance may be driving emergent network properties [28, 42].

Discussion
Several mechanisms have been proposed to explain the co-occurrence of potentially competing
species, including behavior [43], spatial or temporal heterogeneity [9], and trade-offs associat-
ed with species interactions [1, 12, 44]. Ecological factors such as environmental and spatial
heterogeneity and evolutionary processes such as niche partitioning may permit the coexis-
tence between competing species with similar and/or different number of resources [45, 46].
However, most of these results were obtained in systems of low complexity, and the extent to
which specialists and generalists co-occur in natural communities remains to be evaluated. By
analyzing three bipartite network datasets covering a range of both ecological and structural
situations, we show how co-occurrence can be linked with other topological network proper-
ties. This calls for a better integration of network methodology to the analysis of community
structure, with the aim of understanding the co-occurrence of species with
different specificities.

Most emergent network properties could be predicted based on connectance alone [28].
This included, notably, components of the degree distribution (how many interactions are es-
tablished/received by each species) involved in determining nestedness. The fact that the rela-
tionship between connectance, emergent metrics (such as nestedness and modularity), and
strategy diversity is conserved across types of ecological interactions can be explained in part
by these physical constraints. The fact that some interactions appear more or less specialized
reflects average differences in connectance in these communities. Null models analysis none-
theless reveals that, for all types of interaction, approximately two-thirds of all networks had
more strategy diversity than expected by chance; this suggests that despite physical constraints,
ecological and/or evolutionary mechanisms are involved in promoting high diversity [8, 47].

Overall, we report that networks with higher nestedness and lower modularity, also had
more strategy diversity than expected under the assumptions of the two null models. If the
main difference between interaction types is their connectance, then the different mechanisms
involved must be studied alongside their impacts on network structure. Species specialization
is regulated by differences in life-history traits [1], competition for access to resources [45, 48],
or phylogenetic conservatism in attack/defense strategies [49]. Through their impact on species
range of resources used, these factors are likely to be involved in driving network structure, and
connectance in particular. For example, in herbivorous systems, plants may employ multiple
defenses against enemies, including the release of toxic compounds [50] and/or attraction of a
herbivore’s natural enemies [51–54]. The simultaneous existence of different levels of defense
such as those mentioned above may promote lower connectance. It can also result in the faster
diversification of exploitation strategies at the upper level (in the sense that enemies specialize
on a defense mechanism rather than on the set of defended species) than in other types of inter-
action rely on narrower sets of mechanisms [15]. This may result in the maintenance of high
strategy diversity relative to connectance in some antagonistic interactions.

In summary, although the ecological nature of an interaction (mutualistic or antagonistic)
has an impact on network structure, higher than expected strategy diversity appears to be a
conserved property in bipartite ecological networks. The particular position occupied by a net-
work along a continuum of, e.g. connectance or nestedness, can emerge because of the life-his-
tory traits of species establishing interactions, and we suggest that increased attention should
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be given to understanding how fine-scale mechanisms at the individual or population level
drive the structure of community-level networks. It is nonetheless clear that despite theoretical
predictions, generalists and specialists are often found together in nature. Understanding this
gap between predictions and observations will be a major challenge that should be addressed
by investigating the mechanisms of coexistence and co-occurrence in large multi-
species communities.
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